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A numerical finite difference method is developed here to solve the diffusion equation for hydrogen in presence of trapping sites.
A feature of our software is that an optimization of diffusion and trapping parameters is achieved via a non linear least squares
fit. On the other hand, we have demonstrated that usual electrochemical hydrogen permeation tests are enough to assess hydrogen
free energies of trapping in the range of −35 kJ/mol to −70 kJ/mol. These conclusions are obtained by assuming the presence of
saturable traps in local equilibrium with hydrogen and are validated by means of simulated permeation and degassing transients.
In addition, we check our model performing electrochemical hydrogen permeation tests at 30◦C, 50◦C, and 70◦C, on an API 5L
X60 as received steel state to study its trapping and diffusion properties considering only one type of trapping site. The binding
energies (ΔG) and the trap densities (N) are determined by fitting the theoretical model to the experimental permeation data. The
steel presents a high density of weak traps, |ΔG| < 35 KJ/mol, namely, N = 1.4× 10−5 mol cm−3. Strong trapping sites which alter
the shape of the permeation transient are also detected; their ΔG values ranged from 57 to 72 KJ/mol.

1. Introduction

In the literature it is possible to find different approaches to
fit simulated hydrogen permeation transients to experimen-
tal ones, generally based on the model of McNabb and Foster
[1]. Nowadays, this formulation is the most accepted model
of hydrogen permeation in presence of one type of traps,
with kinetic trapping and detrapping parameters k and p,
respectively. The traps are saturable, that is, each trap is a site
which allows only one hydrogen atom. Thus, only two states
are conceivable for such trap: empty or occupied. The inter-
action between different trapped hydrogen atoms is assumed
negligible. Reference [1] supplies analytical expressions for
the time lag as a function of k, p and the diffusion coefficient
D. However, no analytical expressions for the permeation
transient (hydrogen flux at the exit side of the permeation
membrane as a function of time) are given, since the
presented coupled differential equations are not solved. The
McNabb and Foster equations are solved numerically (finite

difference method) by Caskey and Pillinger [2] and later
by Thomas and Stern [3]. Simulated permeation transients
are obtained for different sets of parameters D, k, p, and
Nx, where Nx is the trap population measured either in
sites per unit volume or in moles per unit volume. These
authors [2, 3] do not compare simulated transients with
experimental ones. One attempt to fit simulated permeation
transients to experimental data is that of Johnson and Lin [4],
which assumes the simplification of local equilibrium theory
proposed in 1970 by Oriani [5]. The experimental data
correspond to hydrogen permeation through cold rolled iron
with gas phase charging and electrochemical detection, and
the discussion is centered on whether the traps are saturable
or not. A subsequent remarkable work on fitting of simulated
transients to experimental data is performed by Ferris and
Turnbull [6]. They have studied the hydrogen permeation
through a 430 martensitic stainless steel. An additional
feature to the McNabb and Foster formulation is introduced,
that is, the presence of irreversible traps is also considered.
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They have calculated the kinetic parameters of trapping
and detrapping. However, the value of these parameters has
not been validated yet through independent measurements.
Following the formulation and methods of Ferris and
Turnbull, Ramunni et al. obtained trapping parameters for
a steel with different microstructures, where the cementite
morphology is changed through selected thermal treatments
[7]. Although they are able to simulate permeation transients
covering the whole possibilities of the McNabb and Foster
formulations, they restricted themselves to the case of local
equilibrium, by setting the kinetic parameters high enough
to guarantee a fast hydrogen exchange between traps and
normal lattice sites. Concerning to the nature of the trapping
sites in a steel and their free energy of trapping, it has
been repeatedly pointed out that different values of trapping
energy are expected. Dislocations can trap hydrogen with
different binding energies depending on whether hydrogen is
located at the dislocation core or in the stress field around a
dislocation, whether edge or screw dislocations are involved,
and so forth. Coherent precipitates like TiC can trap
hydrogen in the distorted ferrite lattice around the precipitate
with different trap energies [8]. In fact, it has been suggested
that a full distribution of hydrogen trapping energies may
exist, and this seems to be supported by the results of thermal
desorption spectrometry [7], which is a very useful technique
to assess hydrogen trapping energies. Briefly, through a
numerical finite difference method, we want to solve the
McNabb and Foster [1] differential equations in the case of
unidirectional hydrogen flux:

∂

∂t

⎛
⎝c +

Q∑

i=1

Niθi

⎞
⎠ = DL

∂2c

∂x2
, (1)

∂θi
∂t
= kc − pθi; 1 ≤ i ≤ Q, (2)

where x is the spatial coordinate along the diffusion direc-
tion, c [mol/cm3] is the lattice hydrogen concentration, Ni
the density of high energy i type sites [mol/cm3] (Q dif-
ferent types are assumed), i the fraction of occupied
i traps, DL [cm2/s] the lattice diffusion coefficient, k
[s−1 cm3 mol−1] and p [s−1] are, respectively, the trapping
and detrapping kinetic constants. Section 2 succinctly dis-
cusses the assumptions used to solve the diffusion equa-
tions, in particular the assumption of local equilibrium.
In Section 3 we show that a single permeation transient is
enough to describe trapping sites. Sections 4 and 5 describe
the numerical method developed here to solve (1) and (2)
and present a theoretical discussion in which we establish
the range of trap energies which can be determined trough
a single permeation transient. Then, we present simulated
hydrogen permeation transients to support this conclusion.
Section 6 presents the fitting of the present model with just
one type of trap (Q = 1) to experimental permeation and
degassing tests on an API 5L X60 steel as an example of
application. We calculate the density of trapping sites and
the hydrogen binding energy of H with traps. In Section 7 we
check our software with another more general to solve the
McNabb and Foster equations [7]. Finally, a brief conclusion

to summarize the relevant points of the present work is
presented.

