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An epidemiological model for the spread of lymphatic filariasis, a mosquito-borne infection, is developed and analysed. The
epidemic thresholds known as the reproduction number and equilibria for the model are determined and stabilities analysed.
Results from the analysis of the reproduction number suggest that treatment will somehow contribute to a reduction in lymphatic
filariasis cases, but what it does not show is the magnitude of the reduction, a part answered by the numerical simulations.
Numerical simulations show that even when all lymphatic filariasis cases displaying elephantiasis symptoms are put on treatment
it will not be able to eradicate the disease. This result suggests that effective control of lymphatic filariasis may lie in treatment for
those displaying symptoms as well as chemoprophylaxis for the exposed.

1. Introduction

Lymphatic filariasis, a debilitating disease, is one of the
most prevalent and yet one of the most neglected tropical
diseases with serious economic and social consequences [1,
2]. Lymphatic filariasis affects women, men and children of
all ages. It is a mosquito-borne disease caused by tissue-
dwelling nematodes of Brugia malayi, Brugia timori, and
Wuchereria bancrofti species [1, 3] and is estimated to
affect about 120 million people worldwide [4–6]. Wuchereria
bancrofti is responsible for 90% of the cases and is found
throughout the tropical and subtropical areas of the world;
Brugia malayi is confined to southeast and eastern Asia;
Brugia timori is found only in Timor and its adjacent
islands [7]. Infection leads to lymphedema, a buildup of
fluid due to impaired function of the lymph vessels, in
only a small proportion people, even in areas of intense
transmission [8], as most people with long-term infections
are clinically asymptomatic. Recurrent bacterial infections in
some lymphedema patients lead to elephantiasis [9].

Filarial parasites are a major cause of morbidity and
therefore hinder socioeconomic growth in parts of Asia,

Africa, and the Western Pacific [1, 10]. Despite improved
knowledge of pathology of lymphatic filariasis and existence
of the drugs diethylcarbamazine and albendazole necessary
to treat lymphatic filariasis, it continues to be a major
public health problem in tropical and subtropical countries.
Lymphatic filariasis is more common in regions that have a
higher incidence of poverty [11] making it a disease of the
poor and serves as an indicator of underdevelopment [1].
Surveys in Ghana have indicated that bancroftian filariasis
is present in most parts of the country with considerable
variations in prevalence [12]. In countries where lymphatic
filariasis is well established, the prevalence of infection
continues to increase due to unplanned growth of cities and
water resource development such as irrigation, which creates
numerous breeding sites for the mosquitoes that transmit the
disease [12].

A number of mathematical models have looked into
malaria a mosquito-borne infection [13–19], to mention just
a few, but only a few have looked into lymphatic filariasis
[20–24]. Here the authors propose and analyse the trans-
mission dynamics of lymphatic filariasis using differential
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Figure 1: Structure of the model.
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Figure 2: Bifurcation diagram.

equations to explore if treatment for those symptoms alone
will be able to keep the infection under control.

2. Model Description

The model subdivides the human population based on
lymphatic filariasis status into the following subpopulations:
susceptible humans Sh(t), infected and not showing signs
of elephantiasis (exposed) Eh(t), infected and displaying

elephantiasis symptoms Ih(t). Thus, the total human popu-
lation is given by

Nh(t) = Sh(t) + Eh(t) + Ih(t). (1)

The mosquito population is divided into the follow-
ing subgroups: susceptible mosquitoes Sm(t) and infected
mosquitoes Im(t), so the total mosquito population is given
by

Nm(t) = Sm(t) + Im(t). (2)

The mosquitoes and human beings are recruited into their
susceptible corresponding populations at rates Λm and Λh,
respectively. Mosquitoes experience natural death rate at
a rate μm which is proportional to the number in each
mosquito class. Similarly, human beings experience natural
death at a rate μh, which is proportional to the number in
each human class.

