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We consider a family of proper random variables which converges to an improper random
variable. The limit in distribution is found and applied to obtain a closed-form expression for
the limiting power of the Cliff-Ord test for autocorrelation. The applications include the theory of
characteristic functions of proper random variables, the theory of almost periodic functions, and
the test for spatial correlation in a linear regression model.

1. Introduction

Improper random variables do not satisfy the condition P(X ∈ R) = 1; that is, they may take
values outside the real line R. They are not used much by themselves, but there are situations
when they arise as limits of proper random variables. In such cases, we say that a distribution
escapes to infinity. The main problem considered in this paper is illustrated in the following in
a simplified situation.

Throughout the paper we denote by χA the indicator of a set A. Let g = (1/2)χ[−1,1] be
a uniform distribution on the segment [−1, 1]. Consider the family of densities gλ(t) = λg(λt),
where λ > 0. The total mass is constant:

∫
R gλ(t)dt = 1 for any λ > 0. In Bayesian estimation,

improper priors are obtained by letting λ → 0. In this case, there are two effects at work:
the support supp gλ = [−1/λ, 1/λ] stretches out indefinitely and the height of the density
max gλ = λ/2 goes to zero. One might be tempted to think of the limit G of {gλ}, as λ → 0,
as an infinitesimally thin layer smeared over the whole real line. This notion would be wrong
because

∣∣∣∣

∫

R

gλ(t)ϕ(t)dt
∣∣∣∣ ≤

λ

2

∫

suppϕ

∣∣ϕ(t)
∣∣dt −→ 0, λ → 0, (1.1)
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for any ϕ ∈ C0(R) (the set of continuous functions on R with bounded support suppϕ).
Thus, if the limit in distribution G of {gλ} exists, it vanishes on all elements of C0(R). By the
definition of the support of a distribution [1, Chapter 1, Section 13], the support of G does
not contain R. So instead of spreading the mass over R, it is more correct to say that the mass
escapes to infinity.

In this paper we provide a rigorous framework for treating more complex situa-
tions. To illustrate the arising complexities, let us look at the standard normal variable X
with the density g(x) = (2π)−1/2 exp(−x2/2). Let Xλ have the density gλ(x) = λg(λx) =
λ(2π)−1/2e−(λx)

2/2. Its characteristic function is

EeitXλ =
∫

R

ei(t/λ)xg(x)dx = Eei(t/λ)X = e−(t/λ)
2/2. (1.2)

The moment generating function of Xλ is EetXλ = e(t/λ)
2/2. None of these expressions is good

for characterizing the limit as λ → 0. Further, let ϕ denote an arbitrary continuous and
bounded function on R. In the expression

∫

R

gλ(t)ϕ(t)dt = λ
∫

R

g(λt)ϕ(t)dt, (1.3)

the height of the density goes to zero, so the integrand converges to zero everywhere. How-
ever, the graph of the density stretches out from the origin. Therefore, the best majorant for the
integrand is |g(0)ϕ(t)| which is generally not integrable. Thus, the dominated convergence
theorem cannot be used to obtain convergence in distribution. While the case of collapsing
density (λ → ∞) is easily handled by the existing theory, the case of stretching out (λ → 0)
requires new tools which we develop here.

Problem 1. Describe the limit in distribution when the stretching-out is applied to a density
along all or some variables.

This problem is solved in Theorem 2.2 in Section 2 (case of all variables) and
Theorem 2.6 (case of some variables). In their simplest form, those results reveal the main
ideas. Let g be any summable even function on R (it may change sign and not integrate to
unity). LetMϕ denote the generalized mean of ϕ over R:

Mϕ = lim
r→∞

1
2r

∫ r

−r
ϕ(t)dt. (1.4)

Then for a continuous and bounded function ϕ on R such thatMϕ exists, one has

∫

R

λg(λt)ϕ(t)dt −→Mϕ

∫

R

g(t)dt, λ −→ 0. (1.5)
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Now suppose that the function g depends on two variables and the stretching-out is applied
with respect to the first of them. Let ϕ be continuous and bounded on R2. Denote M1ϕ, the
result of application of (1.4) to ϕwith respect to the first argument,

(
M1ϕ

)
(t2) = lim

r→∞
1
2r

∫ r

−r
ϕ(t1, t2)dt1, (1.6)

and let g1(t2) =
∫
R g(t1, t2)dt1. In cases when g is not a density, we call this function amarginal

“density.” Then, (1.5) can be used to prove

∫

R2
λg(λt1, t2)ϕ(t)dt =

∫

R

[∫

R

λg(λt1, t2)ϕ(t1, t2)dt1
]
dt2

−→
∫

R

(
M1ϕ

)
(t2)g1(t2)dt2, λ −→ 0,

(1.7)

if g is integrable and spherically symmetric. As we show, the right sides of (1.5) and (1.7)
determine distributions supported at infinity.

Theorem 2.2 is followed by two applications. One generalizes results from [2] on
the link between jumps of a distribution function of a (proper) random variable and its
characteristic function. Another application is to the fundamental theorem of H. Bohr on the
Parseval identity for almost-periodic functions; see [3]. Theorem 2.6 is applied to the limiting
power of the Cliff-Ord test for autocorrelation. To formulate the related problems, we need
some notation.

Consider a linear regression model

y = Xβ + u, Eu = 0, var(u) = σ2Σ
(
ρ
)
, (1.8)

where X is an n × k matrix of rank k < n; a vector β ∈ Rk and a number σ2 > 0 are unknown
parameters. The matrix Σ(ρ) is assumed to be a nonnegative function of the parameter ρ ∈
[0, a], with some a > 0. ρ in applications characterizes the degree of autocorrelation. Testing
for autocorrelation takes the form H0 : ρ = 0 versus Ha : ρ > 0. The case ρ → a is of special
interest for determining the limiting power of tests.

Assuming that Σ(ρ) is positive definite for ρ ∈ [0, a), denote ε = Σ−1/2(ρ)u and let g(ε)
be the density of ε. The density of y is then given by [4, Equation (D.2)]

fρ
(
y
)
= detΣ−1/2(ρ

)
g
(
Σ−1/2(ρ

)(
y −Xβ)

)
. (1.9)

Problem 2. Assuming that

rank
(
Σ−1(a)

)
= n − 1, (1.10)

describe the limit in distribution of fρ.
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This problem, as an intermediate step in the proof, was considered by Martellosio [4],
and his answer is reproduced as follows. Let N(A) denote the null space of a matrix A and
denote A(a) = Σ−1(a). Let Xβ +N(A(a)) be the translation by Xβ of the null space of A(a).
Reference [4] states that in case (1.10)

as ρ −→ a, fρ tends to a degenerate density supported on Xβ +N(A(a)), (1.11)

see page 182. Equation (1.11) arises from the confusion between the stretching-out and
collapsing. On page 159, rows 10 and 11, he remarks that (1.11) can be extended to the case
rank(Σ−1(a)) < n − 1. He does not specify the mode of convergence, but, as we argue in
Section 2, the convergence in distribution is the right one for the problem of the behavior of
the limiting power of tests for autocorrelation. Unfortunately, (1.11) does not hold under the
convergence in distribution.We prove this and solve Problem 2 in Theorem 2.7 for the general
case 0 < rank(Σ−1(a)) < n.

Let Φ be a critical region for rejectingH0 in favor ofHa. Denote

βρ(Φ) =
∫

Φ
fρ
(
y
)
dy, (1.12)

the probability content ofΦ under density (1.9) and define the limiting power β(Φ) as the limit
of this probability content: β(Φ) = limρ→a βρ(Φ). Specifically, we consider critical regions that
arise from the Cliff-Ord test, to be described now. With the regressor matrix X from (1.8)
denote LX = X(X′X)−1X′, MX = I − LX . Under the spatial autocorrelation assumption, the
regression disturbances follow

u = ρWu + ε, Eε = 0, var(ε) = σ2
ε I, (1.13)

where ε is a new disturbance and W is some known n × n matrix. The scalar ρ, which is
unknown, determines the degree of correlation among the components of u. For testing the
nullH0 : ρ = 0 against the alternativeHa : ρ > 0, Cliff and Ord [5] proposed a test that rejects
the null if u′MXWMXu/u

′MXu > c. Denote

Φ =
{
u ∈ Rn :

u′MXWMXu

u′MXu
> c

}
, Φ− =

{
u ∈ Rn :

u′MXWMXu

u′MXu
< c

}
. (1.14)

Problem 3. Obtain a closed-form expression for β(Φ).
Theorem 2.7 is applied in Theorem 2.9 to solve this problem in case (1.10).

Problem 4. Describe the cases when the limiting power disappears, that is, when β(Φ) = 0.
This problem has been the main motivation for this paper. Spatial models in general

are peculiar in many respects, and the possibility of the limiting power to disappear is one
of those peculiarities that has been attracting researchers’ attention lately. Krämer [6] was
the first to suggest that the limiting power of tests for spatial autocorrelation may vanish, for
some combinations of the regressor matrix and the spatial matrix. Unfortunately, the terms
in which Krämer expressed his results do not adequately reflect all the possibilities, and his
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proof contains an incorrect argument; see [7, Footnote 5]. Martellosio [4] was the first to
suggest that the answer is better described in terms of the geometrical relationship between
the eigenvectors of Σ−1(a) and the critical region Φ. However, both of his main result [4,
Theorem 1] and its proof contain errors (see Remark 2.12 in Section 2). Our answer to Problem
4 is given in Theorem 2.11 and corrects [4, Theorem 1] in that where he excludes the extreme
values 0 and 1 for the limiting power, we give examples showing that the extreme values are
possible. In the light of our result, several statements in [4, 7] have to be reconsidered. The
analysis for the Cliff-Ord test is very involved, and it is not feasible to indicate corrections
for all Martellosio’s main results that depend on the wrong intermediate statement or his
Theorem 2.9. The complexity of our analysis necessitates a more detailed notation than that
used by Martellosio. In particular, some of his verbal definitions and statements are cast in a
more formal way. As a result, our citations are not word for word.

Despite the fact that the convergence in distribution is the right one for Problem 4,
it would be interesting to know what kind of convergence produces the limit indicated by
Martellosio, as is stated next.

Problem 5. Design the mode of convergence that leads to (1.11).

To this end, we introduce a new convergence concept (which, given its purpose, could
be called a retrofit convergence), which may not look intuitively appealing but allows us to
prove (1.11) in Theorem 2.13. Under this alternative convergence, there is no analog of (1.12).
Therefore, we did not consider Problems 3 and 4 for this convergence.

The previous plan will be implemented under conditions much more restrictive than
suggested by Martellosio. All main results that are stated in Sections 2 and 3 contains all
proofs.

2. Main Statements

In the multidimensional version of the generalized mean (1.4) instead of averaging over
segments [−r, r], we have to average over balls. The shape of those balls depends on the norm
of Rn. Let ‖ · ‖a be an arbitrary norm in Rn. The balls are defined by Ba,n(x, r) = {y ∈ Rn :
‖x − y‖a ≤ r}, where the indication of the space dimension will be important when dealing
with more than one space. As an example, one can think of the lp-norm defined by

‖x‖p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
n∑

i=1

|xi|p
)1/p

, if 1 ≤ p <∞,

max
1≤i≤n

|xi|, if p = ∞.

(2.1)

In case of the Euclidean norm ‖ · ‖2, we obtain usual balls; in cases p = 1 and p = ∞, the balls
Bp,n(x, r) are cubes. Another useful example is ‖x‖A = (x′Ax)1/2, where A is a symmetric,
positive definite matrix. We say that a function g on Rn is ‖ · ‖a-spherically symmetric if g(x) =
p(‖x‖a) with some function p defined on the half-axis [0,∞). Conditions involving spherical
symmetry in the following are similar to Conditions (2.1) and (2.2) from [8].
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Let σ denote an element of the unit sphere {σ ∈ Rn : ‖σ‖a = 1} and let (σ, ρ(σ)) be the
representation of a point x ∈ Rn in the polar system of coordinates such that σ = x/‖x‖a and
ρ(σ) = ‖x‖a for x /= 0. Then, the Lebesgue measure of Ba,n(x, r) is

mesBa,n(x, r) = mesBa,n(0, r) =
∫

‖σ‖a=1

∫ r(σ)

0
ρn−1dρ dσ

= rn
∫

‖σ‖a=1

∫ r(σ)/r

0
ρn−1dρ dσ = varn,

(2.2)

where va = mesBa,n(0, 1) is the volume of the unit ball. The norm ‖ · ‖a gives rise to averages

m
(
ϕ, Ba,n(x, r)

)
=

1
mesBa,n(x, r)

∫

Ba,n(x,r)
ϕ(t)dt, (2.3)

and to the generalized mean

Ma,nϕ = lim
r→∞

m
(
ϕ, Ba,n(0, r)

)
. (2.4)

In the one-dimensional case all balls are segments, and wewrite simplyMϕ instead ofMa,1ϕ.
One of the basic properties of generalized means is that they do not depend on the

behavior of ϕ in any fixed ball Ba,n(0, r):

Ma,nϕ = lim
r→∞

1
mesBa,n(0, r)

(∫

Ba,n(0,r0)
ϕ(t)dt +

∫

Ba,n(0,r)\Ba,n(0,r0)
ϕ(t)dt

)

= lim
r→∞

1
mesBa,n(0, r)

∫

Ba,n(0,r)\Ba,n(0,r0)
ϕ(t)dt.