2. Theoretical Model and Assumptions

The existence of saturable traps and the hypothesis of local
equilibrium are assumed in the present work. According to
the latter, the exchange of hydrogen between lattice sites
and neighbor trap sites in iron or iron alloys is fast enough
to achieve dynamic equilibrium for the trapping (3) and
detrapping (4) reactions:

H− L + Xi −→ H− Xi + L; rT ,i = kic(1− θi), (3)

H + L− Xi −→ H + Xi − L; rD,i = piθiNL(1− θL), (4)

L is a normal lattice site (tetrahedral interstice in bcc iron)
with site density NL = 0.85 mol cm−3, Xi is a trap site of type
i, rT ,i, and rD,i are the individual trapping and detrapping
rates of hydrogen in a type i trap in [s−1], ki [s−1 cm3 mol−1]
and pi [s−1] are, respectively, the trapping and detrapping
kinetic constants, c [mol/cm3] is the lattice concentration of
hydrogen, θi is the fraction of type i traps which are bonded
to hydrogen (or trap occupancy), (1 − θi) is the fraction of
empty traps of type i, θL is the fraction of normal lattice
sites which are occupied by hydrogen and (1 − θL) is the
fraction of empty normal lattice sites. If dynamic equilibrium
is achieved, the trapping and detrapping rates become equal:
rT ,i = rD,i. Then, using (3), (4), Ki = ki/pi and assuming that
θL � 1, it results:

Ki = θi
c(1− θi)

, (5)

here Ki is the equilibrium constant for the trapping reaction,
related to the standard free energy of trapping ΔGi by the
equation:

ΔGi = −RT lnKi, (6)

T is the absolute temperature and R is the universal
constant gases. The reference states implicitly assumed in
this definition are: for hydrogen in the lattice, dilute solution
with c = 1 mol/cm3; for trapped hydrogen, traps with θi =
0.5. Under the assumption of local equilibrium, the trap
occupancy can be expressed using (5) as a function of the
lattice concentration c. Then the coupled Q + 1 differential
equations (1) and (2) can be reduced to a single differential
one:

∂

∂t

⎛
⎝c +

R∑

i=1

Ni
Kic

1 + Kic

⎞
⎠ = DL

∂2c

∂x2
. (7)

Equation (7) shows that, if local equilibrium is achieved, the
local fraction of filled traps or trap occupancy θi depends
on both, the lattice hydrogen concentration c and the free
energy of trapping ΔGi. The former is limited by the charging
conditions at the entry side of the permeation membrane.
For example, for gas phase charging in which equilibrium is
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achieved between gaseous hydrogen and absorbed hydrogen
at the entry surface, Sievert’s law holds:

c0 = S
√
pH2 , (8)

where c0 is the lattice concentration of hydrogen just beneath
the input surface (i.e., the maximum concentration of
hydrogen throughout the permeation membrane), S is the
Sievert constant, and pH2 is the partial pressure of hydrogen
in the charging chamber. The Sievert constant is usually
considered to depend on temperature according to:

S = S0 exp
(−ES
RT

)
, (9)

here S0 and ES are constants. Then, if the charging conditions
are fixed, the value of the trap occupancy at the input
surface θi,0 (i.e., the maximum value of θi throughout the
membrane) depends only on ΔGi.

3. Characterization of Traps through
a Single Permeation Transient

We discuss the range of ΔGi values that can be assessed
through a single hydrogen permeation experiment. We
assume that only one type of trap is present (Q = 1) and
for simplicity the index i (trap type) is not specified. Then
the trap occupancy is θ, the trap density N , the free energy
of trapping ΔG and the trapping equilibrium constant is
K = exp(−ΔG/RT). It is also assumed that hydrogen is
introduced via gas phase charging with pH2 = 1 bar and
local equilibrium is achieved. If θ is negligible against unity,
(5) shows that θ is proportional to c. The balance of
diffusing hydrogen in a volume element leads to a differential
equation similar to the second Fick’s law, where the lattice
diffusion coefficient DL is replaced by an apparent diffusion
coefficient Dapp. As pointed out by Oriani and assuming local
equilibrium and θ� 1 [5]:

Dapp = DL

1 + KN
, (10)

being N the trap density [mol/cm3]. Equation (7) can
be solved analytically to yield the well known solution of
hydrogen flux JH as a function of time:

JH = JH,ss

⎡
⎣1 + 2

∞∑

n=1

exp
(
−n2π2 Dt

L2

)⎤
⎦, (11)

here JH,ss = c0DL/L is the hydrogen flux at the steady state,
c0 is the lattice hydrogen concentration close to the input
surface, L is the thickness of the permeation membrane and
D is a diffusion coefficient. For the material without traps,
D is set as the lattice diffusion coefficient DL. Assuming a
density of N traps in the material with trapping equilibrium
constant K , D is set as Dapp, according to (10) as long as
θ � 1. Equation (10) shows that different combinations
of K and N yield to the same value of Dapp, and the
expected permeation transient is the same for each of such
combinations. Then, if the trap occupancy is negligible

against unity a permeation transient at a single temperature
is not able to assess the free energy trapping value. Let θmin be
the upper limit of the trap occupancy value negligible against
unity, from (10) the critical value of the equilibrium constant
Kmin is given by:

Kmin = θmin

c(1− θmin)
. (12)

To ensure that the condition θ � 1 is achieved throughout
the membrane, the critical location is the input surface. The
lattice concentration at the input surface c0 is fixed by the
charging conditions as mentioned above. Then

Kmin = θmin

c0(1− θmin)
, (13)

|ΔGmin| = RT lnKmin. (14)

With the above equations the minimum free energy of
trapping can be determined in a permeation experiment at
temperature T . The value of c0 needed for the calculation
of ΔGmin depends on the hydrogen charging conditions.
For gas phase charging, this value is obtained through (8)
and (9). The constants ES and S0 in (9) are obtained by
combining hydrogen diffusion and permeation data from the
literature [9, 10]: S0 = 5.02 × 104 mol H cm−3 bar−1/2 and
ES = 30.17 kJ/mol. The Sievert’s constant S is introduced in
(8) together with pH2 to obtain c0. If the absolute value of the
free energy trapping is high (deep traps), the traps tend to
saturate with hydrogen and θ ∼ 1. In this case, a diffusion
front develops. This diffusion front moves forward only
when practically all traps behind it are filled. Then, when the
absolute value of ΔG is higher than a certain critical value
ΔGmax, the permeation transient for a given thickness, the
lattice diffusion, and charging conditions will depend only
on the density of traps and not on the free energy of trapping.
The value of ΔGmax can be calculated in a similar way as
ΔGmin, by setting in this case a critical value of θ (θmax) close
to unity. Then θmax is the minimum value of θ which allows
the determination of ΔG via a single permeation transient at
a given temperature. Using a similar procedure but replacing
θmin by θmax the value of Kmax and ΔGmax is calculated.

The critical absolute values of the free energy of trap-
ping which can be assessed through a single permeation
experiment ΔGmin and ΔGmax are calculated with equations
(8), (9), (12), and (14) as a function of temperature.
The chosen critical values of θmin and θmax are 0.002 and
0.998, respectively. The hydrogen partial pressure is set as
pH2 = 1 bar. The results of these calculations are shown in
Table 1. For the usual available temperatures in a permeation
experiment with electrochemical detection, |ΔGmin| is from
ca. 33 to ca. 34 kJ/mol and changes slightly with temperature.
On the other hand |ΔGmax| increases moderately with
temperature from 63 kJ/mol to 72 kJ/mol showing that
higher temperatures are best suited to determine high values
of ΔG. These limiting values ΔGmin and ΔGmax will change
according to the charging conditions. Charging conditions
which lead to higher values of c0 (i.e., electrochemical
charging, use of recombination poisons for hydrogen) cause
a decrease of both ΔGmin and ΔGmax.
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Table 1: Minimal and maximal absolute values of the free energy of trapping ΔG.