The mosquito ingests microfilariae when biting a human
who is infected with filariasis (elephantiasis causing nema-
todes) at a rate

λh(t) = βh[θhEh(t) + Ih(t)]
Nh(t)

. (3)

Here, βh is the average number of mosquito bites which
cause transmission of disease from infected human to
susceptible mosquito; θh ∈ (0, 1) accounts for reduced
number of microfilariae in the blood stream of individuals
infected but not showing elephantiasis symptoms. Upon
getting infected, susceptible mosquitoes enter the infected
class Im(t). Microfilariae pass through mosquito gut into
hemocoel and develop into filariform juveniles. Filariform
juveniles escape from mosquito’s proboscis when the insect
is feeding and then penetrate wound structure of a human
being at a rate λm(t) where

λm(t) = βmIm(t)
Nm(t)

, (4)

where βm is the average number of mosquito bites which
cause transmission of disease from infectious mosquito to
susceptible human per mosquito. Thus, humans are infected
at a rate λm(t) following a bite by a mosquito to move
into the exposed class Eh(t) (infected and not showing
signs of filariasis). Individuals in Eh(t) progress to the stage
of showing filarasis symptoms Ih(t) at rate ρ. However,
some progress to the Ih(t) as a result of reinfection at
a rate λm(t). Individuals in Ih(t)-class are treated using
Diethycarbamzime (DEC) and albendazole drugs at a rate α
to move back into the susceptible class Sh(t), since recovery
from filarasis is not permanent. With filarasis, there is no
disease-induced death. The structure of model is given in
Figure 1.

Unless stated otherwise, values for the parameters in the
simulations are given in Table 1 which are values used in
malaria models which is also spread by the same vector as
data on this neglected tropical infection is hard to come by.

Due to lack of data to calibrate the model and for
parameter estimation, other parameter values are assumed
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Table 1: Model parameters and their interpretations.

Definition Symbol Units Point estimate Range Source

Mosquito recruitment rate Λm Mosquitoes/day 4.227 · 104 — a∗

Mosquito mortality rate μm 1/day 3.623 0.01–5.0 a∗

Average number of mosquito bites which cause
transmission of disease from infected human to
susceptible mosquito

βh 1/day 3.576 1.52–5 a∗

Modification parameter θh — 0.25 0.125–1 Assumed

Human recruitment rate Λh Humans/day 0.0024 · 2 · 104 — a∗

Human mortality rate μh 1/day 0.00048 0–0.25 a∗

Average number of mosquito bites which cause
transmission of disease from infectious mosquito to
susceptible human per mosquito

βm 1/day 0.091 0.01–0.75 a∗

Treatment rate α 1/day 0.125 0.1–0.75 Assumed

Per capita rate of progression of human from the
exposed class to the infectious class

ρ 1/day 0.01 0–0.25 Assumed

a∗ denotes parameter values from Labadin et al., [25].
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Figure 3: Simulations of model system (5) for varying initial infected mosquito population when RE > 1 (RE = 1.809). Parameter values
used are in Table 1.

within realistic ranges for illustrative purpose. Note that that
“Range” refers to values used in the sensitivity analysis. Based
on the given assumptions, the following system of differential
equations describes the model:

S′m(t) = Λm −
(
λh + μm

)
Sm,

I′m(t) = λhSm − μmIm,

S′h(t) = Λh −
(
λm + μh

)
Sh + αIh,

E′h(t) = λmSh −
(
λm + ρ + μh

)
Eh,

I′h(t) = (λm + ρ
)
Eh −

(
μh + α

)
Ih.

(5)

All parameters and state variables for model system (5) are
assumed to be nonnegative to be consistent with human and

mosquito populations. All feasible solutions of model system
(5) are positive and eventually enter the invariant attracting
region

Ω =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Sm, Im) ∈ R2
+ : Nm ≤ Λm

μm
,

(Sh,Eh, Ih) ∈ R3
+ : Nh ≤ Λh

μh
.

(6)

It is sufficient to consider solutions in Ω. Existence, unique-
ness, and continuation results for system (5) hold in this
region, and all solutions starting in Ω remain there for all
t ≥ 0. Hence, (5) is mathematically and epidemiologically
well posed, and it is sufficient to consider the dynamics of
the flow generated by the model system (5) in Ω.
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Figure 4: Simulations of model system (5) for varying initial infected mosquito population when RE < 1 (RE = 0.715). Parameter values
used are in Table 1.

