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We investigate the boundedness and the compactness of the mean operator matrix acting on the
weighted Hardy spaces.

1. Introduction

First in the following, we generalize the definitions coming in [1]. Let β = {β(n)} be a
sequence of positive numbers with β(0) = 1 and 1 < p < ∞. We consider the space of
sequences f = { ̂f(n)}∞n=0 such that

∥

∥f
∥

∥

p =
∥

∥f
∥

∥

p

β =
∞
∑

n=0

∣

∣

∣

̂f(n)
∣

∣

∣

p
β(n)p < ∞. (1.1)

The notation

f(z) =
∞
∑

n=0

̂f(n)zn (1.2)

will be used whether or not the series converges for any value of z. These are called formal
power series and the set of such series is denoted by Hp(β). Let ̂fk(n) = δk(n). So fk(z) = zk

and then {fk}k is a basis such that ‖fk‖ = β(k). Recall that Hp(β) is a reflexive Banach space
with norm ‖ · ‖β and the dual of Hp(β) is Hq(βp/q) where 1/p + 1/q = 1 and βp/q = {β(n)p/q}
[2]. For some other sources on this topic see [1–12].
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The study of weighted Hardy spaces lies at the interface of analytic function theory
and operator theory. As a part of operator theory, research on weighted Hardy spaces is of
fairly recent origin, dating back to valuable work of Allen Shields [1] in the mid- 1970s. The
mean operator matrix has been the focus of attention for several decades and many of its
properties have been studied. Some of basic and useful works in this area are due to Browein
et al. [13–16], which are pretty large works that contain a number of interesting results and
indeed they are mainly of auxiliary nature. Also, some properties of mean operator matrices
have been studied recently by Lashkaripour on weighted sequence spaces [17–20]. In this
paper, we have given conditions under which the mean operator matrix is bounded and
compact as an operator acting on weighted Hardy spaces. More details of our works are
as follows: the idea of Theorem 2.6 comes from [16]. In Theorem 2.9, we extend the method
used in [20, Theorem 1.2] to show the boundedness of the mean operator matrix acting on the
weighted Hardy spaces. Some inequalities are useful to find a bound for the mean operator
matrix acting on weighted Hardy spaces [21–26]. For example the inequality proved in [26,
Theorem 8] is used in the proof of Theorem 2.11.

2. Main Results

In this section we define an operator acting on Hp(β) and then we will investigate its boun-
dedness and compactness on Hp(β).

Definition 2.1. Let {an} be a sequence of positive numbers and define

An =
n
∑

i=0

aiβ(i)p. (2.1)

The mean operator matrix associated with the sequence {an} is represented by the matrix
A = [ank]n,k and is defined by

ank =

⎧

⎪

⎨

⎪

⎩

akβ(n)p

An
, 0 ≤ k ≤ n,

0, k > n.
(2.2)

From now on, by A we denote the mean operator matrix associated with the fixed
sequence {an} as in Definition 2.1.

Theorem 2.2 (see [12, Theorem 1]). If 0 < an ≤ an + 1 for all integers n ≥ 0, then A is a bounded
operator on Hp(β).

Theorem 2.3 (see [12, Theorem 2]). Let 1/p + 1/q = 1 and bn > 0 for n = 0, 1, . . . If

M1 = sup
n≥0

n
∑

k=0

akβ(n)p+1

Anβ(k)

(

bk
bn

)1/p

< ∞,

M2 = sup
k≥0

∞
∑

n=k

akβ(n)p+1

Anβ(k)

(

bn
bk

)1/q

< ∞,

(2.3)

then A = [ank]n,k is a bounded operator onHp(β) and ‖A‖ ≤ M
1/q
1 M

1/p
2 .
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Recall that if an, bn are two positive sequences, by an ∼ bn, we mean that an/bn → 1
whenever n → ∞. Also, we write an = o(bn), if an/bn → 0 as n → ∞.

Corollary 2.4. Let limn→∞nan/An be finite and 1/p + 1/q = 1. If

sup
n≥0

n
∑

k=0

akβ(n)p+1

nanβ(k)

(

bk
bn

)1/p

< ∞,

sup
k≥0

∞
∑

n=k

akβ(n)p+1

nanβ(k)

(

bn
bk

)1/q

< ∞,

(2.4)

then A is a bounded operator on Hp(β).