Temperature C0 Kmin |ΔGmin| Kmax |ΔGmax|
◦C 10−9 mol H cm3 (mol H)−1 cm3 KJ/mol (mol H)−1 cm3 KJ/mol

10 1.36 1.47× 10−6 33.4 3.66× 10−11 62.7

30 3.18 6.30× 10−5 33.7 1.57× 10−11 65.0

50 6.67 3.01× 10−5 33.9 7.48× 10−10 67.3

70 12.83 1.56× 10−5 34.1 3.89× 10−10 69.6

90 22.97 8.73× 10−4 34.4 2.17× 10−10 71.9

4. Theoretical Model

The present computer simulation of the hydrogen perme-
ation transients is based on the model of McNabb and Foster
[1] of saturable hydrogen traps with simple kinetic laws for
trapping and detrapping. Here, McNabb and Foster notation
is partly changed. Assuming only one type of trap and
unidirectional diffusion, the differential equation to solve is

∂CL

∂t
+ kTcL(1− θ)N − pθN = DL

∂2cL
∂x2

, (15)

where cL is the lattice H concentration, that is, the concen-
tration of H in normal interstitial lattice sites (NILS), t is
time, DL is the lattice diffusion coefficient, x is the spatial
coordinate, N is the trap density, θ is the fraction of occupied
traps, and kT and ρ are the trapping and detrapping kinetic
constants, respectively. Equation (15) can be rewritten in
terms of dimensionless variables:

X = x

L
; u = cL

CL0
; ω = Nθ

cL0
, (16)

where L and cL0 are, respectively, a characteristic dimension
and a characteristic lattice H concentration of the system.
For the present case of H permeation through a metallic
membrane, L is the membrane thickness and cL0 is the
lattice H concentration beneath the entry surface of the
permeation membrane:

∂u

∂τ
+
NL2

DL
kTu− L2p

DL
ω − cL0L2kT

DL
uω = ∂2u

∂X2
, (17)

or by defining the constants λ, μ, and ν:

∂u

∂τ
+ λu− μω − νuω = ∂2u

∂X2
, λ = NL2kT

DL
,

μ = L2p

DL
, ν = cL0L2kT

DL
.

(18)

The hypothesis of local equilibrium proposed by Oriani [5]
is assumed here. This hypothesis implies that the detrapping
time constant (1/ρ) is much lower than the diffusion time
constant (L2/DL). As reported in the next paragraphs, in the
present work it has been empirically found that the choice
of 1/λ ≤ 0.001L2DL (i.e., μ ≥ 1000) usually guarantees local
equilibrium. With the assumption of local equilibrium, the
fraction of occupied tramps (θ) is a function only of the
lattice hydrogen concentration (cL):

θ = KcL
1 + KcL

; K = kT
ρ

, (19)

where K is the equilibrium constant of the trapping reaction.
The resulting differential equation is

∂CL

∂t
+ N

∂

∂t

(
KcL

1 + KcL

)
= DL

∂2cL
∂x2

. (20)

If KcL � 1 (weak traps, defined as those with θ � 1), then
(22) is simplified and can be analytically solved. The solution
for the H flux JH [mol H/(cm2 s)] of the permeation buildup
transient is

JH =
DappC0

L

⎛
⎝1 + 2

∞∑

n=1

(−1)n exp
[
−n2π2 Dappt

L2

]⎞
⎠, (21)

where c denotes the H concentration located either in NILS
or in weak trap sites as defined in (22); c0 specifies the
concentration c at a location just beneath the input surface
of the permeation membrane. Dapp is the apparent diffusion
coefficient which is also defined in (22):

c = CL + cW = cL(1 + KWNW ); Dapp = DL

1 + KWNW
.

(22)

The subindex W in (22) is used to denote “weak” traps.
According to Oriani [5], c = cL(1 + KWNW ). Particularly at
the entry surface c0 = cL0(1 + KWNW ). Equation (21) shows
that the weak traps do not cause a distortion in the shape of
the permeation transient but just a change in the time scale
with respect to a trap free material withDapp = DL. It is worth
noting that, according to (22), different combinations of
KWNW would yield the same value of Dapp and consequently
would produce indistinguishable permeation transients, as
mentione in Section 3. This means that a single permeation
transient does not allow assessing individual values of weak
trap density and weak trap energy. The present treatment is
developed in such way that the effect of the weak traps is
only reflected in the value of Dapp. In the presence of strong
traps (θ not negligible against unity), (20) has no analytical
solution but must be solved by a numerical method. Before
dealing with the numerical method itself, (20) is modified by
taking into account that, according to (21), the ensemble of
lattice and weak traps behaves as a simple diffusion system.
Then, (20) is rewritten in terms of Dapp, c, the density
of strong traps (NS) and the equilibrium constant for the
trapping reaction of the strong traps KS:

∂c

∂t
+ Ns

∂

∂t

(
KscL

1 + KscL

)
= Dapp

∂2c

∂x2
. (23)
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In the above equation the effect of the weak trap density
and energy is implicitly reflected in the value of Dapp. Then,
the only traps to be considered explicitly are the strong
traps. Equation (23) expresses the central idea of the present
method, which is the use of Dapp instead of DL. and concen-
trates on the strong traps which are the ones that change the
shape of the permeation transient. Now, according to (22),
the lattice concentration cL is expressed in terms of c:

∂c

∂t
+ Ns

∂

∂t

(
K ′c

1 + K ′c

)
= Dapp

∂2c

∂x2
, (24)

where

K ′ = Ks

1 + KWNW
. (25)

The constant K ′ in (24) is related to KS by (25). Ks is the
true equilibrium constant which uses the lattice hydrogen
concentration as the reference state. The numerical methods
to solve the McNabb and Foster’s equations presented pre-
viously (Thomas and Stern [3], Johnson and Lin [4], Ferris
and Turnbull [6], Ramunni et al. [7]) use the lattice diffusion
coefficient DL. The present approach uses, instead of DL, an
apparent diffusion coefficient Dapp which contains the effect
of the weak traps.

The advantages of this method are as follows.

(i) The focus is on the strong traps, about which the
shape of the permeation transient contains valuable
information.

(ii) Dapp may be orders of magnitude lower than DL;
therefore, the calculation speed is improved since the
time steps are inversely proportional to the diffusion
coefficient as it is shown below.