(2.5)

Other useful properties are (3.16), (3.37), and (3.42).
CL(Rn) denotes the set of continuous bounded functions on Rn that satisfy the

Lipschitz condition

∣∣ϕ(x) − ϕ(y)∣∣ ≤ c1
∥∥x − y∥∥2, x, y ∈ Rn; (2.6)

By [9, Theorem 3.6.1], convergence in distribution of random elements Xn
d−→ X is equivalent

to the convergence of expected values

Eϕ(Xn) −→ Eϕ(X), ∀ϕ ∈ CL(Rn). (2.7)

[10, Theorem 2.1] asserts that here CL(Rn) can be replaced by the set of bounded uniformly
continuous functions. Lp(Rn) is the space of p-summable functions on Rn provided with the
norm ‖g‖Lp = (

∫
Rn |g(t)|pdt)

1/p, 1 ≤ p <∞.
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For our applications, in the multidimensional version of (1.5), we need to allow ϕ to
depend on the parameter λ, as in

lim
λ→ 0

λd
∫

Rd
ϕλ(t)g(λt)dt =Ma,dϕ0

∫

Rd
g(t)dt. (2.8)

Here ϕ ∈ CL(Rn), ϕλ(t) = ϕ(F(λ)t +G(λ)).F(λ), λ ≥ 0, are n × dmatrices and G(λ), λ ≥ 0, are
n× 1 vectors such that F(λ) and G(λ) tend to F(0) and G(0), respectively, sufficiently quickly,
as stipulated in the next assumption.

Condition 1. (a) g ∈ L1(Rd) is ‖ · ‖a-spherically symmetric, g(x) = p(‖x‖a).

(b) ‖F(λ) − F(0)‖ = o(λ), ‖G(λ) −G(0)‖2 = o(1), λ → 0.

Remark 2.1. Using polar coordinates we see that item (a) imposes a certain integrability
restriction on p:

∫

Rd

∣∣g(t)
∣∣dt =

∫

‖σ‖a=1

(∫∞

0

∣∣p
(
ρ
)∣∣ρd−1dρ

)
dσ = |S|a

∫∞

0

∣∣p
(
ρ
)∣∣ρd−1dρ <∞, (2.9)

where |S|a stands for the surface of the unit sphere {σ : ‖σ‖a = 1}. The class of den-
sities satisfying (a) includes contaminated normal distribution, multivariate t-distribution,
multivariate Cauchy distribution, and see; [8]. It does not matter much which norms are
used in item (b).

Theorem 2.2. Condition 1 is sufficient for (2.8) to hold on ϕ ∈ CL(Rn) such thatMa,dϕ0 exists.

Remark 2.3. The triangle inequality ‖x + y‖a ≤ ‖x‖a+‖y‖a is not used in the proof, and a slight
generalization of Theorem 2.2 in terms of the geometry of balls is possible. The Lipschitz
condition (2.6) can be omitted if F,G are constant (ϕ can be assumed just bounded and
continuous).

The first application of Theorem 2.2 is to the theory of characteristic functions. Let F be
the distribution function of a (proper, real-valued) random variable X. Denote j(x) the jump
of F at point x and let ϕ(t) = EeitX be the characteristic function.

Corollary 2.4. If g ∈ L1(R) is even, then

lim
λ→ 0

∫

R

e−itxϕ(t)λg(λt)dt = j(x)
∫

R

g(t)dt,

lim
λ→ 0

∫

R

∣∣ϕ(t)
∣∣2λg(λt)dt =

∑

k

j2(xk)
∫

R

g(t)dt,
(2.10)

where the sum on the right is over all jump points xk of F.

Theorems 3.2.3 and 3.3.4 in [2] are a special case of this corollary with g = (1/2)χ[−1,1].
The proof of Corollary 2.4 is obtained by combining those theorems with our Theorem 2.2.
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The second application is to the theory of almost-periodic functions. A complex-
valued continuous function f on R is called almost-periodic if for each ε > 0 there exists l(ε) > 0
such that each interval (a, a + l(ε)) of length l(ε) contains at least one number τ for which
supt∈R|f(t+τ)−f(t)| < ε. In the space of almost-periodic functions, the formula (ϕ, ψ) =Mϕψ
defines a scalar product (ψ is a complex conjugate of ψ), and the numbers α(λ) = (ϕ(·), eiλ)
are called Fourier coefficients of ϕ. It is proved that for each ϕ at most; a countable number of
these coefficients are nonzero. Denoting them α(λk), k = 1, 2, . . . ,H. Bohr’s theorem states
thatM|ϕ|2 = ∑k |α(λk)|2; see [3, page 134]. This fact together with our Theorem 2.2 gives the
next corollary.

Corollary 2.5. If g ∈ L1(R) is even, then for any almost-periodic function ϕ

lim
λ→ 0

∫

R

∣
∣ϕ(t)

∣
∣2λg(λt)dt =

∑

k

|α(λk)|2
∫

R

g(t)dt. (2.11)

Further, if
∫
R g(t)dt > 0, the formula (ϕ, ψ)g = limλ→ 0

∫
R ϕ(t)ψ(t)λg(λt)dt defines a scalar product

which is equivalent to (ϕ, ψ).

Note that the first part of this corollary applies to characteristic functions of purely
discrete distribution functions because from [2, Corollary 2 of Theorem 3.2.3] any such
characteristic function is almost periodic. Now, we turn to the multidimensional version of
(1.7). For the density, we assume a stronger condition than Condition 1(a).

Condition 2. g ∈ L1(Rn) is ‖ · ‖2- spherically symmetric, g(x) = p(‖x‖2).

This assumption allows us to show that when some coordinates of x are fixed, g(x) as
a function of the remaining coordinates satisfies Condition 1(a).

Now, we provide the intuition for the next condition. The stretching-out applied in
(1.7) is described by the transformation s = A(λ)twhere

A(λ) =
(
λ o
0 1

)
, λ > 0. (2.12)

gλ(t) = detA(λ)g(A(λ)t) is the analog of gλ(t) = λg(λt) because
∫
R2 gλ(s)ds =

∫
R2 g(t)dt.

Here, the matrixA(λ) has two eigenvalues. The limit limλ→ 0A(λ) = A(0) is a singular matrix
because one of these eigenvalues tends to zero as λ → 0. Generalizing upon this situation
and also thinking of applications to invariant tests, in the n-dimensional case we consider
a symmetric nonnegative matrix A(ρ) of size n × n, where the parameter ρ belongs to the
segment [0, a]. Denote its eigenvalues 0 ≤ λ1(ρ) ≤ · · · ≤ λn(ρ) and letA(ρ) be diagonalized as
A(ρ) = P(ρ)Λ(ρ)P ′(ρ), whereΛ(ρ) = diag[λ1(ρ), . . . , λn(ρ)] and P(ρ) is an orthogonal matrix.
A(ρ) degenerates at the right end of the segment [0, a], owing to the following assumption.

Condition 3. The matrix A(ρ) is positive definite for 0 ≤ ρ < a.
The first d eigenvalues tend to zero at the same rate, λj(ρ) = λ1(ρ)(1 + o(1)), j =

1, . . . , d; λ1(ρ) → 0 as ρ → a; the remaining ones have positive limits: λj(ρ) → λj(a) > 0 as
ρ → a, j = d + 1, . . . , n.
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The matrices P(ρ) and Λ(ρ) converge sufficiently quickly as ρ → a. Namely, with the
matrix

Λ̃
(
ρ
)
= diag

⎡

⎢
⎣λ1

(
ρ
)
, . . . , λ1

(
ρ
)

︸ ︷︷ ︸
d times

, λd+1(a), . . . , λn(a)

⎤

⎥
⎦ (2.13)

one has ‖Λ−1(ρ)Λ̃(ρ) − I‖ = o(λ1(ρ)), ‖P(ρ) − P(a)‖ = o(λ1(ρ)), ρ → a.

Note that Λ−1(a) does not exist because of part (b), but part (c) allows us to set
Λ−1(a)Λ̃(a) = I by continuity. In line with part (b), we use the partitions

t =
(
t(1)

t(2)

)
, t(1) = (t1, . . . , td)′, t(2) = (td+1, . . . , tn)′, (2.14)

Λ
(
ρ
)
=
(
Λ1
(
ρ
)

0
0 Λ2

(
ρ
)
)
, Λ1

(
ρ
)
is d × d, Λ2

(
ρ
)
is (n − d) × (n − d). (2.15)

Also, partition P(a) = (P1(a), P2(a)) conformably with (2.14) (P1(a) is n × d and P2(a) is n ×
(n − d)). Define a transformation T by (Tϕ)(t) = ϕ(P1(a)t(1) + P2(a)Λ−1

2 (a)t(2)). (M2,dTϕ)(t(2))
denotes the result of application of the generalizedmean operator with respect to t(1), keeping
t(2) fixed:

(
M2,dTϕ

)(
t(2)
)
= lim

r→∞
m
((
Tϕ
)(·, t(2)

)
, B2,d(0, r)

)
, (2.16)

and g1 denotes a marginal ”density”:

g1

(
t(2)
)
=
∫

Rd
g
(
t(1), t(2)

)
dt(1). (2.17)

Theorem 2.6. Let Conditions 2 and 3 hold and let ϕ ∈ CL(Rn) be such that the limit (2.16) exists
for almost all t(2) ∈ Rn−d. Then,

lim
ρ→a

∫

Rn
ϕ(t)detA

(
ρ
)
g
(
A
(
ρ
)
t
)
dt =

∫

Rn−d

(
M2,dTϕ

)(
t(2)
)
g1

(
t(2)
)
dt(2). (2.18)

Next, we turn to the solution of Problem 2. Denoting A(ρ) = Σ−1/2(ρ) and assuming
thatA(ρ) is positive definite for ρ ∈ [0, a), we see that condition (1.10) corresponds to the case
d = 1 of our Condition 3. The density (1.9) fits the framework of our Theorem 2.6 because the
stretching-out is applied along one variable. Thus, in Theorem 2.7 we apply Theorem 2.6 to
(a) characterize the limit in distribution of fρ in case 1 ≤ rank(Σ−1(a)) ≤ n − 1 and (b) show
that (1.11) does not hold under the weak convergence. By implication, (1.11) is wrong if any
convergence stronger than the weak one is considered (e.g., uniform, almost sure, in proba-
bility and in Lp). Even though we use Theorem 2.6, the assumption on the density in part (b)
of the next theorem is weaker than that in Theorem 2.6.
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Condition 4. g is a density on Rn bounded by an integrable, ‖ · ‖2-spherically symmetric func-
tion, g(x) ≤ p(‖x‖2).

An example of such a density is g(x) = p(‖x‖a), where p is a nonnegative and
nonincreasing function on [0,∞), which decays at infinity sufficiently quickly for g to be
integrable. By monotonicity of p inequality (3.14) in the following implies that g(x) =
p(‖x‖a) ≤ p(‖x‖2/c3).

Theorem 2.7. Let Condition 3 hold in which A(ρ) = Σ−1/2(ρ) .

(a) Denote Q = P2(a)P ′
2(a) the projector onto the subspace spanned by the last n − d eigen-

vectors of A(a) and let T1 be defined by

(
T1ϕ

)
(t) = ϕ

(
P1(a)t(1) + P2(a)Λ−1

2 (a)t(2) +QXβ
)
. (2.19)

M2,dT1ϕ is obtained by replacing T with T1 in (2.16). If Condition 2 holds and ϕ ∈ CL(Rn)
is such that (M2,dT1ϕ)(t(2)) exists for almost all t(2) ∈ Rn−d, then

lim
ρ→a

∫

Rn
ϕ(t)fρ(t)dt =

∫

Rn−d

(
M2,dT1ϕ

)(
t(2)
)
g1

(
t(2)
)
dt(2), (2.20)

with g1 defined in (2.17).

(b) If Condition 4 holds, then (1.11) cannot be true if the convergence in distribution is
understood.