Proof. Put limn→∞nan/An = β. Then nan/β ∼ An and so

n
∑

k=0

akβ(n)p+1

Anβ(k)

(

bk
bn

)1/p

∼ β
n
∑

k=0

akβ(n)p+1

nanβ(k)

(

bk
bn

)1/p

as n −→ ∞,

∞
∑

n=k

akβ(n)p+1

Anβ(k)

(

bn
bk

)1/q

∼ β
∞
∑

n=k

akβ(n)p+1

nanβ(k)

(

bn
bk

)1/q

as k −→ ∞.

(2.5)

On the other hand

sup
n≥0

n
∑

k=0

akβ(n)p+1

nanβ(k)

(

bk
bn

)1/p

< ∞,

sup
k≥0

∞
∑

n=k

akβ(n)p+1

nanβ(k)

(

bn
bk

)1/q

< ∞,

(2.6)

thus Theorem 2.3 implies that A is a bounded operator onHp(β).

Lemma 2.5. Suppose that ncan/β(n) is eventually increasing when the constant c > 1 − γ , and
eventually decreasing when c < 1 − γ . Let

S1(n) =
1
n

n
∑

k=1

akβ(n)
anβ(k)

(

k

n

)−1/p
,

S2(k) = k1/q
∞
∑

n=k

akβ(n)
anβ(k)

1
n1/(q+1)

.

(2.7)

If γ > 1/p, then limn→∞S1(n) = limk→∞S2(k) = 1/(γ − 1/p).
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Proof. Let 1/p + 1/q = 1 and c2 < 1 − γ < c1 < 1. Then in either case there is a positive integer
N such that

(

k

n

)−c2
<

akβ(n)
anβ(k)

<

(

k

n

)−c1
(2.8)

for N ≤ k ≤ n. Suppose first that γ > 1/p, then

lim
n→∞

n1−1/pan

β(n)
= ∞ (2.9)

and hence

lim
n→∞

1
n

N−1
∑

k=1

akβ(n)
anβ(k)

(

k

n

)−1/p
= 0. (2.10)

Therefore

lim
n→∞

supS1(n) ≤ lim
n→∞

1
n

n
∑

k=N

(

k

n

)−c1−1/p
=
∫1

0
x−c1−1/pdx. (2.11)

By calculus integral we get

∫1

0
x−c−1/pdx =

1
1 − c − 1/p

; c /=
1
q
, (2.12)

and so

lim
n→∞

inf S1(n) ≥ lim
n→∞

1
n

n
∑

k=N

(

k

n

)−c2−δ
=
∫1

0
x−c2−1/pdx =

1
1 − c2 − 1/p

. (2.13)

Letting c1 → 1 − γ from the right and c2 → 1 − γ from the left, we have

lim
n→∞

S1(n) =
1

γ − 1/p
. (2.14)

Also note that

lim
k→∞

sup S2(k) ≤ lim
k→∞

k1/q
∞
∑

n=k

(

k

n

)−c1 1
n1/q+1

,

lim
k→∞

k1/q
∞
∑

n=k

(

k

n

)−c1 1
n1/q+1

=
1

1/q − c1
.

(2.15)
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If c1 → 1 − γ , then 1/q − c1 → γ − 1/p and similarly we get

lim
k→∞

inf S2(k) ≥ lim
k→∞

k1/q−c2
∞
∑

n=k

(

1
n

)1−1/q−c2
,

lim
k→∞

k1/q−c2
∞
∑

n=k

(

1
n

)1−1/q−c2
=

1
1/q − c2

.

(2.16)

If c2 → 1 − γ , then 1/q − c2 → γ − 1/p. This completes the proof.

Theorem 2.6. Let limn→∞nanβ(n)
p/An = γ , ncanβ(n)

p be eventually monotonic for any constant
c, and {β(n)} be bounded. Then A is a bounded operator if 1/γ < p.