5. Numerical Method

To solve the differential equation (24) a finite difference
method is used. The permeation membrane is divided in
m slices or volume elements of thickness L/m. Each volume
element is identified by an index j (1 ≤ j ≤ m). The extreme
values j = 1 and j = m correspond to volume elements
adjacent to the entry and exit side of the permeation
membrane, respectively. The diffusion path is L/m between
adjacent slices and L/2m for the entry and exit interfaces. The
diffusion into the volume element is described by the right
hand member of (24). The overall H concentration (cT) is
defined as the sum of lattice, weakly trapped and strongly
trapped hydrogen concentrations: cT = cL + cW + cS = c + cS.
The numerical calculation proceeds from an initial condition
in a succession of cycles. Each cycle is composed of two steps.
The first step of the method is to calculate ΔcT j which is
defined as the increase of the overall H concentration in each
volume element ( j) by diffusion during a time interval (Δt).
ΔcT j , is calculated via the right hand member of (24), where
the second order partial derivatives are approximated by

finite increments, taking into account the different diffusion
paths:

ΔcT j = Dapp
∂2c

∂x2
Δt,

∂2c

∂x2

 2c0 + c2 − 3c1

(L/m)2 Δt,
(
j = 1

)
,

∂2c

∂x2

 cj−1 + cj+1 − cj

(L/m)2 Δt,
(
1 < j < m

)
,

∂2c

∂x2

 2cm+1 + cm−1 − 3cm

(L/m)2 Δt,
(
j = m

)
.

(26)

The second step is to achieve simultaneously the mass con-
servation and local equilibrium condition within each vol-
ume element. For only one type of strong traps, the following
quadratic equation must be solved for cnew:

cold +
NSK ′cold

1 + K ′cold
+ ΔcT = cnew +

NSK ′cnew

1 + K ′cnew
, (27)

where the subindexes “old” and “new” refer to the values of
c before and after the time interval Δt has elapsed. Once cnew

is calculated for each volume element, the H flux at the exit
side of the permeation membrane JH is calculated with Fick’s
law:

JH = −Dapp
∂c

∂x
(x = L) 
 Dapp

(
cj − cj+1

L/2m

)
. (28)

A usual technique to detect H at the exit side of the
permeation membrane is the electrochemical method. In this
method, the measured hydrogen current density iH is related
to JH by the Faraday’s constant F:

iH = JH
F

, (29)

provided that H concentration is expressed as mol H per
unit volume. After carrying out the former procedures,
the time is increased in Δt and the cycle is repeated from
the first step. The successive values of iH as a function of
time constitute the “calculated” or “simulated” permeation
transient. The time interval Δt is chosen sufficiently low in
order to keep the system stable. For this kind of diffusion
systems Δt is usually given by

Δt = L2

Dappm2
r, (30)

where r is the so-called mesh ratio [3]. For the present
system, r ≤ 0.2 guarantees numerical stability. Taking into
account (30), (27) can be rewritten as:

ΔcT j 
 r(2c0 + c2 − 3c1),
(
j = 1

)
,

ΔcT j 
 r
(
cj−1 + cj+1 − cj

)
,

(
1 < j < m

)
,

ΔcT j 
 r(2cm+1 + cm−1 − 3cm),
(
j = m

)
.

(31)

The method described above considers only one type of
strong traps. However, it can be easily generalized to many
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types of traps with densities NS1,NS2, . . . and equilibrium
constants KS1,KS2, . . . by rewriting (27):

cold +
NS1K

′
1cold

1 + K ′1cold
+
NS2K

′
2cold

1 + K ′1cold
+ · · · + ΔcT

= cnew +
NS1K

′
1cnew

1 + K ′1cnew
+
NS2K

′
2cnew

1 + K ′2cnew
+ · · · .

(32)

In this case, (32) has no analytical solution and cnew is
obtained by a numerical method such as the Newton-
Raphson method. For the present calculations, the values
adopted for the mesh ratio and the number of volume
elements are r = 0.2 and m = 40, respectively. The choice
of m = 40 guarantees sufficient accuracy of the numerical
solution.

5.1. The Free Energy of Trapping. The free energy of trapping
ΔG can be obtained from the thermodynamical relation:

ΔG0 = −RT lnK , (33)

where R is the universal gas constant and T is the absolute
temperature. ΔG0 is the standard change of free energy for
the trapping reaction. The reference state for hydrogen as
solute in NILS is of the Henry’s type (ideal dilute solution)
with cL = 1 mol cm−3. The reference state for trapped hydro-
gen corresponds to a trap occupancy θ = 0.5. In the rest
of the present article, ΔG and “free energy of trapping” are
used instead of ΔG0 and “standard change of free energy
for the trapping reaction” for the sake of simplicity. Activity
coefficients are assumed to be unity throughout this paper.
For the case of the strong traps, it is useful to express their free
energy of trapping ΔGS as a function of the parameters K ′

and Dapp used for the calculation of the permeation transient
as described above. This is accomplished by combining (22),
(25) and (33):

ΔGS = ΔG′ − RT ln

(
DL

Dapp

)
; ΔG′ − RT lnK ′. (34)

In fact, ΔG′ is the parameter handled by the software. In
order to obtain ΔGS, ΔG′ must be corrected according to
(34).

5.2. Rising and Degassing Transients. The present method
is able to calculate either rising and degassing permeation
transients. This is achieved by choosing the appropriate
initial and boundary conditions. For the rising transient the
initial condition is cj = 0 for 1 < j < m and the boundary
conditions are cj = c0 for j = 0 and cj = 0 for j = m+ 1. For
the degassing transient the initial condition is cj = c0(mj +
1/2) for 1 ≤ j ≤ m and the boundary conditions are cj = 0
for j = 0 and cj = 0 for j = m + 1. The concept of weak
and strong traps has been defined only qualitatively in the
former paragraphs, and a quantitative criterion to establish
whether a trap is weak or strong has been investigated.
For iron base alloys, it is expected that this criterion is
essentially the value of the free energy of trapping ΔG, but
also the temperature and the input hydrogen activity can
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Figure 1: Effect of the free energy of trapping ΔG in the hydrogen
permeation transients calculated by a finite difference method.
Empty symbol: trap free lattice (N = 0, (21) with D = DL). Filled
symbols: lattice with traps (N = 10−6 mol cm−3) with different
values of ΔG.