Remark 2.8. Because of the identity Xβ +N(A(a)) = (I − Q)Xβ + QXβ +N(A(a)) = QXβ +
N(A(a)), (1.11) correctly captures one feature of the limit distribution: it depends onXβ only
through QXβ.

Before giving the solution to Problem 3, we need more notation and definitions.
Obtaining a closed-form formula for β(Φ) involves a meticulous analysis of Φ based on the
representation of Φ given in the following.

Let ImX = {Xβ : β ∈ Rk} be the image ofX. If for a given setΦ ⊂ Rn (a) the space Rn is
represented as an orthogonal sum Rn = E1 ⊕ E2 of two subspaces E1 and E2 and (b) there is a
set B ⊂ E1 such thatΦ = B+E2 = {b+e : b ∈ B, e ∈ E2}, thenwe say thatΦ is a cylinderwith the
base B and element E2. For any set S ⊂ Rn, denote ΓS = {γs : s ∈ S, γ ∈ R, γ /= 0}. Using
s = 1 · s, we see that S ⊂ ΓS. We say that S is cone-like if S = ΓS. In particular, a cone-like set
with each of its element s contains its opposite −s. The next representation is a stronger state-
ment than saying that Φ defined in (1.14) is invariant with respect to transformations y →
γy +Xβ, γ ∈ R, γ /= 0, β ∈ Rk.

Representation of Φ

The rejection region Φ for the Cliff-Ord test is a cylinder

Φ = ΓS + ImX, (2.21)

with a cone-like baseMXΦ = ΓS, where S = {s ∈ ImMX : ‖s‖2 = 1, s′Ws > c}.
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It is convenient to call an aperture the set S in representation (2.21). The function s′Ws
is continuous on the unit sphere of ImMX and the set (c,∞) is open. By the general property
of continuous mappings [11, Chapter 2, § 5, Section 5, Theorem 6], the preimage of an open
set under a continuous mapping is open. Thus, the aperture is an open set (in the relative
topology) of the unit sphere of ImMX . We need the notations of the interior int(Φ) (defined
as the set of points of Φ that belong to Φ with some neighborhood), closure cl(Φ) (the set of
all limit points of Φ) and boundary bd(Φ) = cl(Φ) \Φ.

Writing (1.12) in the form

βρ(Φ) =
∫

Rn
χΦ
(
y
)
fρ
(
y
)
dy, (2.22)

we see that Theorem 2.7(a) will be applicable if we manage to extend it from continuous
Lipschitz functions to discontinuous functions of type χΦ. This is done in Theorem 2.9. In
Theorems 2.9 and 2.11, we assume that d = 1. Up to the notation, this is the same assumption
as (1.10). At least within our method, generalizations of the results in the following to the
case d > 1 are hard to obtain.

Let Condition 3 hold forA(ρ) = Σ−1/2(ρ) and let d = 1. Then, λ1(ρ) → 0 as ρ → a and
all other eigenvalues have positive limits. Denote f1, ..., fn the orthonormal eigenvectors of
A(a) = Σ−1/2(a) corresponding to the eigenvalues λ1(a) = 0, λ2(a), . . . , λn(a). The partitions
(2.14) become t(1) = t1, t(2) = (t2, . . . , tn)

′, P1(a) = f1, P2(a) = (f2, . . . , fn). The vector z(t(2)) =
P2(a)Λ−1

2 (a)t(2) + QXβ will be called a shift because its role is to shift the line P1(a)t(1) +
P2(a)Λ−1

2 (a)t(2) + QXβ = f1t1 + z(t(2)). In the next theorem, we extend (2.20) to ϕ = χΦ with
Φ described by (2.21). In the notation of marginal densities, the subscript will indicate the
number of integrated-out variables. For example, g1(t

(2)) =
∫
R g(t1, t

(2))dt1, gk(t) =
∫
Rk p((t

2 +
‖v‖22)1/2)dv.

Theorem 2.9 (representation of β(Φ)). Let Conditions 2 and 3 hold with d = 1.

(a) If f1 ∈ ImX and

∫1

0
gk(t)dt <∞, (2.23)

then

β(Φ) =
∫

Rn−1

(
MT1χΦ

)(
t(2)
)
g1

(
t(2)
)
dt(2), (2.24)

where T1χΦ is defined by (T1χΦ)(t) = χΦ(f1t1 + z(t(2))), and the generalized mean is
applied over t1.

(b) If f1 /∈ ImX and

∫1

0
gk+1(t)dt <∞, (2.25)

then (2.24) is true.
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Remark 2.10. (a) As can be seen from the proof, the theorem holds for any test with the
critical region satisfying (2.21). (b) Conditions (2.23) and (2.25) are technical assumptions
that provide integrability in the neighborhood of the origin of marginal densities that arise in
the course of the proof.

To avoid triviality, in the following theorem we assume that the inclusion ∅ ⊂ Φ ⊂ Rn

is strict. This implies that in representation (2.21) the set ΓS is a nonempty proper subset of
ImMX .

Theorem 2.11. Let conditions of Theorem 2.9 hold, with (2.23) accompanying f1 ∈ ImX and (2.25)
accompanying f1 /∈ ImX. Besides, we require the function p from Condition 2 to be positive on [0,∞).

(1) If f1 ∈ Φ, then β(Φ) = 1.

(2) Suppose f1 ∈ bd (Φ).

(2.1) If f1 ∈ ImX, then β(Φ) ∈ (0, 1).
(2.2) If f1 /∈ ImX, then examples can be presented such that β(Φ) = 0, β(Φ) ∈ (0, 1) or

β(Φ) = 1.

(3) If f1 ∈ Φ−, then β(Φ) = 0.

Remark 2.12. Here, we compare this theorem with [4, Theorem 1].
(1) Our conditions on the density and critical region are much more restrictive. Our

proof reveals the distinction between the cases f1 ∈ ImX and f1 /∈ ImX. In particular, in case
(2.2), Martellosio excludes the extreme values β(Φ) = 0 and β(Φ) = 1, while we provide
counter examples showing that they are possible. Note also that we do not impose any con-
ditions on the structure ofW . What happens to the limiting power in case ofW that arises in
practice needs additional investigation.

(2) Martellosio’s proof is based on (1.11) which we disprove in Theorem 2.7(b). A
series of other propositions from the same paper (see Lemmas D.2, D.3 and E.4, Corollary 1
and Propositions 1, 2 and 5), as well as from [7] (see Lemma 3.2, Theorems 3.3, 3.5 and 4.1, and
Proposition 3.6), depend on (1.11) and need a revision. In particular, his claim that his results
are true for any invariant critical region and any continuous density u that is unimodal at the
origin is unwarranted.

(3) Even if statement (1.11) were right, the proof of [4, Theorem 1] would be
incomplete because it incorrectly uses the n-dimensional Lebesgue measure. Its use is inap-
propriate because for a degenerate density even one point may carry a positive mass. In our
proof, we justify the use of (n − 1)-dimensional Lebesgue measure.

Now, we turn to the description of the alternative approach (solution to Problem 5).
A mode is not a very good characteristic of a distribution when two unimodal densities with
the same modes have very different spreads. A set of points where the density is close to its
maximum might be a better characteristic in this case, at least for bell-shaped distributions.
Let 0 < ε < 1 and let m = max f(x) be the maximum of a continuous density f(x). We call
Mε = {x : f(x) ≥ (1 − ε)m} an ε-maximizing set of f . The idea of this density-maximizing
approach is close to the maximum likelihood principle.

Suppose a decision d is taken if the statistic x belongs to a set D. In case of a favorable
decision,D is chosen in such a way that the probability P(x ∈ D) is high. The use of probabil-
ity in this decision rule presumes that the statistic can be calculated repeatedly. However, in
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practice, especially in economics, the decision is based on just one value of the statistic in
question. In such a case it may be preferable to choose D so that minx∈Df(x) is sufficiently
close tom = max f(x). For the ε-maximizing set, we have minx∈Mεf(x) ≥ (1− ε)m. Requiring
ε to be close to 1 in the density-maximizing approach is similar to requiring P(x ∈ D) to be
close to 1 in the probability-maximizing approach (although normally P(x ∈ Mε) → 0 as
ε → 0).

As before, we assume that the matrix A(ρ) = Σ−1/2(ρ) of size n × n is symmetric for
0 ≤ ρ ≤ a and positive definite for 0 ≤ ρ < a. The idea is to impose conditions ensuring that
ε-maximizing sets are ellipsoids which in the limit give a set of the desired shape. This idea
is realized through a delicate balance of the limit behavior of the eigenvalues and density
contained in Conditions 5 through 7 and (2.32).

Condition 5. In the diagonal representation of A(ρ), the orthogonal matrix P satisfies

P(a) = lim
ρ→a

P
(
ρ
)
, (2.26)

the first d eigenvalues vanish as power functions

λj
(
ρ
)
= cλ

(
a − ρ)αλ(1 + o(1)), j = 1, . . . , d, as λ −→ a, (2.27)

with positive constants cλ, αλ; the remaining eigenvalues tend to positive constants

λj
(
ρ
)
= λj(a)(1 + o(1)), j = d + 1, . . . , n, as λ −→ a, (2.28)

where λj(a) > 0.

Condition 6. The function ε(ρ) in the definition of the setMε(ρ) vanishes as a power function

ε
(
ρ
)
= cε

(
a − ρ)αε(1 + o(1)), ρ −→ a, (2.29)

where cε, αε are positive constants.

Condition 7. The density g is ‖ · ‖2-spherically symmetric, g(x) = p(‖x‖2), where p is con-
tinuous and monotonically decreasing on [0,∞) and such that

p(r) = m
(
1 − cprαp

)
(1 + o(rαε)), r −→ 0, (2.30)

where cp, αp > 0.

This assumption implies that m = max g(x) = p(0), that the inverse function p−1 is
continuous and monotonically decreasing on (0, m], and that

0 = p−1(m) = lim
x→m

p−1(x). (2.31)
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Theorem 2.13. DenoteN(A(a)) the null subspace ofA(a) (spanned by the eigenvectors correspond-
ing to its zero eigenvalues). If Conditions 5–7 hold and

αε
αp − αλ < 0, (2.32)

then the ε(ρ)-maximizing set Mε(ρ) = {x : fρ(x) ≥ (1 − ε(ρ))m} converges to Xβ +N(A(a)) as
ρ → a.

3. Proofs

The idea of the proof is to approximate g with a step function h, prove the statement for h
and then pass to the limit to obtain the statement for g. A step function, by definition, is a finite
linear combination of indicators of measurable sets. Due to the spherical symmetry of g, these
sets turn out to be balls. For the method to work, the radii of the balls should be positive and
finite. Approximation of p by a continuous function in Step 1 is a trick to make sure that h
takes a finite number of values.

Step 1 (p can be assumed continuous on (0,∞)). Let Ω = (0,∞) and denote Z(Ω) the space
of measurable functions f on Ω such that ‖f‖Z(Ω) =

∫∞
0 |f(ρ)|ρd−1dρ < ∞. Z(Ω) satisfies

conditions of [12, Theorem 1]:

(1) C∞
0 (Ω) ⊂ Z(Ω) ⊂ Lloc

1 (Ω).

(2) Minkowsky inequality: if A ⊂ Rm is a measurable set and Φ(x, y) is a measurable
on Ω ×A function, then ‖ ∫AΦ(·, y)dy‖

Z(Ω) ≤
∫
A ‖Φ(·, y)‖Z(Ω)dy.

(3) Amultiplication operator by a function ϕ ∈ C∞
0 (Ω) is bounded in Z(Ω): ‖fϕ‖Z(Ω) ≤

max |ϕ|‖f‖Z(Ω).

(4) Any finite in Ω function f ∈ Z(Ω) is translation-continuous: limh→ 0‖f(· + h) −
f(·)‖Z(Ω) = 0.

The first three properties are standard facts of the theory of Lp spaces; the last one
follows from the fact that if supp f is a compact subset of Ω, then the weight ρd−1 in the
definition of the norm of Z(Ω) satisfies c1 ≤ ρd−1 ≤ c2 on supp f and therefore for such an f
the norms ‖f‖Z(Ω) and ‖f‖L1

are equivalent. Functions from L1 are known to be translation-
continuous.