Proof. Let δn = nanβ(n)
p/An and suppose first that 0 ≤ γ < ∞. Then

n
(

log(An) − log(An−1)
)

= −n log
(

1 − δn
n

)

−→ γ (2.17)

as n → ∞, and hence

log(An) − log(A1) = −n
n
∑

k=2

log
(

1 − δk
k

)

= εn logn, (2.18)

where εn → γ . Consequently An = A1n
εn . Now suppose that γ = ∞, then for n ≥ 2,

log(An) − log(An−1) = − log
(

1 − δn
n

)

≥ δn
n

(2.19)

since δn → ∞. IfM > 0, then there is N1 ∈ N such that δn ≥ M + 1 for all n ≥ N1.
Without loss of the generality suppose that there is a positive real number a > 0 such

that δn > a for n ≤ N1. Note that

N1
∑

k=2

1
k
= logN1 + c + o(1) − 1. (2.20)

If n > N1, then

n
∑

k=2

1
k
= logn + c + o(1) − 1,

n
∑

k=N1+1

1
k
= logn − logN1. (2.21)
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Also,

∑n
k=2 δk/k

logn
≥

a
(

∑N1
k=2 1/k

)

+ (M + 1)
(

∑n
k=N1+1 1/k

)

logn
,

∑N1
k=2 1/k +

∑n
k=N1+1 1/k

logn
≥ M1 + 1

(

logn − logN1
)

+ a
(

logN1 + c + o(1) − 1
)

logn

= M1 + 1 +
(a −M1 − 1) logN1 + a(c + o(1) − 1)

logn
,

(2.22)

for large amount of n last equality greater than M1. Hence

logAn ≥
n
∑

k=2

δk
k

= γn logn, (2.23)

where γn → ∞. It follows that, for any real number c, ncAn = nc+γn . Since

nc−1An ∼ 1
γ
ncanβ(n)p, (2.24)

thus ncanβ(n)
p is eventually increasing for c > 1 − γ , and eventually decreasing for c < 1 − γ .

But {β(n)}n is bounded, so there areM1,M2 > 0 such that M1 < β(n) < M2, and

ncan

β(n)
=

ncanβ(n)p

β(n)p+1
,

ncanβ(n)p

β(n)p+1
≥ ncanβ(n)p

M
p+1
1

.

(2.25)

This implies that ncan/β(n) is eventually increasing for c > 1 − γ . Similarly ncan/β(n) is
eventually decreasing for c < 1 − γ . Thus

n
∑

k=1

akβ(n)p+1

Anβ(k)

(

k

n

)−1/p
∼ γ

n

n
∑

k=1

akβ(n)p+1

nanβ(k)

(

k

n

)−1/p
. (2.26)

By Lemma 2.5

γ

n

n
∑

k=1

akβ(n)p+1

nanβ(k)

(

k

n

)−1/p
(2.27)

is bounded and so

n
∑

k=1

akβ(n)p+1

Anβ(k)

(

k

n

)−1/p
(2.28)
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is bounded. We can see that

∞
∑

n=k

akβ(n)p+1

Anβ(k)

(

k

n

)1/q

(2.29)

is also bounded. Now by Theorem 2.3,A is a bounded operator and so the proof is complete.

Lemma 2.7. Let {an}, {tn} be nonnegative sequences with t−1 = 0. Then for all n ∈ N one has

n
∑

k=0

(tkak) ≤
⎧

⎨

⎩

max
0≤k≤n

⎛

⎝

1
n − k + 1

n
∑

j=K

aj

⎞

⎠

⎫

⎬

⎭

(

n
∑

k=1

(n − k + 1)(tk − tk−1)+ + t0(n + 1)

)

. (2.30)

Proof. Employing the summation by parts, we get

n
∑

k=0

(tkak) =
n
∑

k=0

⎛

⎝

n
∑

j=k

aj

⎞

⎠(tk − tk−1)

≤
n
∑

k=0

⎛

⎝

n
∑

j=k

aj
1

n − k + 1

⎞

⎠(tk − tk−1)+(n − k + 1).

(2.31)

So

n
∑

k=0

(tkak) ≤
⎧

⎨

⎩

max
0≤k≤n

⎛

⎝

1
n − k + 1

n
∑

j=k

aj

⎞

⎠

⎫

⎬

⎭

(

n
∑

k=1

(n − k + 1)(tk − tk−1)+ + t0(n + 1)

)

, (2.32)

and at this time the proof is complete.