play a secondary role. In the present work the effect of |ΔG|
has been investigated. The input hydrogen activity assumed
here is that of typical gas phase charging experiments
(hydrogen partial pressure = 0.1 MPa), and the temperature
is that of typical electrochemical permeation experiments
(303 K). The parameter iHss is obtained from the permeation
coefficient of iron [9]. The assumed diffusion coefficient is
10−5 cm2 s−1, typical of a trap free material [9]. For a first
series of runs ΔG is varied from 20 to 50 kJ/mol. The value
of K is obtained with (33), and the value of N is chosen in
order to keep the value of K × N fixed, that is, K × N = 20.
Figure 1 shows the results of a first series of calculated rising
permeation transients. The calculated hydrogen permeation
flux JH has been converted to its equivalent current density
iH = F×JH, where F = 96485 A s/mol is the Faraday constant
(electrochemical detection method). The parameters are
chosen as those typical of a permeation experiment on a
low alloy steel under gas phase charging: L = 004 cm; DL =
10−5 cm2 s−1; trap density N = 10−6 mol/cm3; steady state
hydrogen permeation current iH,ss = 5 × 10−8 A/cm2 and
temperature 30◦C. The free energy of trapping ΔG is changed
from −20 to −70 kJ/mol. Figure 1 also shows the diffusion
transient for a material free of traps (N = 0), which is
calculated by using the analytical solution of the Fick’s law
(11) and the lattice diffusion coefficient DL. The transients
that correspond to low values of |ΔG| from 20 to 40 kJ/mol,
present the same shape and slope when the time scale is
logarithmic. The effect of increasing |ΔG| is the displacement
of the transient to the right. This is in agreement with
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Oriani local equilibrium theory for low trap occupancy,
Fick’s equation can be solved by replacing the lattice diffusion
coefficient DL by an apparent diffusion coefficient Dapp (10).
Then, as long as the trap occupancy is low, the effect of the
traps is just to cause a delay in the permeation transient
through an increase of the time by the factor 1 + KN , which
is seen as a shift along the logarithmic time scale of the
Figure 1. As |ΔG| increases beyond 40 kJ/mol the slope of
the permeation transient (logarithmic time scale) increases.
For trapping energies equal or higher than 70 kJ/mol the
rise in the permeation flux is abrupt. |ΔG| values higher
than 70 kJ/mol yield permeation transients which can not
be visually distinguished in Figure 2. This is in qualitative
agreement with the prediction of ΔGmax in Table 1. The latter
situation corresponds to the lattice diffusion of hydrogen in
the presence of irreversible traps. The hydrogen front moves
across the membrane thickness in a quasi-steady state process
according to a parabolic law:

t(x) = Nx2

2DLc0
, (35)

where x is the distance advanced by the diffusion front,
measured from the input side of the permeation membrane.
At the breakthrough time tb the diffusion front reaches the
exit surface (x = L), then:

tb = NLF

2iH,ss
, (36)

where iH,ss = (DLc0/L)F is the steady state hydrogen per-
meation current density. For the present set of parameters,
tb calculated from (36) is 3.86 × 105 s, in agreement with
Figure 1. The expected permeation behavior for low values
of |ΔG| in the range 30 < |ΔG|/kJ mol−1 < 50 is showed
with more detail in Figure 2, by setting appropriate values
of the parameters. The equilibrium constant K is calculated
with (5) and the trap density N is chosen to keep the product
K × N constant. Figure 2 shows (a) the analytical solution
of the Fick’s equation using Dapp calculated with (10)
(Fick’s transient); (b) the simulated permeation transients
with different free energies of trapping ΔG. The simulated
transients with |ΔG| < 35 kJ/mol are practically coincident
with the Fick’s transient. This sets a practical limit to the
validity of (10). The corresponding theoretical value from
Table 1 is 33.7 kJ/mol. Contrarily, the simulated transients
with |ΔG| > 35 kJ/mol are faster than the Fick’s transient
and present a different shape, that is, a steeper rise as |ΔG|
increases. This feature allows the determination of ΔG in
this range of values through a numerical fitting procedure.
The effect of ΔG on the simulated hydrogen permeation
degassing transients is also studied. The simulated degassing
transient is calculated by the finite difference method, by
changing the initial and boundary conditions of the system:
zero hydrogen concentration is imposed both on the input
and exit surfaces of the permeation membrane, and an initial
linear lattice concentration profile is set within the mem-
brane. The number of layers, membrane thickness, and other
parameters are the same as those used for the simulation
of the rising transients. Figure 3 shows the behavior of the
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Figure 2: Hydrogen permeation transients calculated by a finite
difference method to investigate the deviation from Oriani’s
equation (10). K × N = 20. Filled symbols: different calculated K
values from different free energy of trapping ΔG. Empty symbol:
analytical solution of the Fick’s law (21), with D = Dapp from (10).

degassing transients, plotted versus a logarithmic time scale,
when the trap density N is fixed, and different values of the
free energy of trapping in the range 20 < |ΔG|/kJ mol−1 <
80 are considered. For |ΔG| < 40 kJ/mol the shape of the
degassing transient is not altered with respect to the transient
calculated with (11) using the diffusion coefficient set by
(10) (Oriani’s domain). For |ΔG| ≤ 40 kJ/mol, the effect
of increasing values of |ΔG| is just to shift the degassing
transient to the right, showing that the low trap occupancy
hypothesis assumed in (10) is valid. For |ΔG| > 40 kJ/mol
initially, the transient seems to be fast, but later a stage
appears where the permeation flux decays slowly. This can be
roughly interpreted as follows. In the first fast stage, most of
the lattice hydrogen evolves; in the second slow stage the high
energy traps, most of them filled, lose hydrogen via lattice
diffusion driven by a low lattice concentration gradient.
Figure 3 shows that values of |ΔG| as high as 70 kJ/mol could
theoretically be assessed through the analysis of degassing
transients. Figure 4 shows more details on the behavior of the
degassing transients in the intermediate energy range. When
the product K × N is kept constant, the different degassing
transients agree with that calculated with (10) and (11). The
departure from this coincidence begins for |ΔG| values equal
or higher than 40 kJ/mol. These observations are similar to
those for the permeation rising transients in Figure 2.

5.3. Fitting Procedure. Besides calculating the permeation
rising or degassing transient, the developed software allows
the possibility to repeat the calculation with varied parame-
ters in order to fit the calculated transient to experimental
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Figure 3: Effect of the free energy of trapping ΔG in the hydrogen
degassing transients calculated by a finite difference method. Empty
symbol: trap free lattice (N = 0, (21) with D = DL). Filled symbols:
lattice with traps (N = 10−6 mol cm−3) with different values of ΔG.

data. The initial list of parameters (L, T , iHss , Dapp, ΔG,
K) is supplied by the user. The parameter iHss is the steady
state hydrogen current density. All parameters of this list
except L and T can be selected to vary. The software used
in the present work admits as many as two types of strong
traps. The fitting criterion is the minimization of the mean
quadratic difference between calculated and experimental
points, defined as

Deviation = 1
iHss

√√√√√ 1
nexp

nexp∑

k=1

(
iH,calc,k − iH,exp,k

)2 · 100, (37)

where nexp is the number of experimental points; iH,calc, j and
iH,exp, j are the calculated and experimental hydrogen current
density, respectively.

Summary.