By Burenkov’s theorem there exists a sequence {ps} ⊂ C∞(Ω) ∩ Z(Ω) such
that ‖ps − p‖Z(Ω) → 0. Defining gs(x) = ps(‖x‖a), from (2.9) we have ‖gs − g‖L1

=
|S|a‖ps − p‖Z(Ω) → 0. Hence,

∣∣∣∣λ
d

∫

Rd
ϕλ(t)gs(λt)dt − λd

∫

Rd
ϕλ(t)g(λt)dt

∣∣∣∣ ≤ sup
∣∣ϕ
∣∣λd

∫

Rd

∣∣gs(λt) − g(λt)
∣∣dt

= sup
∣∣ϕ
∣∣∥∥gs − g

∥∥
L1

−→ 0

(3.1)



ISRN Probability and Statistics 15

uniformly in λ. Thus, if we establish

lim
λ→ 0

λd
∫

Rd
ϕλ(t)gs(λt)dt =Ma,dϕ0

∫

Rd
gs(t)dt ∀s, (3.2)

then (2.8)will follow.

Step 2 (approximating g with a Step Function). Take an arbitrary ε > 0. We can assume that
p is continuous on (0,∞).

(a) Suppose ‖g‖L1
≥ ε. We approximate g(t) by a step function h(t), which will vanish

where t is large or small. By summability of g, there exist 0 < N1 = N1(ε) < N2 =
N2(ε) <∞ such that

∫

‖t‖a<N1

∣∣g(t)
∣∣dt ≤ ε

3
,

∫

‖t‖a>N2

∣∣g(t)
∣∣dt ≤ ε

3 (3.3)

g is uniformly continuous on the ring {N1 ≤ ‖t‖a ≤N2}. By Condition 1(a), for any
naturalm we can find δ > 0 and split this ring into smaller rings

Am,l = {t :N1 + lδ ≤ ‖t‖a < N1 + (l + 1)δ}, l = 0, . . . , L ≡ N2 −N1

δ
− 1, (3.4)

in such a way that g in each ring is close to its value on the inner boundary:

sup
t∈Am,l

∣∣∣∣g(t) − p
(
l

m

)∣∣∣∣ ≤
1
m
. (3.5)

Put h(t) = 0 if ‖t‖a < N1 or ‖t‖a > N2; h(t) = p(l/m) for t ∈ Am,l, l = 0, . . . , L.
Combination of (3.3), (3.4), and (3.5) leads to

∥
∥h − g∥∥L1

=

(∫

‖t‖a<N1

+
∫

‖t‖a>N2

)
∣∣g(t)

∣
∣dt +

L∑

l=0

∫

Am,l

∣∣h(t) − g(t)∣∣dt

≤ 2ε
3

+
1
m
mesBa,d(0,N2) =

2ε
3

+
vaN

d
2 (ε)
m

.

(3.6)

Consequently, we can fixm = m(ε) so that

∥∥h − g∥∥L1
≤ ε. (3.7)

(b) If ‖g‖L1
< ε, we just put h ≡ 0 to get (3.7).

Step 3 (replacing rings by balls in the representation of h). Suppose h is not identically zero.
The sets Am,l in (3.4) are concentric rings with finite positive radii of the inner and outer
boundaries, and by construction, h is a finite linear combination of indicators of such rings.
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Hence, it can be written as h =
∑L

l=0 al(χBa,d(0,rl) − χBa,d(0,rl−1)), where al are some real numbers
and the radii satisfy

N1 = r0 < · · · < rL =N2. (3.8)

Therefore, with some new constants bl, we can write h as a linear combination of indicators
of balls:

h =
L∑

l=0

hl, where hl = blχBa,d(0,rl). (3.9)

If h ≡ 0, we put formally r0 = 1, b0 = 0, L = 0. Note that L, bl and rl all depend on ε
and that the constants bl may deviate from the values of h significantly.

Step 4 (introducing residuals for generalized means). Define the residual R1(r) by

R1(r) =

{
m
(
ϕ0, Ba,d(0, r)

)
/Ma,dϕ0 − 1, if Ma,dϕ0 /= 0,

m
(
ϕ0, Ba,d(0, r)

)
, if Ma,dϕ0 = 0.

(3.10)

Then,

m
(
ϕ0, Ba,d(0, r)

)
=

{
Ma,dϕ0(R1(r) + 1), if Ma,dϕ0 /= 0,
R1(r), if Ma,dϕ0 = 0,

(3.11)

and in both cases

lim
r→∞

R1(r) = 0. (3.12)

By the Lipschitz condition (2.6) and Condition 1(b),

∣∣ϕ(F(λ)t +G(λ)) − ϕ(F(0)t +G(0))∣∣

≤ c1‖(F(λ) − F(0))t +G(λ) −G(0)‖2
= o(λ)‖t‖a + o(1) = o(λ)r + o(1) for ‖t‖a ≤ r.

(3.13)

Here, we have used the fact that on Rd any two norms are equivalent, so

c2‖t‖a ≤ ‖t‖2 ≤ c3‖t‖a, (3.14)

with some c2, c3 > 0. Equations (2.3) and (3.13) imply that

∣∣m
(
ϕ(F(λ) · +G(λ)) − ϕ0(·), Ba,d(0, r)

)∣∣ = o(λ)r + o(1) ∀r > 0, as λ → 0, (3.15)
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where o(λ) and o(1) do not depend on r. From this bound and (3.11), it follows that

m
(
ϕ(F(λ) · +G(λ)), Ba,d(0, r)

)
=

{
Ma,dϕ0(R1(r) + 1) + R2(λ, r), if Ma,dϕ0 /= 0,
R1(r) + R2(λ, r), if Ma,dϕ0 = 0,

(3.16)

where R2(λ, r) is a new residual satisfying

R2(λ, r) = o(λ)r + o(1) ∀r > 0, as λ → 0. (3.17)

Step 5 (proving (2.8) for the approximating function). Let Ma,dϕ0 /= 0. For one term in (3.9)
by (2.2), and the first equation in (3.16) we have

λd
∫

Rd
ϕ(F(λ)t +G(λ))hl(λt)dt

= λdbl

∫

Ba,d(0,rl/λ)
ϕ(F(λ)t +G(λ))dt

=
var

d
l bl

va(rl/λ)
d

∫

Ba,d(0,rl/λ)
ϕ(F(λ)t +G(λ))dt

=
∫

Rd
hl(s)ds

{
Ma,dϕ0

[
R1

(rl
λ

)
+ 1
]
+ R2

(
λ,
rl
λ

)}
.

(3.18)

Summation of these equations produces

λd
∫

Rd
ϕ(F(λ)t +G(λ))h(λt)dt

=
L∑

l=0

∫

Rd
hl(s)ds

{
Ma,dϕ0

[
R1

(rl
λ

)
+ 1
]
+ R2

(
λ,
rl
λ

)}

=Ma,dϕ0

∫

Rd
h(s)ds

+
L∑

l=0

∫

Rd
hl(s)ds

{
Ma,dϕ0R1

(rl
λ

)
+ R2

(
λ,
rl
λ

)}
.

(3.19)

Here, by (3.8), (3.12), and (3.17), R1(rl/λ) → 0, R2(λ, (rl/λ)) = o(rl) + o(1) = o(1), l =
0, . . . , L, as λ → 0. From these relations and (3.19), we see that for the given ε there exists λ(ε)
such that

∣∣∣∣λ
d

∫

Rd
ϕλ(t)h(λt)dt −Ma,dϕ0

∫

Rd
h(s)ds

∣∣∣∣ ≤ ε for 0 < λ ≤ λ(ε). (3.20)

In case Ma,dϕ0 = 0, the only difference consists in application of the second equation
in (3.16). The conclusion is (3.20) withMa,dϕ0 = 0.
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Step 6 (proving (2.8)). Using (3.7) and (3.20), we have

∣
∣
∣
∣λ

d

∫

Rd
ϕλ(t)g(λt)dt −Ma,dϕ0

∫

Rd
g(t)dt

∣
∣
∣
∣

≤
∣
∣
∣
∣λ

d

∫

Rd
ϕλ(t)

[
g(λt) − h(λt)]dt

∣
∣
∣
∣

+
∣
∣
∣
∣λ

d

∫

Rd
ϕλ(t)h(λt)dt −Ma,dϕ0

∫

Rd
h(t)dt

∣
∣
∣
∣

+
∣
∣Ma,dϕ0

∣
∣
∣
∣
∣
∣

∫

Rd

[
h(t) − g(t)]dt

∣
∣
∣
∣

≤ ∥∥ϕ∥∥C
∥
∥g − h∥∥L1

+ ε +
∣
∣Ma,dϕ0

∣
∣
∥
∥g − h∥∥L1

≤ (∥∥ϕ∥∥C + 1 +
∣∣Ma,dϕ0

∣∣)ε, 0 < λ ≤ λ(ε).

(3.21)

Equation (2.8) follows because ε > 0 is arbitrary.

3.1. Proof of Theorem 2.6

Denote Jρ(ϕ) =
∫
Rn ϕ(t)detA(ρ)g(A(ρ)t)dt.

Step 1 (replacing lim Jρ(ϕ) by an equivalent limit). Using constancy of g on spheres
(Condition 2), write Jρ(ϕ) as

Jρ
(
ϕ
)
=
∫

Rn
ϕ
(
y
)
detΛ

(
ρ
)
g
(
P
(
ρ
)
Λ
(
ρ
)
P ′(ρ

)
y
)
dy

= detΛ
(
ρ
)
∫

Rn
ϕ
(
y
)
g
(
Λ
(
ρ
)
P ′(ρ

)
y
)
dy

= detΛ
(
ρ
)
∫

Rn
ϕ
(
y
)
g
(
Λ̃
(
ρ
)
Λ̃−1(ρ

)
Λ
(
ρ
)
P ′(ρ

)
y
)
dy.

(3.22)

DenoteH−1(ρ) = Λ̃−1(ρ)Λ(ρ)P ′(ρ) and replaceH−1(ρ)y = t to get

Jρ
(
ϕ
)
= detΛ

(
ρ
)
detH

(
ρ
)
∫

Rn
ϕ
(
H
(
ρ
)
t
)
g
(
Λ̃
(
ρ
)
t
)
dt. (3.23)

By Condition 3(b,c),

detΛ
(
ρ
)
= λd1

(
ρ
)
detΛ2(a)(1 + o(1)),

detH
(
ρ
)
= det

(
Λ̃−1(ρ

)
Λ
(
ρ
))

detP ′(ρ
)
= 1 + o(1).

(3.24)
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From (3.23) and (3.24) we deduce

Jρ
(
ϕ
)
= λd1

(
ρ
)
detΛ2(a)(1 + o(1))

∫

Rn
ϕ
(
H
(
ρ
)
t
)
g
(
Λ̃
(
ρ
)
t
)
dt = (1 + o(1))

× detΛ2(a)
∫

Rn−d

[
λd1
(
ρ
)
∫

Rd
ϕ
(
H
(
ρ
)
t
)
g
(
λ1
(
ρ
)
t(1),Λ2(a)t(2)

)
dt(1)

]
dt(2).

(3.25)

Step 2 (changing the limit variable). Let us have a closer look at the expression in the square
brackets in (3.25):

Jρ
(
ϕ, t(2)

)
≡ λd1

(
ρ
)
∫

Rd
ϕ
(
H
(
ρ
)
t
)
g
(
λ1
(
ρ
)
t(1),Λ2(a)t(2)

)
dt(1). (3.26)

Since Λ−1(a)Λ̃(a) = I, hereH(a) = P(a), and by Condition 3(c),

∥∥H
(
ρ
) − P(a)∥∥ =

∥∥∥P
(
ρ
)
Λ−1(ρ

)
Λ̃
(
ρ
) − P(ρ) + P(ρ) − P(a)

∥∥∥

≤ ∥∥P(ρ)∥∥
∥∥∥Λ−1(ρ

)
Λ̃
(
ρ
) − I

∥∥∥ +
∥∥P
(
ρ
) − P(a)∥∥

= o
(
λ1
(
ρ
))
, ρ −→ a.

(3.27)

Considering λ = λ1 the independent variable, take ρ = ρ(λ) as its function. The limit relation
ρ → a translates to λ → 0, and (3.26) and (3.27) become,

Jρ(λ)
(
ϕ, t(2)

)
= λd

∫

Rd
ϕ
(
H
(
ρ(λ)

)
t
)
g
(
λt(1),Λ2(a)t(2)

)
dt(1), (3.28)

∥∥H
(
ρ(λ)

) − P(a)∥∥ = o(λ), λ −→ 0, (3.29)

respectively.