Theorem 2.8 (see [26, Theorem 8]). Let 1/p + 1/q = 1, {xn} be a positive sequence, then

∞
∑

j=0

max
0≤i≤j

(

1
j − i + 1

j
∑

k=i

xk

)p

≤ qp
( ∞
∑

k=0

x
p

k

)

. (2.33)

Theorem 2.9. Let {an} be a positive sequence and

M3 = sup
n≥0

(

n
∑

k=1

n − k + 1
An

(

ak

β(k)
− ak−1
β(k − 1)

)+

β(n)p+1 +
(n + 1)a0

Anβ(0)
β(n)p+1

)

(2.34)

be finite. Then A is bounded and ‖A‖ ≤ M3q.
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Proof. Let f(z) =
∑∞

n=0
̂f(n)zn ∈ Hp(β), thus

A
(

f
)

(z) =
∞
∑

n=0

(

n
∑

k=0

akβ(n)p

An

̂f(k)

)

zn. (2.35)

By definition of ‖ · ‖β, we have

∑

n≥0
β(n)p

∣

∣

∣

∣

∣

n
∑

k=0

akβ(n)p

An

̂f(k)

∣

∣

∣

∣

∣

p

≤
∑

n≥0

(

n
∑

k=0

akβ(n)p+1

Anβ(k)

∣

∣

∣

̂f(k)
∣

∣

∣β(k)

)p

. (2.36)

In Lemma 2.7, consider tk = ak/β(k) and aj = | ̂f(j)|β(j). Then

∑

n≥0

(

n
∑

k=0

akβ(n)p+1

Anβ(k)

∣

∣

∣

̂f(k)
∣

∣

∣β(k)

)p

≤
∑

n≥0

⎧

⎨

⎩

max
0≤k≤n

1
n − k + 1

n
∑

j=k

∣

∣

∣

̂f
(

j
)

∣

∣

∣β
(

j
)

⎫

⎬

⎭

p

×
(

n
∑

k=1

n − k + 1
An

(

ak

β(k)
− ak−1
β(k − 1)

)+

β(n)p+1 +
(n + 1)a0

Anβ(0)
β(n)p+1

)p

.

(2.37)

Now, Theorem 2.8 implies that

∑

n≥0

⎧

⎨

⎩

max
0≤k≤n

⎛

⎝

1
n − k + 1

n
∑

j=k

∣

∣

∣

̂f
(

j
)

∣

∣

∣β
(

j
)

⎞

⎠

⎫

⎬

⎭

p

M
p

3 ≤ M
p

3q
p

∞
∑

k=1

∣

∣

∣

̂f(k)
∣

∣

∣

p
β(k)p, (2.38)

and sowe get ‖Af‖ ≤ M3q‖f‖β for all f ∈ Hp(β). ThusA ∈ B(Hp(β)) and indeed ‖A‖ ≤ M3q.
This completes the proof.

Corollary 2.10. Let 1/p + 1/q = 1, ak/β(k) ≥ ak−1/β(k − 1) and

M4 = sup
n≥0

n
∑

k=0

akβ(n)p+1

β(k)An
< ∞. (2.39)

Then A is a bounded operator on Hp(β) and ‖A‖ ≤ M4.

Proof. Note that

∑

n≥0

(

n
∑

k=0

akβ(n)p+1

Anβ(k)

∣

∣

∣

̂f(k)
∣

∣

∣β(k)

)p

≤
∑

n≥0

⎧

⎨

⎩

max
0≤k≤n

1
n − k + 1

n
∑

j=k

∣

∣

∣

̂f
(

j
)

∣

∣

∣β
(

j
)

⎫

⎬

⎭

p
(

n
∑

k=0

akβ(n)p+1

β(k)An

)p

.

(2.40)
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Theorem 2.8 implies that

∑

n≥0

⎧

⎨

⎩

max
0≤k≤n

⎛

⎝

1
n − k + 1

n
∑

j=k

∣

∣

∣

̂f
(

j
)

∣

∣

∣β
(

j
)

⎞

⎠

⎫

⎬

⎭

p

M
p

4 ≤ M
p

4q
p

∞
∑

k=1

∣

∣

∣

̂f(k)
∣

∣

∣

p
β(k)p, (2.41)

and so by Theorem 2.9 we obtain ‖Af‖ ≤ qM4‖f‖β for all f ∈ Hp(β). Thus A ∈ B(Hp(β))
and indeed ‖A‖ ≤ M4q. This completes the proof.