(i) The present method serves to analyze experimental
hydrogen permeation rising or degassing transients
via a least squares fitting procedure.

(ii) It is based on the McNabb and Foster’s model of
saturable traps with the Oriani’s assumption of local
equilibrium.

(iii) Domains of “weak trap”, “strong trap”, and strong
trap with “diffusion front” behavior have been estab-
lished for the present experimental conditions as a
function of the free energy of trapping ΔG.

(iv) The effect of the weak traps is reflected in the value
of the apparent diffusion coefficient Dapp, which is
obtained as a fitting parameter.
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Figure 4: Hydrogen degassing transients calculated by a finite
difference method to investigate the deviation from Oriani’s
equation (10). K × N = 20. Filled symbols: different calculated K
values from different free energies of trapping ΔG. Empty symbol:
analytical solution of the Fick’s law (21), with D = Dapp from (10).

(v) Strong traps are characterized by a trap density N and
a free energy of trapping ΔG. N is directly obtained
as a fitting parameter; ΔG is obtained from the fitting
parameter ΔG′ by an equation that takes into account
the change of the reference state implied by the use
Dapp instead of DL.

(vi) In the “diffusion front” domain, N can be accurately
determined but not ΔG.

In the present work, up to one type of trap has been
characterized. However, the developed method allows to
increase that number if necessary.

6. Applications: API 5L X60 Steel,
As-Received (AR) Condition

We check our model performing electrochemical permeation
tests on an API 5L X60 steel taken from a seamless pipe
manufactured in Argentina. This steel is employed as pipes
conductors in the natural gas and petroleum industries and
are characterized by their good properties of mechanical
strength, weldability, and fracture toughness. The chemical
composition is shown in Table 2. The material is submitted
to experimental permeation tests as directly received from
manufacturer, named the as received condition (AR).

In a previous work [11] it is reported the microstructural
characterization and the study of nonmetallic inclusions
of this material in the as received (AR) condition. The
metallographic observation indicated that the API 5L X60
microstructure contains equiaxed ferrite grains and carbides
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Table 2: Chemical composition of the API 5L X60 steel (weight %).

C Mn Si Cr Mo V Cu Ni Al P S Ti Nb

0.14 1.04 0.25 0.07 0.08 0.03 0.03 0.05 0.026 0.014 0.011 0.015 0.001

mainly located in the grain boundaries, which is typical of
tempered martensite; the grain size average as 4 μm, and the
mean size of the cementite particles is ca. 0.3 μm. Analysis
of the local chemical composition by Energy Dispersive
X ray Spectroscopy microanalysis (EDAX) revealed few
nonmetallic inclusions containing varying amounts of Ca, S,
Al, and Ti. From this material a parallelepiped of ca. 3.5 mm
thickness is constructed. A disk with a thickness of 1.57 mm
and a diameter of 35 mm is used in the electrochemical
permeation tests as the permeation membrane. Prior to
the tests, both disk faces (entry and exit surface of the
permeation membrane) are ground with SiC up to #600
grit and then electropolished in a mixture of 10 HClO4 and
90 butyl cellosolve at a temperature below 5◦C under a
potential difference of 36 V. The objective of electropolishing
is to eliminate a layer of 10 μm of material from each
membrane face, which is the estimated thickness of the
deformed layer created by mechanical polishing. Then,
a palladium film about 10 nm thick is electrochemically
deposited on both membrane entry and exit surfaces.
The deposition cell is equipped with a Pd/PdH reference
electrode and a Pt counter electrode, and it is filled with
ca. 300 mL of electrolyte in aqueous solution of 0.1 M
NaOH. The electrolyte is continuously deaerated by nitrogen
bubbling. Prior to the deposition, the permeation membrane
is etched in HCl 50, rinsed with water, and immediately
subjected to cathodic polarization in the electrochemical
cell at 0.1 mA/cm2 current density. The cathodic treatment
continued until the typical potential of H2 evolution on the
steel (−0.970/mV versus normal hydrogen electrode, NHE)
is reached. The deposition is started by introducing in the
cell 7 mL of an aqueous solution of [Pd(NO2)4] Na2 which
contains 0.004 g/mL of Pd while keeping the current density
at 0.1 mA/cm2. The deposition time is around 40 minutes.
Finally. the Pd coated membrane is degassed in an oven at
110◦C during 16 hours. The H permeation tests are carried
out using gas phase charging and electrochemical detection
as showed in Figure 5.

Gas phase charging ensures a constant and reliable
chemical potential of hydrogen at the input surface [12].
The electrochemical detection technique is according to
Devanathan and Stachurski [13] in an experimental arrange-
ment similar to that outlined in [14]. This arrangement
consists of two compartments (input cell and detection cell)
separated by the steel permeation membrane which has
an exposed area of 1.9 cm2 on both their entry and exit
surfaces. Gas phase charging is achieved by circulating H2 (g)
(99.999) at = 1 bar through the input cell. The Pd film at the
entry surface allows reaching equilibrium between the gas
phase and the metal phase according to Sieverts law [12].
The detection cell includes a Pd/PdH reference electrode
and a platinum wire as counter electrode. It contained
a 0.1 M NaOH solution which is continuously deaerated
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Figure 5: Experimental permeation cell. The scheme shows
the components of the equipment. Numbers are (1). Platinum
electrode (Pt), (2). Input and output of nitrogen (N2), (3).
Reference electrode (Pd/H2), (4). Permeation membrane (sample)
(5). Hydrogen flux output (Rising transient), nor air output
(decreasing transient), (6). Hydrogen flux input (Rising transient),
nor air input (decreasing transient), (7). Electrochemical detection
cell, and 8. Generation cell.

with nitrogen. The exit surface of the metallic membrane
is polarized at +200 mV with respect to NHE. The H flux
at the exit surface is measured as its faradic equivalent
iH [A/cm2] = i − ibg, where ibg is a background current
density, mainly due to residual corrosion of the steel. The iH
values are recorded as a function of time t [s]. Permeation
buildup or degassing transients are obtained by circulating
either H2 (g) or purified air, respectively, through the input
cell. The tests are performed consecutively at 30◦C, 50◦C,
and 70◦C. At 30◦C, two successive sequences of permeation
buildup and degassing transients are performed in order
to detect the possible presence of high-energy traps. The
values of the diffusion and trapping parameters are obtained
by fitting calculated hydrogen permeation transients to the
experimental transients. Unlike the approach by Ramunni et
al. [7], the model and software employed in the present work
to calculate the permeation transients is restricted to the case
of local equilibrium. Hydrogen traps are classified according
to their free energy of trapping ΔG in weak traps with |ΔG| <
35 kJ/mol and strong traps with−70 < |ΔG| kJ mol−1 < −35.
The effect of the weak traps is reflected in the value of Dapp.
For the representation of the experimental and calculated
permeation transients, the net H current density (iH) and the
time (t) are normalized with respect the membrane thickness
(L), that is, iH × L versus t/L2. In presents calculations
it is considered that the values of N and ΔG should be
independent of the test temperature, because the traps, that
is, the nature and density of the metallurgical defects, are
not expected to change at the test temperatures (30 to
70◦C). Thus, the best set of fitting parameters is selected by
attempting a compromise between the goodness of the fit
and the physical consistency of the results. Instead of directly
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Table 3: Calculated diffusion and trapping parameters from the permeation rising transients for the API 5L X60 AR steel condition.