Step 3 (proving a preliminary version of (2.18)). Now we check that Theorem 2.2 applies to
(3.28) for any fixed t(2). Letting

p(z) = p

((
z2 +

∥∥∥Λ2(a)t(2)
∥∥∥
2

2

)1/2
)

, z ≥ 0, g
(
t(1)
)
= g

(
t(1),Λ2(a)t(2)

)
, (3.30)

we see that g ∈ L1(Rd) is ‖ · ‖2-spherically symmetric:

g
(
t(1)
)
= g

(
t(1),Λ2(a)t(2)

)
= p

((∥∥∥t(1)
∥∥∥
2

2
+
∥∥∥Λ2(a)t(2)

∥∥∥
2

2

)1/2
)

= p
(∥∥∥t(1)

∥∥∥
2

)
. (3.31)
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Condition 1(a) is satisfied. As for Condition 1(b), partition H = (H1,H2) conformably with
(2.14) and put F(λ) = H1(ρ(λ)), G(λ) = H2(ρ(λ))t(2), F(0) = H1(a) = P1(a), G(0) = P2(a)t(2).
Then, H(ρ(λ))t = H1(ρ(λ))t(1) +H2(ρ(λ))t(2) = F(λ)t(1) + G(λ), and Condition 1(b) follows
from (3.29).

By Theorem 2.2,

Jρ(λ)
(
ϕ, t(2)

)
−→ Jρ(0)

(
ϕ, t(2)

)
≡ (M2,dϕ

)(
t(2)
)∫

Rd
g
(
t(1),Λ2(a)t(2)

)
dt(1), t(2) ∈ Rn−d,

(3.32)

where (M2,dϕ)(t(2)) is obtained by applyingM2,d to ϕ(t) ≡ ϕ(P1(a)t(1) +P2(a)t(2))with respect
to t(1). Functions (3.28) are bounded by an integrable function of t(2):

∣∣∣Jρ(λ)
(
ϕ, t(2)

)∣∣∣ ≤ λd
∥∥ϕ
∥∥
C

∫

Rd
g
(
λt(1),Λ2(a)t(2)

)
dt(1)

=
∥∥ϕ
∥∥
C

∫

Rd
g
(
t(1),Λ2(a)t(2)

)
dt(1).

(3.33)

By the dominated convergence theorem, (3.32) and (3.33) imply that

∫

Rn−d
Jρ(λ)

(
ϕ, t(2)

)
dt(2) −→

∫

Rn−d
Jρ(0)

(
ϕ, t(2)

)
dt(2), λ → 0. (3.34)

Now, we combine (3.25), (3.28), (3.32), and (3.34) to get

lim
ρ→a

Jρ
(
ϕ
)
= detΛ2(a)

∫

Rn−d

[
(
M2,dϕ

)(
t(2)
)∫

Rd
g
(
t(1),Λ2(a)t(2)

)
dt(1)

]
dt(2)

=
∫

Rn−d

[
(
M2,dϕ

)(
Λ−1

2 (a)s(2)
)∫

Rd
g
(
t(1), s(2)

)
dt(1)

]
ds(2)

=
∫

Rn−d

(
M2,dTϕ

)(
s(2)
)
g1

(
s(2)
)
ds(2)

(3.35)

because

(
M2,dϕ

)(
Λ−1

2 (a)s(2)
)
= lim

r→∞
m
(
ϕ
(
P1(a) · +P2(a)Λ−1

2 (a)s(2), B2,d(0, r)
))

=
(
M2,dTϕ

)(
s(2)
)
.

(3.36)
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3.2. Proof of Theorem 2.7

3.2.1. Part (a)

Step 1 (Ma,dϕ does not depend on the center of balls). Let us make definition (2.4) more
precise: (Ma,dϕ)(x) = limr→∞m(ϕ, Ba,d(x, r)), x ∈ Rd. Here, we prove that

(
Ma,dϕ

)
(x) =

(
Ma,dϕ

)
(0) for any x ∈ Rd. (3.37)

For r ≥ ‖x‖a, one has implications ‖y‖a ≤ r − ‖x‖a ⇒ ‖y − x‖a ≤ r ⇒ ‖y‖a ≤ ‖y − x‖a + ‖x‖a ≤
r+‖x‖a. Geometrically, theymean the inclusion Ba,d(0, r−‖x‖a) ⊂ Ba,d(x, r) ⊂ Ba,d(0, r+‖x‖a).
This inclusion implies that

(
r − ‖x‖a

r

)d

m
(
ϕ, Ba,d(0, r − ‖x‖a)

)

=
(
r − ‖x‖a

r

)d 1

va(r − ‖x‖a)d
∫

Ba,d(0,r−‖x‖a)
ϕ
(
y
)
dy

≤ 1
vard

∫

Ba,d(x,r)
ϕ
(
y
)
dy = m

(
ϕ, Ba,d(x, r)

)

≤
(
r + ‖x‖a

r

)d 1

va(r + ‖x‖a)d
∫

Ba,d(0,r+‖x‖a)
ϕ
(
y
)
dy

=
(
r + ‖x‖a

r

)d

m
(
ϕ, Ba,d(0, r + ‖x‖a)

)
.

(3.38)

It remains to let r → ∞ to prove (3.37).

Step 2 (proving (2.20)). If ϕ ∈ CL(Rn), then ϕ(· +Xβ) ∈ CL(Rn). By (2.16), we need to look at

(
M2,dTϕ

(· +Xβ))
(
t(2)
)

= lim
r→∞

1
vard

∫

B2,d(0,r)
ϕ
(
P1(a)t(1) + P2(a)Λ−1

2 (a)t(2) +Xβ
)
dt(1).

(3.39)

Using I = P(a)P ′(a) = P1(a)P ′
1(a) +Q, we see that

P1(a)t(1) +Xβ = P1(a)t(1) + P1(a)P ′
1(a)Xβ +QXβ

= P1(a)
(
t(1) + P ′

1(a)Xβ
)
+QXβ.

(3.40)
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Therefore, replacing t(1) + P ′
1(a)Xβ = s(1), we can continue (3.39) as

(
M2,dTϕ

(· +Xβ))
(
t(2)
)

= lim
r→∞

1
vard

∫

B2,d(P ′
1(a)Xβ,r)

ϕ
(
P1(a)s(1) + P2(a)Λ−1

2 (a)t(2) +QXβ
)
ds(1).

(3.41)

Using the definition of T1 and (3.37), we see that this is the same as (M2,dT1ϕ)(t(2)). Hence,
the existence of (M2,dTϕ(· + Xβ))(t(2)) is equivalent to that of (M2,dT1ϕ)(t(2)). Application of
Theorem 2.6 proves (2.20).

3.2.2. Part (b)

Step 1 (the generalized mean vanishes on p-integrable functions). If ϕ ∈ Lp(Rd) with some
p ∈ [1,∞), then by Hölder’s inequality

∣∣m
(
ϕ, Ba,d(0, r)

)∣∣ ≤ 1
vard

∫

Ba,d(0,r)

∣∣ϕ(t)
∣∣dt

≤ 1
vard

(mesBa,d(0, r))1−1/p
(∫

Ba,d(0,r)

∣∣ϕ(t)
∣∣pdt

)1/p

=
(
var

d
)−1/p∥∥ϕ

∥∥
Lp

−→ 0, r −→ ∞.

(3.42)

Step 2 (lim Jρ(ϕ) vanishes on functions with compact support). By Condition 4,

∣∣∣∣

∫

Rn
ϕ(t)fρ(t)dt

∣∣∣∣ ≤
∫

Rn
ϕ̃(t)f̃ρ(t)dt, (3.43)

where ϕ̃(t) = |ϕ(t)| and f̃ρ is obtained from (1.9) by replacing g(x) with g̃(x) = p(‖x‖2). The
function ϕ̃ satisfies the Lipschitz condition, |ϕ̃(x)− ϕ̃(y)| = ||ϕ(x)| − |ϕ(y)|| ≤ c1‖x − y‖2, and g̃
satisfies Condition 2. Part (a) of this theorem allows us to use (2.20) with ϕ̃ in place of ϕ and
g̃ instead of g whenever (M2,dT1ϕ̃)(t(2)) exists for almost all t(2) ∈ Rn−d.

Let CL0(Rn) denote the set of functions ϕ ∈ CL(Rn) with compact support suppϕ.
Suppose ϕ ∈ CL0(Rn). By Step 1, (M2,dT1ϕ̃)(t(2)) ≡ 0. Equations (2.20) and (3.43) imply that

lim
ρ→a

∫

Rn
ϕ(t)fρ(t)dt = 0, ϕ ∈ CL0(Rn). (3.44)

Suppose (1.11) is true in the weak sense or, more generally, the family {fρ : 0 ≤ ρ < a} con-
verges in distribution, as ρ → a, to a probabilistic measure μ supported on some set S ⊂ Rn.
Then by (2.7)

∫
Rn ϕ(t)fρ(t)dt →

∫
S ϕdμ, ϕ ∈ CL(Rn). This equation and (3.44) imply

∫
S ϕdμ =

0, ϕ ∈ CL0(Rn). Taking here ϕ ∈ CL0(Rn) such that ϕ ≥ 0 and ϕ = 1 on B2,n(0, r) we have∫
S∩B2,n(0,r)

dμ = 0 for any r > 0. Thus, μ(S) = 0 which is impossible.
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3.3. Proof of Theorem 2.9

The proof of Theorem 2.9 will be preceded by a series of lemmas. The main difficulty consists
in estimating integrals of the marginal density g1 over cylindrical sets of an infinite Lebesgue
measure.

3.3.1. Preliminary Results

Lemma 3.1. For the rejection region Φ defined in (1.14), representation (2.21) holds.

Proof. Since LX , MX are complementary orthoprojectors, the images ImMX and ImLX =
ImX are orthogonal to one another and Rn = ImMX ⊕ ImX. Representing u ∈ Φ as
u = LXu +MXu and usingM′

X =MX , M2
X =MX we get

u′MXWMXu

u′MXu
=

(MXu)′WMXu

(MXu)′MXu
=
v′Wv

v′v
, (3.45)

where we have denoted v =MXu. Hence, only the component v ∈MXΦ determines whether
u belongs toΦ or not, while the component LXu ∈ ImX is arbitrary. This proves the equation
Φ =MXΦ + ImX. Finally, the equationMXΦ = ΓS follows by homogeneity from (3.45).

Now we review a few facts about the Moore-Penrose inverse in a form adapted to our
needs. Let A be a matrix of sizem × n, not necessarily square, and denote its rank r = rankA.
Its Moore-Penrose inverse A+ is of size n ×m.

Lemma 3.2 (see, [13, pages 24-25]). A+ is unique and has the following properties.

(a) AA+A = A (A+ is a generalized inverse of A).

(b) A+AA+ = A+ (A is a generalized inverse of A+).

(c) The matrixH = A+A is an orthoprojector,H2 = H,H ′ = H, and rankH = rankA+ = r.

(d) For a given y ∈ ImA, a general solution of the equation Ax = y is given by

x = A+y + (I −H)z, (3.46)

where z ∈ Rn is arbitrary. (Rao writes (H − I)z instead of (I −H)z, but our form is more
convenient).

Regarding (3.46), we can remark the following.

(i) The two terms on the right are orthogonal because by (b) and (c)

(
A+y, (I −H)z

)
=
(
HA+y, (I −H)z

)
=
(
A+y,

(
H −H2

)
z
)
= 0. (3.47)

Here and in the sequel, (·, ·) stands for the scalar product.
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(ii) Instead of writing the second term in the form (I−H)z, z ∈ Rn, we can equivalently
write it as v ∈ Im(I −H).

(iii) A+y = 0 implies that y = 0. This is because if A+y = 0 and y = Ax, then by (a)
y = Ax = AA+(Ax) = A(A+y) = 0.

Recalling that a general solution of the equationAx = y is, by definition, the preimage
A−1y, we state our conclusion in a lemma.

Lemma 3.3. Let Y ⊆ ImA. The preimage A−1Y is a cylinder A+Y + Im(I − H) with the base
A+Y ⊆ ImH and element Im(I −H). Further, A+y = 0 for y ∈ ImA implies that y = 0, that is, A+

on ImH is one-to-one.

Lemma 3.4. Suppose f1 ∈ ImX. Fix a set Y ⊆ ImMX and a vector τ ∈ ImMX . Denote A =
MXP2(a)Λ−1

2 (a) and letA+ andH be the accompanying matrices from Lemma 3.2. Then, the set T (2)

defined by T (2) = {t(2) ∈ Rn−1 : At(2) + τ ∈ Y} is a cylinder:

T (2) = A+(Y − τ) + Im(I −H). (3.48)

Suppose f1 /∈ ImX and denote p = MXf1/‖MXf1‖2. Then MX − pp′ is an orthoprojector
with the image

Im
(
MX − pp′) = {x ∈ ImMX : x ⊥ p}. (3.49)

In part (a) replace Y, τ,A by Y ⊆ Im(MX − pp′), τ ∈ Im(MX − pp′), and A = (MX −
pp′)P2(a)Λ−1

2 (a), respectively. Then the set T (2) has representation (3.48).