Now, we characterize compactness of subsets of Hp(β) and then we will investigate
compactness of the mean operator matrix on Hp(β).

Theorem 2.11. Let S be a nonempty subset of Hp(β). Then S is relatively compact if and only if the
following hold:

(i) there existsM > 0, such that for all
∑∞

n=0
̂f(n)zn ∈ S, | ̂f(i)β(i)| ≤ M for all i ∈ N ∪ {0};

(ii) given ε > 0, there is n0 ∈ N such that
∑∞

n=n0
| ̂f(n)|pβ(n)p < εp for all

∑∞
n=0

̂f(n)zn ∈ S.

Proof. Let S be relatively compact, thus there exist g1, . . . , gk ∈ Hp(β) such that

S ⊆
k
⋃

i=1

B
(

gi, 1
)

. (2.42)

For every f(z) =
∑∞

n=0
̂f(n)zn ∈ S, there is gi such that f ∈ B(gi, 1). By Minkowski inequality

we get

∞
∑

n=0

∣

∣

∣

̂f(n)
∣

∣

∣

p
β(n)p ≤

⎡

⎣

( ∞
∑

n=0

∣

∣

∣

̂f(n) − ĝi(n)
∣

∣

∣

p
β(n)p

)1/p

+

( ∞
∑

n=0

∣

∣ĝi(n)
∣

∣

p
β(n)p

)1/p
⎤

⎦

p

≤ (∥

∥f − gi
∥

∥ +
∥

∥gi
∥

∥

)p

≤ (

1 +
∥

∥gi
∥

∥

)p

≤ (

1 +max
{∥

∥gi
∥

∥ : i = 1, . . . , k
})p

.

(2.43)

Thus for every f ∈ S and n ∈ N ∪ {0}, we get

∣

∣

∣

̂f(n)β(n)
∣

∣

∣ ≤ 1 +max
{∥

∥gi
∥

∥ : i = 1, . . . , k
}

. (2.44)

So (i) holds. Now suppose that ε is an arbitrary positive number. Since S is relatively compact,
thus there exist h1, . . . , hk ∈ Hp(β) such that

S ⊆
k
⋃

i=1

B
(

hi,
ε

2

)

. (2.45)
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Since hi ∈ Hp(β), there exists Ni ∈ N such that

∞
∑

n=Ni

∣

∣

∣

̂hi(n)
∣

∣

∣

p
β(n)p <

εp

2p (2.46)

for i = 1, . . . , k. Put

N0 = max{Ni : i = 1, . . . , k}, (2.47)

and consider f ∈ S. Then there exists i ∈ {1, . . . , k}, such that f ∈ B(hi, ε/2). Hence we get

∞
∑

n=N0

∣

∣

∣

̂f(n)
∣

∣

∣

p
β(n)p ≤

⎡

⎣

( ∞
∑

n=N0

∣

∣

∣

̂f(n) − ̂hi(n)
∣

∣

∣

p
β(n)p

)1/p

+

( ∞
∑

n=N0

∣

∣

∣

̂hi(n)
∣

∣

∣

p
β(n)p

)1/p
⎤

⎦

p

≤
(

∥

∥f − hi

∥

∥ +
ε

2

)p

≤ εp.

(2.48)

So (ii) holds.
Conversely, assume that ε > 0 be given and let (i) and (ii) hold. By condition (ii), there

exists n0 ∈ N such that

∞
∑

n=n0

∣

∣

∣

̂f(n)
∣

∣

∣

p
β(n)p <

εp

2
, (2.49)

for all f ∈ S. Let Mn0 be the closed linear span of the set {1, z, . . . , zn0−1} in Hp(β). Consider
C

n0 andMn0 with norms

‖(z1, . . . , zn0)‖ =

(

n0
∑

n=1

|zn|pβ(n)p
)1/p

, (2.50)

for all (zi)
n0
i=1 ∈ C

n0 , and

∥

∥

∥

∥

∥

n0−1
∑

i=0

aiz
i

∥

∥

∥

∥

∥

=

(

n0−1
∑

i=0
|ai|pβ(i)p

)1/p

(2.51)

for all
∑n0−1

i=0 aiz
i ∈ Mn0 . Define L : Mn0 → C

n0 , by

L

(

n0−1
∑

i=0

aiz
i

)