Rising transient

Temperature Dapp iss ΔG N Deviation
◦C cm2/s A/cm2 KJ/mol mol H/cm3 %

30 4.06× 10−6 1.28× 10−7 −56.4 1.42× 10−8 1.18

30 4.27× 10−6 1.28× 10−7 −56.3 1.45× 10−8 1.26

50 7.53× 10−6 3.13× 10−7 −60.9 4.24× 10−9 0.87

70 1.73× 10−5 6.12× 10−7 −62.4 3.08× 10−9 0.58

Table 4: Calculated diffusion and trapping parameters from the permeation degassing transients for the API 5L X60 AR steel condition.

Degassing transient

Temperature Dapp iss ΔG N Deviation
◦C cm2/s A/cm2 KJ/mol mol H/cm3 %

30 4.27× 10−6 1.28× 10−7 −56.3 1.45× 10−8 1.76

30 4.27× 10−6 1.28× 10−7 −56.3 1.45× 10−8 2.23

50 7.53× 10−6 3.13× 10−7 −60.9 4.24× 10−9 2.44

70 1.73× 10−5 6.12× 10−7 −62.4 3.08× 10−9 1.62

using the optimal set of parameters (from the point of view
of the mean quadratic deviation) for each test temperature,
these values are varied slightly in order to achieve a unique
value of trap density, independent of the test temperature. In
this way, the deviation between calculated and experimental
data increased slightly, up to 0.1 in % units.

For the as received-API 5L X60 condition we assume only
one kind of trapping site, and we demonstrate that it is
enough to achieve an excellent fit of the calculated transient
to the experimental one. This means that in (1) we consider
Q = 1 and only the term Niθi = N1θ1 appears. In Table 3,
we present the fitted parameters: D, ΔG, and N , at different
temperatures for the rising transients. Then, each set of fitted
parameters is used to simulate the permeation degassing
transients at the corresponding temperature.

At 30◦C the 2nd rising transient data is employed.
The coincidence between the simulated and experimental
degassing transients is satisfactory, as showed by the corre-
sponding error values in Table 4. Fitted transient deviation
(last column of Tables 3 and 4 is calculated as a mean
quadratic deviation, referred to the steady state flux from
(37)). In Figures 6, 7, and 8, the experimental rising
transients are represented, together with the theoretical ones
identified as fitted curve for the API 5L X60 steel, in the AR
state at 30◦C, 50◦C, and 70◦C. The selected set of parameters
for the AR condition obtained from the buildup transients
are reported in Tables 3 and 4 respectively. Tables 3 and
4, also present the mean quadratic deviation (expressed as
percentage with respect to the steady state current density)
of the fitted transients. The agreement between fit and
experimental transient is very good. It must be pointed
out that the diffusion coefficient D is not fixed as in [7].
Instead, it is allowed to vary in order to obtain the best
fit. Therefore, the parameter D should not be regarded as
the lattice diffusion coefficient but to an apparent diffusion
coefficient Dapp which contains the effect of weak trapping
sites, as will be discussed below. From Tables 3 and 4, it is
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Figure 6: Rising permeation transient at 30◦C for the API 5L X60
steel in the as received (AR) condition.

observed that the trap density N , used as a fitting parameter,
is reduced as the test temperature T increases. Contrar to
what expected, the fitted values of N and ΔG depend on
temperature. The value of N at 70◦C is approximately 5
times lower than that at 30◦C. The absolute ΔG values
are less sensitive to T , showing a moderate increase of
ΔG with increasing T . The observed dependence of N and
ΔG with T should be investigated with more detail in
future works. Concerning the experiments at 30◦C, there is
no significative difference between the 1st and 2nd rising
permeation transients, revealing a negligible density of high
energy or irreversible traps. At this point, it is important to
analyze the influence of weak traps presents in the studied
material. Our software considers D as a fitting parameter,
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Figure 7: Rising permeation transient at 50◦C for the API 5L X60
steel in the as received (AR) condition.
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Figure 8: Rising permeation transient at 70◦C for the API 5L X60
steel in the as received (AR) condition.

which is allowed to vary with the purpose of diminishing
the error of the fit. Then, D is an apparent diffusion
coefficient Dapp corresponding to a crystalline lattice subject
to the effects of weak traps, in concordance with (10).
On the other hand, the coefficient DL [cm2/s] = 5.12 ×
10−4 exp(−4.15 kJ mol−1/RT) [9] corresponds to a lattice
without defects, through which hydrogen flows without
being trapped, implying Dapp < DL. The use of Dapp instead
of DL by the software necessarily implies that the hydrogen
concentration handled by the software is not the lattice
concentration c but an overall concentration cL + w (lattice
more weak traps). Assuming the validity of (10), it can
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Figure 9: Arrhenius-type plot from rising transients at 30◦C, 50◦C,
and 70◦C for the API 5L X60 steel in the as received (AR) condition.

be demonstrated that both concentrations are related by
cL + w/c = (1 + KwNw) = DL/Dapp. Then, a correction is
needed to refer the parameter ΔG′ yielded by the software
to the lattice concentration. This correction is ΔG = ΔG′ +
RT ln(Dapp/DL). The ΔG values showed in Tables 3 and 4
are obtained by this procedure. As a consequence of the
discussion presented above, the parameters ΔG and N in
3 and 4 obtained from the fit reflect the influence of high
energy traps but not of weak traps: the latter are implicit in
Dapp. The characterization of the weak traps in the present
material necessarily implies an analysis of the dependence
of Dapp on temperature, that is, Dapp(T). From (5) an
expression can be obtained for the equilibrium constant
Kweak as:

lnKweak = ln
(
DL

D
− 1

)
− lnNweak. (38)

In Figure 9 we represent the parameter (DL/Dapp − 1)
in an Arrhenius type plot, with Dapp being the fitted values
of Table 3. We calculate the trapping enthalpy from the
thermodynamical expression d lnKweak/dT = Hweak/RT2,
by linear regression of the corresponding data in Figure 9.
Following this procedure we obtain ΔHweak = 28.1 kJ/mol.
Assuming that the entropy of trapping ΔSweak is negligible,
then ΔGweak ΔHweak and from the linear regression ordinate,
we obtain a density traps of Nweak = 3.32 × 10−4 mol/cm3.
The value of ΔGweak represents the mean free energy of
trapping of the weak or low occupancy traps; it lies within
the Oriani domain according to the discussion of Section 4.