2.1. Disease-Free Equilibrium and Stability Analysis. The
disease-free equilibrium of model system (5) is given by

E 0 =
(
S0
m, I0

m, S0
h,E0

h, I0
h

)
=
(
Λm

μm
, 0,

Λh

μh
, 0, 0

)

. (7)

Following van den Driessche and Watmough [26], we have

RE =
√
√√
√βmβh

(
θh
(
α + μh

)
+ ρ

)

μm
(
α + μh

)(
ρ + μh

) , (8)

which is the number secondary lymphatic filarasis cases
caused by one infected individual/mosquito in a completely
susceptible population. Local stability of the disease-free
equilibrium is assured by Theorem 2 [26].

Theorem 1. The disease-free equilibrium E 0 for model system
(5) is locally asymptotically stable if RE < 1 and unstable
otherwise.

2.1.1. Analysis of the Reproduction Number RE. RE is a
decreasing function of μm as limμm→∞RE = 0, suggesting
that mechanisms which increase mortality of mosquitoes
like spraying will have a positive impact on controlling
lymphatic filariasis. Now let us explore the impact of treating
elephantiasis cases only by partially differentiating RE with
respect to α to obtain

∂RE

∂α
= − βmβhρ

2REμm
(
μh + ρ

)(
μh + α

)2 < 0. (9)



ISRN Biomathematics 5

0 0.2 0.4 0.6

Modification parameter

Natural rate of progression

Treatment

Human mortality

Mosquito mortality

−0.8 −0.6 −0.4 −0.2

Mosquito infection
transmissibility

Human infection
transmissibility

Figure 5: Partial rank correlation coefficients showing the effect
of parameter variations on RE using ranges in Table 1. Parameters
with positive PRCCs will increase RE when they are increased,
whereas parameters with negative PRCCs will decrease RE when
they are increased.

The fact that ∂RE/∂α < 0 suggests that increase in treatment
of elephantiasis cases results in a decrease of the lymphatic
filariasis infections in the population.

2.2. Existence and Stability Analysis of the Endemic Equi-
librium. The endemic equilibrium is given by E∗ =
(S∗m, I∗m , S∗h ,E∗h , I∗h ), where

S∗m =
Λm

μm + λ∗h
, I∗m =

Λmλ
∗
h

μm
(
μm + λ∗h

) , N∗
m =

Λm

μm
,

S∗h =
Λh
(
λ∗m + μh + ρ

)(
μh + α

)

μh
[
λ∗2
m + λ∗m

(
2
(
μh + α

)
+ ρ

)
+
(
μh + ρ

)(
μh + α

)] ,

E∗h =
Λhλ∗m

(
μh + α

)

μh
[
λ∗2
m + λ∗m

(
2
(
μh + α

)
+ ρ

)
+
(
μh + ρ

)(
μh + α

)] ,

I∗h =
Λhλ∗m

(
λ∗m + ρ

)

μh
[
λ∗2
m + λ∗m

(
2
(
μh + α

)
+ ρ

)
+
(
μh + ρ

)(
μh + α

)] ,

N∗
h =

Λh

μh
.

(10)

Substituting (10) into the force of infection λ∗m in (4), we
obtain

λ∗m =
βmI∗m
N∗

m
= βmλ

∗
h

μm + λ∗h
=⇒ λ∗h =

μmλ∗m
βm − λ∗m

. (11)

Also, substituting (10) into the force of infection λ∗h in (3),
we obtain

λ∗h =
βh
[
λ∗2
m + λ∗m

(
θh
(
μh + α

)
+ ρ

)]

λ∗2
m + λ∗m

(
2
(
μh + α

)
+ ρ

)
+
(
μh + α

)(
μh + ρ

) . (12)

Substituting (11) into (12), we have λ∗mh(λ∗m) = 0, with λ∗m =
0 corresponding to the disease-free equilibrium and h(λ∗m) =
0 corresponding to the endemic equilibrium with

h
(
λ∗m
) = Aλ∗2

m + Bλ∗m + C = 0,

A = μm + βh
μm
(
μh + α

)(
μh + ρ

) , C = 1−R2
E,

B =
(
μh + α

)(
2μm + βhθh

)
+ ρ

(
μm + βh

)− βhβm
μm
(
μh + α

)(
μh + ρ

) .

(13)

Clearly A is positive throughout, C > 0 (C < 0) only when
RE < 1(RE > 1) and B can be positive or negative depending
on whether (μh + α)(2μm + βhθh) + ρ(μm + βh) > or < βhβm.
Solving h(λ∗m) = 0, we obtain

λ∗m =
−B ±√B2 − 4AC

2A
. (14)

The analysis of (14) is Theorem 2.