Proof. Let us show that f1 ∈ ImX implies that

ImA = ImMX. (3.50)

The inclusion ImA ⊂ ImMX is obvious. Conversely, let x ∈ ImMX . Then, x = MXx.
Since f1, . . . , fn is an orthonormal basis, we have x =

∑n
i=1(x, fi)fi. Denoting t(2) =

((x, f2), . . . , (x, fn))
′, it follows that

x =MXx =
n∑

i=1

(
x, fi

)
MXfi =

n∑

i=2

(
x, fi

)
MXfi

=
(
MXf2, . . . ,MXfn

)
t(2) =MXP2(a)t(2) = AΛ2(a)t(2) ∈ ImA.

(3.51)

We have proved (3.50)which implies Y − τ ⊂ ImA. Application of Lemma 3.3 proves (3.48).
It is easy to check thatMX−pp′ is an orthoprojector and its image satisfies (3.49). From

(3.49), we conclude thatMX andMX − pp′ commute and

(
MX − pp′)MX =MX − pp′, (3.52)
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see [14, Chapter VI, Section 3, Lemma 2(a)]. Applying MX − pp′ to both sides of (3.50) and
using the last equation we get

Im
[(
MX − pp′)P2(a)Λ−1

2 (a)
]
= Im

[(
MX − pp′)MXP2(a)Λ−1

2 (a)
]

=
(
MX − pp′)

[
ImMXP2(a)Λ−1

2 (a)
]

=
(
MX − pp′) ImMX = Im

(
MX − pp′).

(3.53)

We have proved an analog of (3.50) for the matrix under consideration:

ImA = Im
(
MX − pp′). (3.54)

As previously mentioned, application of Lemma 3.3 proves (3.48).

Lemma 3.5. Let f1, τ, A,A+ andH be the same as in Lemma 3.4(a).

(a) Suppose Y ⊆ ImMX is of the form Y = ΓΔ where Δ ⊆ {s ∈ ImMX : ‖s‖2 = 1}. If (2.23)
holds, then for the set T (2) from (3.48) one has

α(Y, τ) ≡
∫

T (2)
g1

(
t(2)
)
dt(2) ≤ c(‖τ‖2)mes(Δ). (3.55)

(b) If Y ⊆ {s ∈ ImMX : ‖s‖2 ≤ 1}, then α(Y, τ) → 0, asmes(Y ) → 0, uniformly in τ .

Proof. Part (a)
Step 1 (proving an auxiliary bound). Denote

β(Y, τ) =
∫

A+(Y−τ)
gk(‖u‖2)du. (3.56)

We intend to prove that

β(ΓΔ, τ) ≤ c(‖τ‖2)mes(Δ). (3.57)

By Lemma 3.2, (3.50) implies that

r ≡ rankA = n − k. (3.58)

By Lemma 3.3, A+ is a one-to-one mapping from ImA to ImA+, both of which are of dimen-
sion r. We use this fact twice.
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Firstly, selecting two bases, one in ImA and another in ImA+, we can identifyA+ with
its matrix representation in these bases. This matrix is square of order r and rank r, so the
Jacobian c1 of the transformation u = A+v, v ∈ ΓΔ − τ , is positive. Therefore,

β(ΓΔ, τ) = c1

∫

ΓΔ−τ
gk(‖A+v‖2)dv = c1

∫

ΓΔ
gk(‖A+(w − τ)‖2)dw. (3.59)

Secondly, ‖A+v‖2 = 0 implies that A+v = 0 which for v ∈ ImA implies that v = 0.
Thus, ‖A+v‖2 is a norm on ImA and by (3.14),

‖A+(w − τ)‖2 ≥ c2‖w − τ‖2 ≥ max{c2(‖w‖2 − ‖τ‖2), 0}, w ∈ ΓΔ. (3.60)

As g is assumed nonincreasing, gk is also nonincreasing, and (3.59) leads to

β(ΓΔ, τ) ≤ c1
∫

ΓΔ
gk(max{c2(‖w‖2 − ‖τ‖2), 0})dw. (3.61)

We bound this using polar coordinates:

β(ΓΔ, τ) ≤ c1
∫

Δ

[∫∞

‖τ‖2
gk
(
c2
(
ρ − ‖τ‖2

))
ρr−1dρ

]

dσ = c3mes(Δ). (3.62)

Here, the quantity

∫∞

‖τ‖2
gk
(
c2
(
ρ − ‖τ‖2

))
ρr−1dρ =

1
c2

∫∞

0
gk
(
ρ
)
(
ρ

c2
+ ‖τ‖2

)r−1
dρ (3.63)

is finite because by condition (2.23), gk is integrable in the neighborhood of zero and
(ρ/c2 + ‖τ‖2)r−1 is of order ρr−1 at infinity.

Step 2 (proving the main bound). The matrix A from Lemma 3.4(a) is of size n × (n − 1) and
A+ is of size (n − 1) × n. Equation (3.50) and Rn−1 = ImH ⊕ Im(I −H) imply that

rank(I −H) = n − 1 − r = k − 1. (3.64)

Equation (3.48) written point-wise is t(2) = u + v, t(2) ∈ T (2), u ∈ A+(ΓΔ − τ), v ∈ Im(I −H).
Since u, v here are orthogonal, we have

g1

(
t(2)
)
=
∫

R

p

((
t21 + ‖u‖22 + ‖v‖22

)1/2)
dt1 ≡ h(‖u‖2, ‖v‖2), (3.65)

where the right side defines the function h.
The transition from t(2) to the coordinates (u, v) is described by an orthogonal matrix.

This can be shown as follows. Take in ImH, an orthonormal basis and identify u with the
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set of its coordinates in that basis. Do the same with Im(I − H) and v. Join the two bases.
The equation t(2) = u+v induces a transformation between the original coordinates of t(2) and
the ones in the joint basis. Since ImH ⊥ Im(I−H), the Jacobian of the resulting transformation
is unity. Hence, by (3.48), (3.64), (3.65), and (3.57),

α(Y, τ) =
∫

A+(ΓΔ−τ)+Im(I−H)
g1(u + v)dudv

=
∫

A+(ΓΔ−τ)

[∫

Rk−1
h(‖u‖2, ‖v‖2)dv

]
du

=
∫

A+(ΓΔ−τ)
gk(‖u‖2)du = β(ΓΔ, τ)

≤ c(‖τ‖2)mes(Δ).

(3.66)

Part (b). In the bound (see (3.59) and (3.60)),

β(Y, τ) = c1

∫

Y−τ
gk(‖A+v‖2)dv ≤ c1

∫

Y−τ
gk(c2‖v‖2)dv, (3.67)

we have mes(Y − τ) = mes(Y ) → 0, so β(Y, τ) → 0 uniformly in τ . As in (3.66), it follows
that

α(Y, τ) =
∫

A+(Y−τ)+Im(I−H)
g1(u + v)dudv = β(Y, τ) −→ 0. (3.68)

Lemma 3.6. Let f1, p, τ,A,A+, andH be the same as in Lemma 3.4(b).

(a) Suppose Y = ΓΔ where Δ ⊆ {s ∈ Im(MX − pp′) : ‖s‖2 = 1}. If (2.25) holds, then (3.55)
is true with T (2) from Lemma 3.4(b).

(b) If Y ⊆ {s ∈ Im(MX − pp′) : ‖s‖2 ≤ 1}, then α(Y, τ) → 0, as mes (Y ) → 0, uniformly
in τ .

Proof. The proof essentially follows that of Lemma 3.5(a). From (3.49), and (3.54)we see that
instead of (3.58) we have r = n − k − 1. Instead of (3.64) we have rank(I −H) = k. This leads
to the definition of the marginal density used in (2.25). With these changes, (3.62), and (3.66)
are true and prove part (a).

With the same changes the proof of Lemma 3.5(b) goes through.

In the course of the proof, we approximate χΦ by functions ϕ±
ε ∈ CL(Rn) from below

and above. Then, we show that the rate of approximation improves as ε → 0 and ρ → a.

Step 1 (constructing the approximating functions). Denote ρ(x,A) = infy∈A‖x − y‖2 the
distance from a point x to a set A. For a given ε > 0, set Ψ+

ε = {x ∈ Rn : ρ(x,Φ) ≤ ε}, Ψ−
ε =

{x ∈ Φ : ρ(x, bd(Φ)) > ε}.
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Obviously, Ψ−
ε ⊂ Φ ⊂ Ψ+

ε . As in [10, page 12 proof of (ii) ⇒ (iii)], we can construct
functions ϕ±

ε that are uniformly continuous on Rn and satisfy

ϕ+
ε = 1 on Φ, ϕ+

ε = 0 outside Ψ+
ε , 0 ≤ ϕ+

ε ≤ 1 on Rn,

ϕ−
ε = 1 onΨ−

ε , ϕ−
ε = 0 outside Φ, 0 ≤ ϕ−

ε ≤ 1 on Rn.
(3.69)

Step 2 (reducing the convergence statement to a special case). Denote

I
(
ϕ
)
=
∫

Rn−1

(
MT1ϕ

)(
t(2)
)
g1

(
t(2)
)
dt(2). (3.70)

Here, we show that

lim
ε→ 0

I
(
ϕ±
ε

)
= I
(
χΦ
)

(3.71)

implies (2.24). From the inequality ϕ−
ε ≤ χΦ ≤ ϕ+

ε we have

Jρ
(
ϕ−
ε

) ≤ Jρ
(
χΦ
) ≤ Jρ

(
ϕ+
ε

)
. (3.72)

By Theorem 2.7,

lim
ρ→a

Jρ
(
ϕ±
ε

)
= I
(
ϕ±
ε

)
, for any ε > 0. (3.73)

By (3.71), for any δ > 0, there exists ε(δ) > 0 such that

I
(
ϕ+
ε

) − δ ≤ I(χΦ
) ≤ I(ϕ−

ε

)
+ δ, 0 < ε ≤ ε(δ). (3.74)

By (3.73), for the same δ, there is ρ(δ) ∈ (0, a) such that

∣∣Jρ
(
ϕ±
ε

) − I(ϕ±
ε

)∣∣ ≤ δ, ρ(δ) ≤ ρ < a. (3.75)

Equations (3.72), (3.74), and (3.75) imply that

I
(
χΦ
) − 2δ ≤ I(ϕ−

ε

) − δ ≤ Jρ
(
ϕ−
ε

) ≤ Jρ
(
χΦ
) ≤ Jρ

(
ϕ+
ε

)

≤ I(ϕ+
ε

)
+ δ ≤ I(χΦ

)
+ 2δ, ρ(δ) ≤ ρ < a.

(3.76)

Since δ > 0 is arbitrary, this proves (2.24).

Step 3 (further reduction to an indicator function). Let us call B(ε) = Ψ+
ε \ Ψ−

ε a band. Here,
we show that (3.71) will follow if we prove that

lim
ε→ 0

I
(
χB(ε)

)
= 0. (3.77)
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Note the identity

I
(
χB(ε)

)
= I
(
χΨ+

ε

) − I(χΨ−
ε

)

=
[
I
(
χΨ+

ε

) − I(χΦ
)]

+
[
I
(
χΦ
) − I(χΨ−

ε

)]
.

(3.78)

Since each of the square brackets on the right is nonnegative, (3.77) gives limε→ 0I(χΨ±
ε
) =

I(χΦ). Now, it suffices to take into account the inequality I(χΨ−
ε
) ≤ I(ϕ−

ε ) ≤ I(χΦ) ≤ I(ϕ+
ε ) ≤

I(χΨ+
ε
) to see that (3.71) follows.

Step 4 (geometric description of the task). Denote l(s, i) = {st + i : t ∈ R} a straight line with a
slope s ∈ Rn and intercept i ∈ Rn and put

bε
(
t(2)
)
=
(
MT1χB(ε)

)(
t(2)
)
= lim

r→∞
1
2r

∫ r

−r
χB(ε)

(
f1t1 + z

(
t(2)
))
dt1. (3.79)

This expression shows that we need to study the set {t1 ∈ R : f1t1 + z(t(2)) ∈ B(ε)} of points
common to the straight line l(f1, z(t(2))) and the band B(ε). The cylindrical nature of the sets
considered implies that the band admits an equivalent definition as a cylinder with the base

MXB(ε) =
{
x ∈ ImMX : ρ(x, bd(MXΦ)) ≤ ε} (3.80)

and element ImX. From this definition, we see that the condition f1t1 + z(t(2)) ∈ B(ε) is
equivalent to

(
MXf1

)
t1 +MXz

(
t(2)
)
∈MXB(ε). (3.81)

We have to sort out points t(2) ∈ Rn−1 into (a) those for which the set of points t1 satisfying
(3.81) is so small that (3.79) is zero and (b) that set is large enough for (3.79) to be positive.