= (a0, . . . , an0−1). (2.52)
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Clearly, we can see that L is a bounded linear operator. Now, consider the compact subset

{

(zi)
n0
i=1 :

n0
∑

i=1

|zi|pβ(i)p ≤ n0M
p

}

(2.53)

in C
n0 . Then we have

{

n0−1
∑

i=0

̂f(i)zi :
∞
∑

n=0

̂f(n)zn ∈ S

}

⊆ L−1
{

(zi)
n0
i=1 :

n0
∑

i=1

|zi|pβ(i)p ≤ n0M
p

}

. (2.54)

Since

L−1
{

(zi)
n0
i=1 :

n0
∑

i=1

|zi|pβ(i)p ≤ n0M
p

}

(2.55)

is a compact subspace of Mn0 , so there exist g1, . . . , gk ∈ Mn0 such that

L−1
{

(zi)
n0
i=1 :

n0
∑

i=1

|zi|pβ(i)p ≤ n0M
p

}

∈
k
⋃

i=1

B

(

gi,
ε

21/p

)

. (2.56)

Hence for every

f ∈
{

n0−1
∑

i=0

̂f(i)zi : f(z) =
∞
∑

n=0

̂f(n)zn ∈ S

}

(2.57)

there is i ∈ {1, . . . , k} satisfying

n0−1
∑

n=0

∣

∣

∣

̂f(n) − ĝi(n)
∣

∣

∣

p
β(n)p ≤ εp

2
. (2.58)

Also, we have

(

∥

∥f − gi
∥

∥

β

)p ≤
n0−1
∑

n=0

∣

∣

∣

̂f(n) − ĝi(n)
∣

∣

∣

p
β(n)p +

∞
∑

n=n0

∣

∣

∣

̂f(n)
∣

∣

∣

p
β(n)p

≤ εp

2
+
εp

2
≤ εp.

(2.59)

Thus, S is relatively compact and so the proof is complete.
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Theorem 2.12. Let the mean matrix operator A be bounded onHp(β), and

lim
m→∞

( ∞
∑

n=m

β(n)p
2+p

A
p
n

)1/p(
m
∑

k=0

(

ak

β(k)

)q
)1/q

= 0, (2.60)

where 1/p + 1/q = 1. Then A is a compact operator on Hp(β).

Proof. Let BHp(β) be the closed unit ball of Hp(β). Define S = A(BHp(β)) and note that S is a
bounded subset of Hp(β). Put rn = | ̂f(n)|an, un = β(n)p

2+p/A
p
n, vk = (β(k)/ak)

p, and

Em =

( ∞
∑

n=m
un

)1/p( m
∑

k=0

v
1−q
k

)1/q

. (2.61)

Note that limm→∞Em = 0. So for every ε > 0, there exists m0 ∈ N such that Em < ε/(qp−1p)1/p

for all m ≥ m0. Note that if

f(z) =
∞
∑

k=0

̂f(k)zk ∈ BHp(β), (2.62)

then

Af(z) =
∞
∑

n=0

(

n
∑

k=0

akβ(n)p ̂f(k)
An

)

zn ∈ S. (2.63)

Since ‖f‖pβ ≤ 1, we have

∞
∑

n=m

∣

∣

∣

̂Af(n)
∣

∣

∣

n
β(n)p ≤

∞
∑

n=m

β(n)p
2+p

A
p
n

(

n
∑

k=0

ak

∣

∣

∣

̂f(k)
∣

∣

∣

)p

=
∞
∑

n=m
un

(

n
∑

k=0

rk

)p

≤ εp
∞
∑

k=0

(rk)pvk

≤ εp
∞
∑

k=0

∣

∣

∣

̂f(k)
∣

∣

∣

p
β(k)p

≤ εp.

(2.64)

Thus by Theorem 2.11, S is compact and so the proof is complete.
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