Theorem 2. Model system (5) has

(i) a unique endemic equilibrium if C < 0 (RE > 1);

(ii) a backward bifurcation if B < 0, C > 0 (RE < 1).

We now employ the Centre Manifold Theory [27] to
analyse the stability of this equilibrium point as described in
Theorem 4.1 [28], to establish the local asymptotic stability
of the endemic equilibrium. Let us make the following
change of variables in order to apply the Center Manifold
Theory Sm = x1, Im = x2, so that Nm = ∑2

n=1 xn and
Sh = x3, Eh = x4, Ih = x5, so that Nh =

∑3
n=1 x2+n. We

now use the vector notation X = (x1, x2, x3, x4, x5)T . Then,
model system (5) can be written in the form dX/dt = F =
( f1, f2, f3, f4, f5)T , such that

x′1(t) = f1 = Λm − βh(θhx4 + x5)
∑3

n=1 xn+2
x1 − μmx1,

x′2(t) = f2 = βh(θhx4 + x5)
∑3

n=1 xn+2
x1 − μmx2,

x′3(t) = f3 = Λh − βmx2
∑2

n=1 xn
x3 − μhx3 + αx5,

x′4(t) = f4 = βmx2
∑2

n=1 xn
x3 − βmx2

∑2
n=1 xn

x4 −
(
ρ + μh

)
x4,

x′5(t) = f5 = βmx2
∑2

n=1 xn
x4 + ρx4 −

(
μh + α

)
x5.

(15)
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The Jacobian matrix of system (15) at E 0 is given by

J
(
E 0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−μm 0 0 −βhθhΛmμh
μmΛh

−βhΛmμh
μmΛh

0 −μm 0
βhθhΛmμh
μmΛh

βhΛmμh
μmΛh

0 −βmΛhμm
μhΛm

−μh 0 α

0
βmΛhμm
μhΛm

0 −(μh + ρ
)

0

0 0 0 ρ −(μh + α
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(16)

from which it can be shown that the reproduction number is

RE =
√
√
√√βmβh

(
θh
(
α + μh

)
+ ρ

)

μm
(
α + μh

)(
ρ + μh

) . (17)

Now let us consider βm = κβh, regardless of whether κ ∈
(0, 1) or κ ≥ 1. Taking βh as a bifurcation parameter and if
we consider the case RE = 1 and solve for βh, we obtain

βh = β∗ =
√√
√
√μm

(
μh + α

)(
μh + ρ

)

κ
(
θh
(
μh + α

)
+ ρ

) . (18)

Note that the linearized system of the transformed equation
(15) with the bifurcation point β∗ has a simple zero
eigenvalue. Hence, the Centre Manifold Theory [27] can
be used to analyze the dynamics of (15) near βh = β∗. It
can be shown that the Jacobian of (15) at βh = β∗ has a
right eigenvector associated with the zero eigenvalue given
by u = [u1,u2,u3,u4,u5]T , where

u1 = −β∗Λmμh
(
θh
(
μh + α

)
+ ρ

)

μ2
mΛh

(
μh + α

) u4,

u2 = μhΛm
(
μh + ρ

)

Λhμmκβ∗
u4,

u3 = −
(
μh + ρ + α

)
u4, u4 > 0,

u5 = ρ

μh + α
u4.

(19)

The left eigenvector of J(E 0) associated with the zero
eigenvalue at βh = β∗ is given by v = [v1, v2, v3, v4, v5]T ,
where

v1 = 0, v2 = κβ∗Λh

μhΛm
v4 > 0,

v3 = 0, v4 > 0, v5 = κβ∗2

μm
(
μh + α

)v4 > 0.

(20)

2.2.1. Computation of Bifurcation Parameters a and b. The
sign of b is associated with the following nonvanishing partial
derivatives of F

∂2 f2
∂β∗∂x4

= Λmμhθh
μmΛh

,
∂2 f2

∂β∗∂x5
= Λmμh

μmΛh
,

∂2 f4
∂β∗∂x2

= κΛhμm
μhΛm

.