Step 5 (case f1 ∈ ImX). In this case,MXf1 = 0, and (3.81) reduces to

MXP2(a)Λ−1
2 (a)t(2) +MXQXβ ∈MXB(ε). (3.82)

This condition does not contain t1. Therefore, if it is not satisfied, the integrand in (3.79)
is identically zero and bε(t(2)) = 0 for such t(2). If it is satisfied, the integrand in (3.79) is
identically 1 and bε(t(2)) = 1 for such t(2). Hence,

I
(
χB(ε)

)
=
∫

(3.82) is true
g1

(
t(2)
)
dt(2). (3.83)

The set of t(2) satisfying (3.82) has an infinite Lebesgue measure which precludes us
from application of the continuity property of the Lebesgue measure (for an integrable
h,
∫
A h(t)dt → 0 as mes(A) → 0).
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Figure 1:MXΦ consists of two cones bounded by solid lines.MXB(ε) is bounded by dashed lines.

As one can see from Figure 1,MXB(ε) is not a cone-like set. We divide it into two parts:
αinε = {s ∈ MXB(ε) : ‖s‖2 ≤ 1} includes the points inside the unit ball and on the unit sphere
and αoutε = {s ∈ MXB(ε) : ‖s‖2 > 1} includes the points ofMXB(ε) outside the unit ball. Put
Δε = {s ∈ ImMX : ‖s‖2 = 1, ρ(s, bd(MXΦ)) ≤ ε} and let us show that

αoutε ⊂ ΓΔε. (3.84)

Suppose x ∈ αoutε . Then, x ∈ ImMX, ‖x‖2 > 1 and by (3.80), there exists a sequence
{y(k)} ⊂ bd(MXΦ) such that lim sup ‖x − y(k)‖2 ≤ ε. The sequence {y(k)} is bounded and
therefore precompact, while bd(MXΦ) = MX(cl(Φ)\Φ) is closed by construction. Hence,
we can assume that y(k) → y ∈ bd(MXΦ) (passing to a subsequence, if necessary). Then,
‖x − y‖2 ≤ ε. This implies ‖x/‖x‖2 − y/‖x‖2‖2 ≤ ε/‖x‖2 < ε. Let s = x/‖x‖2. Since bd(MXΦ)
is cone-like, it follows that y/‖x‖2 ∈ bd(MXΦ) and ρ(s, bd(MXΦ)) < ε. This proves that
s ∈ Δε, x = ‖x‖2s ∈ ΓΔε and (3.84) is true.

From (3.84), we conclude that

MXB(ε) ⊂ αinε ∪ ΓΔε. (3.85)

This means that the set of solutions of (3.82) is contained in the union of two sets: T (2)
1 = {t(2) ∈

Rn−1 : At(2) + τ ∈ ΓΔε} and T
(2)
2 = {t(2) ∈ Rn−1 : At(2) + τ ∈ αinε } where A = MXP2(a)Λ−1

2 (a)
and τ =MXQXβ.

By Lemma 3.4(a), T (2)
1 = A+(ΓΔε − τ) + Im(I −H). By Lemma 3.5(a)

∫

T
(2)
1

g1

(
t(2)
)
dt(2) ≤ c(‖τ‖2)mes(Δε) −→ 0, ε → 0. (3.86)
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By Lemma 3.4(a), T (2)
2 = A+(αinε − τ) + Im(I −H). By Lemma 3.5(b)

∫

T
(2)
2

g1

(
t(2)
)
dt(2) −→ 0 as mes

(
αinε

)
−→ 0. (3.87)

Equations (3.86) and (3.87) prove that I(χB(ε)) → 0, ε → 0.

Step 6 (case f1 /∈ ImX). Equation (2.5) implies that if the straight line l(MXf1,MXz(t(2))) has
a bounded intersection with the band MXB(ε), then (MT1χB(ε))(t(2)) = 0. Therefore, we are
interested in the set of slopes:

Sl =
{
MXf1 : l

(
MXf1,MXz

(
t(2)
))

∩MXB(ε) is unbounded
}
. (3.88)

Let us prove that

MXf1 ∈ Sl =⇒MXf1/
∥∥MXf1

∥∥
2 ∈ bd(S). (3.89)

SupposeMXf1 ∈ Sl. Then, there exists a sequence of points p(k) which lie on the straight line,
p(k) = (MXf1)t

(k)
1 +MXz(t(2)), where |t(k)1 | → ∞, and which are 2ε-close to bd(MXΦ): there

exists a sequence y(k) ∈ bd(MXΦ) such that

∥∥∥p(k) − y(k)
∥∥∥
2
≤ 2ε,

∥∥∥y(k)
∥∥∥
2
−→ ∞. (3.90)

Equation (2.21) implies that MXΦ = ΓS and bd(MXΦ) = Γbd(S) ∪ {0}. Therefore s(k) ≡
y(k)/‖y(k)‖2 ∈ bd(S). Because bd(S) is compact, we can assume that s(k) → s ∈ bd(S). From
(3.90), we have ‖(MXf1)t

(k)
1 +MXz(t(2)) − ‖y(k)‖2s(k)‖2 ≤ 2ε or, dividing both sides by ‖y(k)‖2,

‖(MXf1)t
(k)
1 /‖y(k)‖2 − s(k)‖2 → 0. This shows that the sequence {t(k)1 /‖y(k)‖2} is bounded

and can be assumed convergent to a number δ. Letting k → ∞, we get (MXf1)δ = s ∈ bd(S),
and (3.89) is true.

Fix MXf1 ∈ Sl and denote p = MXf1/‖MXf1‖2 ∈ bd(S) ⊂ ImMX . The matrix pp′

projects ImMX onto the straight line l(MXf1, 0). The projectorMX −pp′ projects Im MX onto
Im(MX − pp′). Condition (3.81) implies two equations in projections:

pp′
[(
MXf1

)
t1 +MXz

(
t(2)
)]

∈ pp′MXB(ε),

(
MX − pp′)

[(
MXf1

)
t1 +MXz

(
t(2)
)]

∈ (MX − pp′)MXB(ε).
(3.91)

The first one can be safely omitted because the shift pp′MXz(t(2)) along a line does not change
the property of the line to have an unbounded intersection with MXB(ε). Denoting A =
(MX − pp′)P2(a)Λ−1

2 (a), τ = (MX − pp′)QXβ, and using (3.52), we write the second equation
as

At(2) + τ ∈ (MX − pp′)B(ε). (3.92)
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The set of points t(2) such that (3.81) holds for an unbounded set of values t1 is clearly con-
tained in the set T (2) of points t(2) that satisfy (3.92). For t(2) ∈ T (2) we use an obvious bound
bε(t(2)) ≤ 1 (see (3.79)), and, therefore, I(χB(ε)) ≤

∫
(3.92) is true g1(t

(2))dt(2). The rest of the proof
closely follows that for the case f1 ∈ ImX. An inclusion of type (3.85) holds withMX replaced
by MX − pp′ in all definitions. The reference to Lemma 3.4(a) is replaced by Lemma 3.4(b).
Lemma 3.6 is used instead of Lemma 3.5. The conclusion is that I(χB(ε)) → 0.

We shall use several times the fact that for the density g1 in representation (2.24)will,
the conditions

∫
A g1(t

(2))dt(2) > 0 and mes(A) > 0 are equivalent. From (2.24), we see that the
task is to calculate the function (3.79)withΦ in place of B(ε). Because of (2.21), the condition
that f1t1 + z(t(2)) ∈ Φ is equivalent to the condition in projections:

(
MXf1

)
t1 +MXz

(
t(2)
)
∈ ΓS. (3.93)

The magnitude of β(Φ) depends on the set

A
(
t(2)
)
=
{
t1 ∈ R : f1t1 + z

(
t(2)
)
∈ Φ

}
. (3.94)

The properties of A(t(2)) depend on those of mes{t(2) ∈ Rn−1 : MXz(t(2)) ∈ G} for cer-
tain sets G ⊆ ImMX , as we will see.

Lemma 3.7. Suppose ImQ ⊆ ImX (Q is the projector from Theorem 2.7). Then,MXz(t(2)) = 0 for
all t(2) ∈ Rn−1.

Let ImQ/⊆ ImX. Then, mes {t(2) :MXz(t(2)) = 0} = 0.

Proof. The assumption ImQ ⊆ ImX implies that MXfi = 0 for i = 2, . . . , n, which can be
written as MXP2(a) = 0. Hence, MXz(t(2)) = MXP2(a)[Λ−1

2 (a)t(2) + P ′
2(a)Xβ] = 0 for any

t(2) ∈ Rn−1.
If ImQ/⊆ ImX, then fi /∈ ImX andMXfi /= 0 for at least one i. ThematrixMXP2(a) is of

size n×(n−1), and of rank at least 1. From the equation dimN(MXP2(a))+rank(MXP2(a)) =
n − 1 we see that the null space N(MXP2(a)) is of dimension at most n − 2. The set of t(2)

satisfying MXz(t(2)) = MXP2(a)Λ−1
2 (a)t(2) + MXQXβ = 0 is a partial solution t

(2)
0 plus an

arbitrary element from the null space N(MXP2(a)). Thus the set of all solutions is a
hyperplane in Rn−1 of dimension at most n−2 and has (n−1)-dimensional Lebesgue measure
zero.

Lemma 3.8. Suppose we are given a set G ⊆ Rn−1 and for almost each t(2) ∈ G, the set A(t(2)) ⊆ R is
defined by (3.94).

(a) IfA(t(2)) is bounded for almost all t(2) ∈ G and mes (G) > 0, then β(Φ) < 1. In particular,
if G = Rn−1, then β(Φ) = 0.

(b) If

R \A
(
t(2)
)
is bounded for almost all t(2) ∈ G (3.95)

and mes(G) > 0, then β(Φ) > 0. In particular, if G = Rn−1, then β(Φ) = 1.
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(c) Suppose that G = Rn−1 and for almost all t(2) ∈ G,

the set A
(
t(2)
)
is a half − axis (3.96)

(i.e., either A(t(2)) = (a(t(2)),∞) or A(t(2)) = (−∞, a(t(2))) with some a(t(2)) ∈ R). Then,
β(Φ) = 1/2.

Proof. If A(t(2)) is bounded, then χΦ(f1t1 + z(t(2))) = 0 outside a bounded set, and by (2.5),

MχA(t(2)) =
(
MT1χΦ

)(
t(2)
)
= 0 (3.97)

for almost all t(2) ∈ G. Since 0 ≤MχA(t(2)) ≤ 1 outside G, we have

β(Φ) ≤
∫

Rn−1\G
g1

(
t(2)
)
dt(2) < 1. (3.98)

Obviously, the integral is null if G = Rn−1.
By (3.97), condition (3.95) implies that

MχA(t(2)) =M
(
1 − χR\A(t(2))

)
= 1 a.e. in G. (3.99)

Since mes(G) > 0, we have

β(Φ) ≥
∫

G

g1

(
t(2)
)
dt(2) > 0. (3.100)

In case G = Rn−1, the last integral is 1.
Consider, for example, the case of the right half-axis:

MχA(t(2)) = lim
r→∞

1
2r

(∫0

a(t(2))
dt +

∫ r

0
dt

)

=
1
2
. (3.101)

Hence, β(Φ) = (1/2)
∫
Rn−1 g1(t

(2))dt(2) = 1/2.

Case 1. Let f1 ∈ Φ. Then, f1 /∈ ImX and MXf1 /= 0. Define p = MXf1/‖MXf1‖2. Obviously,
MXf1 ∈ ΓS and p ∈ S. In the equation

(
MXf1

)
t1 +MXz

(
t(2)
)
=
∥∥MXf1

∥∥
2t1

[

p +
MXz

(
t(2)
)

∥∥MXf1
∥∥
2t1

]

, (3.102)

for all large |t1|, the term in the square brackets is close to p and, because MXΦ is open in
ImMX , this term belongs to MXΦ. Since MXΦ is cone-like, the left side of (3.102) belongs
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to MXΦ for all large |t1|. Hence, the set A(t(2)) contains the neighborhood of infinity (more
precisely, all t1 with |t1| > N where N depends on t(2)). By Lemma 3.8(b), where G = Rn−1,
then β(Φ) = 1.