7. Validation of the Present Method

Typical permeation transients calculated with the present
method (which assumes local equilibrium) are also obtained
by means of a software presented previously by Ramunni
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Figure 10: Comparison between the theoretical transients of the
API 5L X60 steel in the AR condition at 30◦C, calculated with the
present software (empty squares) and with the software of [7] (filled
line). J∞ is the hydrogen flux in the steady state, D = Dapp and a =
0.157 cm.

et al. [7]. This software does not assume local equilibrium
and directly solves the McNabb and Foster’s equation (18).
The parameters λ, ρ, and μ for the software of [7] are
obtained through replacement of the parameters DL, K ,
and N in (18) and (19) by the present parameters Dapp,
K ′, and NS and assuming an arbitrary value for μ. The
software in [7], which directly solves the coupled McNabb
and Foster differential equations, is as follows: we calculated
the dimensionless parameters λ = NkL2/D, ρ = c0/N ,
and μ = pL2/D, as defined in [7]. The values of N and
D are, respectively, the fitting parameters N and Dapp for
the API 5L X60-(AR) sample that are presented in Table 3.
The parameter μ is above a certain critical value in order
to fulfill the local equilibrium condition and is changed
arbitrarily in order to establish such value. Once the μ value is
fixed, the kinetic detrapping constant ρ is readily calculated.
Then, the kinetic trapping constant k is evaluated from the
equilibrium constant K = k/p = exp(ΔG′/RT), where ΔG′ is
the uncorrected value of the free energy of trapping, directly
given by the software used in this work. The hydrogen
concentration beneath the input surface is calculated from
the steady state permeation flux as c0 = iH,ssL/(DF). With
these data the parameters λ and ρ are obtained. The different
sets of parameters (λ, ρ,μ) corresponding to the different test
temperatures of the API 5L X60 steel, which are presented
in Table 5, are used as input data for the software of [7] to
calculate theoretical permeation curves. We have observed
that the critical value of μ to achieve local equilibrium
conditions ranges from 100 to 1000 depending on the
value of the other parameters, especially on the value of ρ.
Therefore, a value of μ = 1000 is chosen to ensure the local
equilibrium condition. The permeation transients calculated
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Figure 11: Comparison between the theoretical transients of the
API 5L X60 steel in the AR condition at 50◦C, calculated with the
present software (empty triangles) and with the software of [7]
(filled line). J∞ is the hydrogen flux in the steady state, D = Dapp

and a = 0.157 cm.

in this way with the software of [7] are presented in Figures
10, 11, and 12 together with the theoretical permeation
transients calculated with the software (restricted to local
equilibrium) used in the present work. The agreement
between both calculated transients is quite good, especially
when the ρ value is around 3. When ρ increases to 16 or
18, a small but unimportant discrepancy is observed. This
discrepancy is attributed to the inaccuracy of the numerical
method itself, in each case. This procedure is employed as
a validation of the present software by contrast with other
calculation method developed independently.

8. Conclusions

A method to calculate permeation transients and fit them
to experimental data has been developed. The method
assumes the presence of saturable traps in local equilibrium
with lattice hydrogen. Numerical approaches dealing with
hydrogen permeation in steels have been the subject of
many studies. However, the present approach introduces the
following innovating features

(i) Weak traps are taken into account via the apparent
diffusion coefficient. This improves the software per-
formance since the adoption of an apparent diffusion
coefficient lower than the lattice diffusion coefficient
allows increasing the length of the time steps of the
numerical method. We notice that this procedure
implies a change in the reference state for hydrogen,
and this leads to a correction in the calculated free
energy of trapping.



ISRN Materials Science 13

Table 5: Diffusion parameters for the API 5L X60 AR steel condition from calculated rising transients.

Rising transient

Temperature Dapp iss Reference [7] ΔG
′

N
◦C cm2/s A/cm2 λ ρ μ KJ/mol mol H/cm3

30 4.27× 10−6 1.28× 10−7 3138 3.36 1000 −48.4 1.45× 10−8

50 7.53× 10−6 3.13× 10−7 2074 15.93 1000 −53.8 4.24× 10−9

70 1.73× 10−5 6.12× 10−7 1393 18.74 1000 −56.9 3.08× 10−9
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Figure 12: Comparison between the theoretical transients of the
API 5L X60 steel in the AR condition at 70◦C, calculated with the
present software (empty circles) and with the software of [7] (filled
line). J∞ is the hydrogen flux in the steady state, D = Dapp and a =
0.157 cm.

(ii) The fitting procedure is made automatic by using
the least squares fitting method and allowing selected
parameters to vary.

(iii) The software is able to consider the presence of more
than one type of trapping site in the material, in
addition to the weak traps [15].

(iv) The present method has been validated by compari-
son with the method of Ramunni et al. [7], where the
parameters for the latter are chosen in order to reach
the local equilibrium condition.

(v) The most remarkable fact of the present work is that
the trapping parameters are calculated univocally.
With the model in [7] the fit is performed by
varying two parameters, namely, ρ and λ/μ. The best
fit is achieved for a one-dimension family in the
two-dimensional space of these parameters. Then,
the fit alone dose not univocally determine the
experimental parameters. Meanwhile the Bruzzoniś
model fixes the ρ parameter. Once ρ is fixed the fit
fixes λ/μ hence the relevant trapping parameters are
univocally determined.

Here we simulate permeation transients in order to establish
a range of free energies of trapping that can be assessed
through a single permeation transient. The results show
that typical hydrogen permeation experiments (gas phase
charging with a hydrogen partial pressure of 1 bar and
test temperatures between 30◦C and 70◦C) are able to
determine free energies of trapping in the approximate range
of −35 kJ/mol to −70 kJ/mol. Since local equilibrium is
assumed, the three trapping parameters of McNabb and
Foster are reduced to two. Then, when only one type of
traps is considered, the model uses just three adjustable
parameters to simulate (or fit) the permeation transient.
The present method with one type of high energy traps
describes very well the main characteristics of hydrogen
trapping revealed by permeation tests on an API 5L X60
steel in the AR condition. Although the method has been
applied here to a particular steel, it is applicable to iron base
alloys in general. We remark that, since local equilibrium
is assumed, the three trapping parameters of McNabb and
Foster (λ, ρ,μ) are reduced to two: the trap density of strong
traps N and their free energy of trapping ΔG. Then, when
only one type of traps is considered, the present method uses
just three adjustable parameters (D,N ,ΔG) to calculate the
permeation transient.
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