(21)

Thus, it follows from (19), (20), and (21) that

b =
5∑

i, j=1

viuj
∂2 fi

∂β∗∂xj

=
(
κβ∗

(
θh
(
μh + α

)
+ ρ

)

μm
(
μh + α

) +
μh + ρ

β∗

)

u4v4 > 0.

(22)

For system (15), the associated nonzero partial derivatives of
F: at the disease-free equilibrium associated with a are given
by

∂2 f2
∂x1∂x4

= ∂2 f2
∂x4∂x1

= β∗θhμh
Λh

,

∂2 f2
∂x1∂x5

= ∂2 f2
∂x5∂x1

= β∗μh
Λh

,

∂2 f2
∂x3∂x4

= ∂2 f2
∂x4∂x3

= −β∗θhμ2
hΛm

Λ2
hμm

,

∂2 f2
∂x3∂x5

= ∂2 f2
∂x5∂x3

= −β∗μ2
hΛm

Λ2
hμm

,

∂2 f2
∂x2

4
= −2β∗θhμ2

hΛm

Λ2
hμm

,

∂2 f2
∂x4∂x5

= ∂2 f2
∂x5∂x4

= −β∗(θh + 1)μ2
hΛm

Λ2
hμm

,

∂2 f2
∂x2

5
= −2β∗μ2

hΛm

Λ2
hμm

,

∂2 f4
∂x1∂x2

= ∂2 f4
∂x2∂x1

= −κβ∗μ2
mΛh

Λ2
mμh

,

∂2 f4
∂x2

2
= −2κβ∗μ2

mΛh

Λ2
mμh

,

∂2 f4
∂x2∂x3

= ∂2 f4
∂x3∂x2

= κβ∗μm
Λm

,

∂2 f4
∂x2∂x4

= ∂2 f4
∂x4∂x2

= −κβ∗μm
Λm

,

∂2 f5
∂x2∂x4

= ∂2 f5
∂x4∂x2

= κβ∗μm
Λm

.

(23)

It follows from (19), (20), and (23) that
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a =
5∑

i, j,k=1

viujuk
∂2 fi

∂xj∂xk

= κβ∗2μmγ1
[
γ4
(
μhγ2 + κβ∗γ3

)
+μmμhκβ∗γ2

]−[μ2
mγ

2
1μhγ2

(
κβ∗

(
1 + γ3

)
+γ2

)
+κ2β∗2γ4

(
μmγ3 + β∗2μhγ4

)]

κβ∗Λhγ
2
1μ2

m

u2
4v4,

(24)

with γ1 = μh + α, γ2 = μh + ρ, γ3 = μh + α + ρ, γ4 =
θh(μh+α)+ρ. It follows that a > or < 0 if κβ∗2μmγ1[γ4(μhγ2 +
κβ∗γ3) + μmμhκβ∗γ2] > or < [μ2

mγ
2
1μhγ2(κβ∗(1 + γ3) + γ2) +

κ2β∗2γ4(μmγ3 + β∗2μhγ4)].
Thus, b > 0 and a > 0 or a < 0 depending on

whether κβ∗2μmγ1[γ4(μhγ2 + κβ∗γ3) + μmμhκβ∗γ2] is greater
or smaller than [μ2

mγ
2
1μhγ2(κβ∗(1+γ3)+γ2)+κ2β∗2γ4(μmγ3 +

β∗2μhγ4)]. This sign of b may be expected in general
for epidemic models because, in essence, using β∗ as a
bifurcation parameter often ensures b > 0. Using Theorem
4.1 [28] items (i) and (iv), we establish Theorem 3.

Theorem 3. If κβ∗2μmγ1[γ4(μhγ2 + κβ∗γ3) + μmμhκβ∗γ2] >
[μ2

mγ
2
1μhγ2(κβ∗(1 +γ3) +γ2) +κ2β∗2γ4(μmγ3 +β∗2μhγ4)], a >

0, then model system (5) undergoes a backward bifurcation at
RE = 1, otherwise a < 0 and a unique endemic equilibrium
E∗ guaranteed by Theorem 4.1 [28] is locally asymptotically
stable for RE > 1, but close to 1.