Case 2. Suppose f1 ∈ bd(Φ).
Subcase 2.1. Let f1 ∈ ImX or, equivalently,MXf1 = 0. Condition (3.93) reduces to

MXz
(
t(2)
)
=MXP2(a)Λ−1

2 (a)t(2) +MXQXβ ∈ ΓS. (3.103)

By Lemma 3.4(a), the set of solutions of (3.103) is T (2) = A+(ΓS − τ) + Im(I −H) where A+ is
the Moore-Penrose inverse of A = MXP2(a)Λ−1

2 (a),τ = MXQXβ, andH is the projector from
Lemma 3.2. Using Lemma 3.8(b), (3.66), and (3.59) we get

β(Φ) =
∫

T (2)
g1

(
t(2)
)
dt(2) =

∫

A+(ΓS−τ)
gk(‖u‖2)du. (3.104)

The density gk(‖u‖2) is spherically symmetric. It is positive everywhere because

gk(t) =
∫

Rk
p

((
t2 + ‖v‖22

)1/2)
dv = 0 (3.105)

would mean p((t2 + t1)
1/2) = 0 for any t1 ≥ 0, that is, p(t1) = 0 for any t1 ≥ t, which is

impossible by assumption. A+ is one-to-one on ImA = ImMX , so A+(ΓS − τ) is a nonempty
proper subset of ImA+. Therefore, 0 < β(Φ) < 1.

Subcase 2.2. Suppose f1 /∈ ImX. As in Case 1 , p is defined. Let us show that it satisfies

p′Wp = c. (3.106)

Since f1 is a limit point of Φ, there is a sequence xn ∈ Φ such that xn → f1. Hence,MXxn →
MXf1 where ‖MXf1‖2 /= 0 because f1 /∈ ImX. From (2.21), it follows that MXxn ∈ ΓS,zn ≡
MXxn/‖MXxn‖2 ∈ S and z′nWzn > c. Letting n → ∞ and using zn → p, we get p′Wp ≥ c.
Since f1 /∈ Φ, we haveMXf1 /∈ MXΦ and p /∈ S. Thus, p′Wp > c is impossible and (3.106) is
true.

In the three examples in the following we assume that n > k + 1. Then, ImQ/⊆ ImX,
and by Lemma 3.7(b),

MXz
(
t(2)
)
/= 0, for almost all t(2) ∈ Rn−1. (3.107)

Sub-sub-case (a) (Example of β(Φ) = 1). Let W be symmetric. Assumptions (1.13) imply
that var(u) = σ2

ε (I − ρW)−2 whenever det(I − ρW)/= 0, so Σ−1(ρ) = (I − ρW)2. If μi denote
eigenvalues of W , then the eigenvalues of I − ρW are νi(ρ) = 1 − ρμi. Let the constant c in
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the definition of the critical region Φ be positive. Put a = 1/c and with some integer i0 and
real numbers μ−, μ+ such that 1 < i0 < n, μ− < 1/a < μ+ define μi by

μ1 = · · · = μi0−1 = μ− < μi0 =
1
a
< μi0+1 = · · · = μn = μ+. (3.108)

Then, for 0 < ρ ≤ a,

ν1
(
ρ
)
= · · · = νi0−1

(
ρ
)
= 1 − ρμ− > νi0

(
ρ
)
= 1 − ρ

a

> νi0+1
(
ρ
)
= . . . = νn

(
ρ
)
= 1 − ρμ+,

(3.109)

and Σ−1/2(a) has eigenvalues

ν1(a) = · · · = νi0−1(a) = 1 − aμ− > νi0(a) = 0

< |νi0+1(a)| = · · · = |νn(a)| =
∣∣1 − aμ+

∣∣.
(3.110)

Hence, in the notation of Condition 3, λ1(ρ) = νi0(ρ) and λ2(ρ), . . . , λn(ρ) are obtained from
|νi(ρ)|, i /= i0, by reordering. For example, if 1 − aμ− < |1 − aμ+|, then λi(ρ) = νi−1(ρ),i = 2,
. . . , i0; λi(ρ) = |νi(ρ)|, i = i0 + 1, . . . , n. Assuming this ordering, denote the corresponding
eigenvectors of Σ−1/2(a) by f1, f−

2 , . . . , f
−
i0
, f+

i0+1
, . . . , f+

n where the minuses and pluses remind
us that the corresponding eigenvalues depend on μ− and μ+, respectively.

Let k = i0 − 1 and suppose that

f−
2 , . . . , f

−
i0
span ImX, f1, f

+
i0+1, . . . , f

+
n span ImMX. (3.111)

Denote

x =
(
MXf1

)
t1 +MXz

(
t(2)
)
∈ ImMX. (3.112)

Because of (3.111), here MXf1 = f1. Besides, since z(t(2)) is orthogonal to f1, the decompo-
sition

MXz
(
t(2)
)
=

n∑

i=i0+1

cif
+
i (3.113)

does not contain f1. Hence, (3.112) becomes

x = t1f1 +
n∑

i=i0+1

cif
+
i . (3.114)
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Remembering that the eigenvectors of Σ−1/2(a) are just reordered eigenvectors ofW , we get

Wx =
1
a
t1f1 + μ+

n∑

i=i0+1

cif
+
i ,

x′Wx =
1
a
t21 + μ+

n∑

i=i0+1

c2i = ct
2
1 + μ+

n∑

i=i0+1

c2i ,

(3.115)

for any x of form (3.112). From (3.107) and (3.113)we see that here

n∑

i=i0+1

c2i /= 0 a.e. in Rn−1. (3.116)

Hence, normalizing x, s = x/‖x‖2, and assuming that μ+ > c, we get from (3.115)

s′Ws =
ct21 + μ+

∑n
i=i0+1 c

2
i

t21 +
∑n

i=i0+1 c
2
i

> c, (3.117)

for all t1 ∈ R and almost all t(2) ∈ Rn−1. This shows that the set (3.94) coincides with R for
almost all t(2) ∈ Rn−1 and by Lemma 3.8(b) β(Φ) = 1.
Sub-sub-case (b) Example of β(Φ) = 0. We change (3.111) so as to obtain in (3.115) μ− in place
of μ+. Let k = n − i0 and suppose that

f+
i0+1, . . . , f

+
n span ImX, f1, f

−
2 , . . . , f

−
i0
span ImMX. (3.118)

Instead of (3.113), we get MXz(t(2)) =
∑i0

i=2 cif
−
i which leads to an analog of (3.114): x =

t1f1 +
∑i0

i=2 cif
−
i . Equation(3.115) is replaced by

x′Wx = ct21 + μ−
i0∑

i=2

c2i , (3.119)

where
∑i0

i=2 c
2
i /= 0 a.e. in Rn−1. The result is that

s′Ws =
ct21 + μ−

∑i0
i=2 c

2
i

t21 +
∑i0

i=2 c
2
i

< c (3.120)

for all t1 ∈ R and almost all t(2) ∈ Rn−1. Hence, the set (3.94) is empty for almost all t(2) ∈ Rn−1

and by Lemma 3.8(a), β(Φ) = 0.
Sub-sub-case (c)Example of β(Φ) = 1/2]. MXz(t(2)) runs over Im(MXP2(a)). If k > 1, then
n− 1 > n−k, and we can choose the eigenvectors f2, . . . , fn of Σ−1/2(a) so that ImQ ⊃ ImMX ,
and thenMXz(t(2)) runs over ImMX = Im(MXP2(a)). Let ΓS be a union of two cones, as in
Figure 2. The line l(MXf1, 0) lies on the boundary of the cones. In Figure 2, La = l(MXf1, 0)
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Shifted La

Lb

La

a(t(2))

b(t(2))

Figure 2: The base of Φ contains the area between two solid lines La and Lb. The dashed line is
l(MXf1,MXz(t(2))) = La +MXz(t(2)).

and Lb = l(b(t(2)), 0). For any nonzero shift MXz(t(2)), half of the shifted line is contained in
MXΦ because La and Lb are not parallel. Here, “half” means “either for all large positive t1
or for all large negative t1.” By Lemma 3.8(c), β(Φ) = 1/2.

Case 3. Suppose f1 ∈ Φ−. Then, as in Case 1,MXf1 /= 0 and p is defined. It satisfies p′Wp < c.
The term in the square brackets in (3.102) for all large |t1| belongs to an open setMXΦ−. Since
this set is cone-like, the left side of (3.102) belongs toMXΦ− for all large |t1|. The setA(t(2)) is
bounded for all t(2) ∈ Rn−1, and by Lemma 3.8(a), β(Φ) = 0.

Step 1 (the ε(ρ)-maximizing set is an ellipsoid). For y ∈ Mε(ρ) by orthogonality of P and
Condition 7, we have

fρ
(
y
)
=

n∏

j=1

λj
(
ρ
)
p
(∥∥Λ

(
ρ
)
P ′(ρ

)(
y −Xβ)∥∥2

) ≥ (1 − ε(ρ))
n∏

j=1

λj
(
ρ
)
m. (3.121)

Since p−1 is decreasing, this is equivalent to ‖Λ(ρ)P ′(ρ)(y −Xβ)‖2 ≤ p−1((1 − ε(ρ))m). Denot-
ing h(ρ) = p−1((1 − ε(ρ))m), z = P ′(ρ)(y −Xβ), we rewrite the resulting inequality as

d∑

j=1

z2j
[
h
(
ρ
)
/λj

(
ρ
)]2 +

n∑

j=d+1

z2j
[
h
(
ρ
)
/λj

(
ρ
)]2 ≤ 1. (3.122)

In z coordinates, this is an ellipsoid with half-axes h(ρ)/λj(ρ).

Step 2 (characterizing the rate of decay of h(ρ)). First we determine the rate withwhich p−1(x)
approaches 0 when x → m. To approximately invert p, in the equation x = p(r), we use
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representation (2.30): x = m(1 − cprαp)(1 + o(rαε)). This is equivalent to (x/m)(1 + o(rαε)) =
1 − cprαp . Solving this equation for the r involved in the right-hand side produces

p−1(x) = r =

{
1
cp

[
1 − x

m
(1 + o(rαε))

]}1/αp

, r → 0. (3.123)

Since ρ → a, we can put r = a − ρ in the last equation to get

p−1(x) =

{
1
cp

[
1 − x

m

(
1 + o

((
a − ρ)αε))

]}1/αp

, ρ → a. (3.124)

To obtain h(ρ), let x = (1 − ε(ρ))m. Then, by (2.29),

1 − x

m

(
1 + o

((
a − ρ)αε)) = 1 − (1 − ε(ρ))(1 + o((a − ρ)αε))

= 1 − 1 + o
((
a − ρ)αε) + ε(ρ)(1 + o((a − ρ)αε))

= ε
(
ρ
)
(1 + o(1)).

(3.125)

Combining this with (3.124) and (2.29), we have

h
(
ρ
)
= p−1(x) =

{
cε
cp

(
a − ρ)αε(1 + o(1))

}1/αp

=

(
cε
cp

)1/αp(
a − ρ)αε/αp(1 + o(1)).

(3.126)

Step 3 (behavior of half-axes). We intend to show that for j = d+ 1, . . . , n the half-axes tend to
zero, so that in the limit

zd+1 = · · · = zn = 0, (3.127)

whereas for j = 1, . . . , d, they tend to∞, and in the limit, z1, . . . , zd can be any real numbers.
For j = d+ 1, . . . , n from (2.28), we see that the condition h(ρ)/λj(ρ) → 0 is equivalent

to h(ρ) → 0. Because of (2.31), this condition is the same as (1 − ε(ρ))m → m which holds
by (2.29).

For the remaining half-axes, we get by (2.27), (3.126), and (2.32)

h
(
ρ
)

λj
(
ρ
) =

1
cλ

(
cε
cp

)1/αp(
a − ρ)αε/αp−αλ(1 + o(1)) −→ ∞. (3.128)

We have proved our statement on convergence of the half-axes. According to (2.26), (3.127)
rewrites as (P ′(a)(y −Xβ))j = 0, j = d + 1, . . . , n. Since the rows of P ′(a) are eigenvectors
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of A(a), the last equation means that y − Xβ is orthogonal to eigenvectors numbered j =
d + 1, . . . , n. Hence, y − Xβ belongs to the null space of A(a), and the set of all such y’s is
Xβ +N(A(a)).

In this proof, the setXβ+N(A(a)) is obtained as the limit of the ridge of fρ. In general,
this ridge can have any shape and the limit will not be Xβ +N(A(a)).

4. Summary

Theorem 2.2 is the key result in this paper. We tried to obtain it under minimal conditions
on g. It would be interesting to relax our conditions. In particular, densities that are not
spherically symmetric are of interest in applications. Note that when the dependence on λ is
more complex than in gλ(x) = λg(λx), one needs very different techniques and more detailed
assumptions about g to obtain an analog of Theorem 2.2. Such results can be found in [15].
Another promising direction of research is to consider tests other than the Cliff-Ord one.
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