The phenomenon of backward bifurcation in disease
models, where a stable endemic equilibrium coexists with
a stable disease-free equilibrium when the associated repro-
duction number is less than unity, has important impli-
cations for disease control [29]. In such a case, having
the reproduction number being less than unity becomes
only a necessary but are not sufficient condition for disease
elimination. Backward bifurcation in this case is caused by
reinfection of the exposed individuals. In the absence of
reinfection model system (7.3) will have a unique endemic
equilibrium which exists whenever RE > 1(a < 0). Thus,
for a < 0, the model exhibits a forward bifurcation. The
bifurcations which occur for different signs of a are shown
in Figure 2 using parameters values in Table 1.

3. Numerical Simulations

In this section, we make use of Matlab to analyse the effect
of varying initial infected mosquito population, for different
reproduction numbers of model system (5) using model
parameters in Table 1.

Figure 3 shows that whenever the reproduction number
is greater than unity, then all the populations (mosquito and
human) converge to their corresponding respective endemic
equilibrium point regardless of the size of initial mosquito
population size.

In Figure 4, the effect of varying infected mosquito
population size when all human individuals displaying signs
and symptoms of elephantiasis are put on treatment is
illustrated. It shows that even when the reproduction number

is less than unity the individuals displaying elephantiasis
symptoms will not disappear in the population. This result
suggests that effective control of elephantiasis may lie in
treatment of both humans in the exposed and infectious
classes. Reinfection of the people in the exposed class makes
it difficult to eliminate lymphatic filariasis through treatment
of the infectives alone.

3.1. Sensitivity Analysis. In order to investigate the effects
of variations in RE to its constituent parameters, we used
Latin Hypercube Sampling and Partial Rank Correlation
Coefficients (PRCCs) with 1000 simulations per run. Latin
Hypercube Sampling is a statistical sampling method that
allows for an efficient analysis of parameter variations across
simultaneous uncertainty ranges in each parameter [30].
PRCCs illustrate the degree of the effect that each parameter
has on the outcome.

Figure 5 illustrates the PRCCs using RE as an output
variable. The parameter with the greatest effect on the
outcome is the death rate of mosquitoes suggesting that
mechanisms which increase death rate of mosquitoes will
have a positive impact on lymphatic filariasis control.
Surprisingly, the rate of progressing from the exposed class to
the infectious class decreases RE more than treatment. This
result turns to suggest that treatment of people displaying
symptoms of elephantiasis symptoms alone is not enough to
keep the disease under control.

Figure 6 illustrates the effect that varying six sample
parameters will have on RE. If the mosquito death rates are
sufficiently high, then the disease prevalence can be reduced
(RE → 1), but not sufficiently enough to control it (RE <
1). Similarly, high treatment levels result in RE → 1 but are
not sufficient enough to have RE < 1 necessary for disease
control. Increases in the average number of mosquito bites
(βm,βh) increase RE suggesting an increase in lymphatic
filariasis cases. This further suggests that other mechanisms
which reduce mosquito bites like spraying, use of mosquito
nets, and wearing clothes which cover much of the body may
be necessary to control lymphatic filariasis.

4. Discussion

A mathematical model for the transmission dynamics of
lymphatic filariasis with treatment for those displaying
elephantiasis symptoms is presented as a system of dif-
ferential equations. The reproduction number and the
equilibria are computed and analysed. The model is shown
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Figure 6: Monte Carlo simulations of 1000 sample values for six illustrative parameters (βh,βm, ρ,α, and θh) chosen via Latin Hypercube
Sampling.

to exhibit backward bifurcation, where a stable disease-
free equilibrium coexists with a stable endemic equilib-
rium when the reproduction number is less than unity.
The presence of backward bifurcation makes the classical
requirement of having the reproduction number less than
unity necessary but insufficient to control the epidemic.
Analysis of the reproduction number suggests that treatment
of elephantiasis cases has some impact on reducing the
spread of lymphatic filariasis infections. However, sensitivity
analysis (Monte Carlo simulations) tends to give a better
picture about the relationship between the reproduction
number and the treatment factor, as they show that the
treatment factor reduces the reproduction number but
not to levels necessary for disease elimination. This result
suggests that effective lymphatic filariasis control requires
strategies beyond elephantiasis treatment only. The model
presented is not exhaustive; it can be extended to incorporate
chemoprophylaxis for the exposed. Given that lymphatic
filariasis and malaria are both mosquito-borne infections,
a coinfection model of the two would be another worth
extension.
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