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Firstly, we study the solution of the equation ♦k♦k
Bu(x) = f(x), where ♦k♦k

B is the composite of
the diamond operator and Bessel diamond operator. Finally, we study of the nonlinear equation
♦k♦k

Bu(x) = f(x,�k−1�k♦k
B). It was found that the existence of the solution u(x) of such an equation

depends on the condition of f and �k−1�k♦k
Bu(x). Moreover, such equation u(x) is related to the

elastic wave equation.

1. Introduction

Let �k be ultrahyperbolic operator iterated k-times defined by

�k =

⎛
⎝ ∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

− ∂2

∂x2
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− ∂2

∂x2
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− · · · − ∂2

∂x2
p+q

⎞
⎠

k

, (1.1)

where p + q = n, n is the dimension of space R
n and k is a nonnegative integer.

Consider the linear differential equation of the form

�ku(x) = f(x), (1.2)

where u(x) and f(x) are generalized function and x = (x1, x2, . . . , xn) ∈ R
n.

Gel’fand and Shilov [1, pages 279–282] first introduced the fundamental solution of
(1.2) which is complicated form. Later Trione [2] has shown that the generalized function
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R2k(x) which is defined by (2.2) is the unique fundamental solution of (1.2) and Aguirre
Tellez [3] also proved thatR2k(x) exists only in case p is odd and n is odd or even and p+q = n.

In 1996, Kananthai [4] has been the first to introduce the operator ♦k which is named
as the diamond operator iterated k-times and is defined by

♦k =

⎛
⎜⎝
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2
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⎟⎠

k

, (1.3)

where p + q = n is the dimension of the space R
n, for x = (x1, x2, . . . , xn) ∈ R

n and k is a
nonnegative integer. The operator ♦k can be expressed in the form

♦k = �k�k = �k�k, (1.4)

where �k is the Laplace operator defined by

�k =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
n

)k

, (1.5)

and �k is the ultrahyperbolic operator iterated k-times and is defined by (1.1). Tellez and
Kananthai [5, lemma 3.1, page 46] have shown that the convolution (−1)kRe

2k(x) ∗ RH
2k(x) is

a fundamental solution of the operator ♦k, where Re
2k(x) and RH

2k(x) are defined by (2.8) and
(2.2), respectively. That is,

♦k
{
(−1)kRe

2k(x) ∗ RH
2k(x)

}
= δ(x). (1.6)

Furthermore, Yildirim et al. [6] first introduced the Bessel diamond operator ♦k
B

iterated k-times defined by

♦k
B =

⎡
⎢⎣
(

p∑
i=1

Bxi

)2

−
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k

, (1.7)

where Bxi = ∂2/∂x2
i + (2υi/xi) (∂/∂xi), 2υi = 2αi + 1, αi > −1/2, xi > 0. The operator ♦k

B can
be expressed by ♦k

B = �k
B�k

B = �k
B�k

B, where

�k
B =

(
p∑
i=1

Bxi

)k

, (1.8)

�k
B =

⎡
⎣

p∑
i=1

Bxi −
p+q∑
j=p+1

Bxj

⎤
⎦

k

. (1.9)
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Yildirim et al. [6] have shown that the solution of the convolution form u(x) =
(−1)kS2k(x) ∗ R2k(x) is a unique fundamental solution of the operator ♦k

B, that is,

♦k
B

(
(−1)kS2k(x) ∗ R2k(x)

)
= δ, (1.10)

where S2k(x) and R2k(x) are defined by (2.11) and (2.15) with α = γ = 2k, respectively.
Now, firstly the purpose of this paper is to study the following equation:

♦k♦k
Bu(x) = f(x), (1.11)

where the operator ♦k defined by (1.3) and ♦k
B defined by (1.7) with f(x) is a generalized

function and u(x) is an unknown function.
Finally, we will study the nonlinear of the form

♦k♦k
Bu(x) = f

(
x,�k−1�k♦k

Bu(x)
)
, (1.12)

with f defined and having continuous first derivative for all x ∈ Ω ∪ ∂Ω, where Ω is an open
subset of R

n and ∂Ω denotes the boundary of Ω, and f is bounded on Ω, that is, |f | ≤ N,N
is constant. We can find the solution u(x) of (1.12) which is unique under the boundary
condition �k−1�k♦k

Bu(x) = 0 for x ∈ ∂Ω, and we obtain the solution related to the elastic
wave equation.

Before going to that point, the following definitions and some concepts are needed.

2. Preliminaries

Definition 2.1. Let x = (x1, x2, . . . , xn) be a point of the n-dimensional Euclidean space R
n.

Denote by

υ = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q (2.1)

the nondegenerated quadratic form and p + q = n is the dimension of the space R
n. Let

Γ+ = {x ∈ R
n : x1 > 0 and υ > 0} and Γ+ denote its closure. For any complex number α, define

the function

RH
α (υ) =

⎧
⎪⎨
⎪⎩

υ(α−n)/2

Kn(α)
, for x ∈ Γ+,

0, for x /∈ Γ+,
(2.2)

where the constant Kn(α) is given by the formula

Kn(α) =
π(n−1)/2Γ((2 + α − n)/2)Γ((1 − α)/2)Γ(α)

Γ
((
2 + α − p

)
/2

)
Γ
((
p − α

)
/2

) . (2.3)
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The function RH
α (υ) is called the ultrahyperbolic kernel of Marcel Riesz and was introduced

by Nozaki [7].
It is well known that RH

α (υ) is a function of Re(α) ≥ n and is a distribution of α if
Re(α) < n. Let supp RH

α (υ) denote the support of RH
α (υ) and suppose supp RH

α (υ) ⊂ Γ+, that
is, supp RH

α (υ), is compact.
From Trione [2, page 11], RH

2k(υ) is a fundamental solution of the operator �k, that is,

�kRH
2k(υ) = δ(x). (2.4)

By putting p = 1 in R2k(υ) and taking into account Legendre’s duplication formula for
Γ(z)

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
, (2.5)

then the formula (2.1) reduces to

MH
α (u) =

⎧⎪⎨
⎪⎩

u(α−n)/2

Hn(α)
, for x ∈ Γ+,

0, for x /∈ Γ+,
(2.6)

and u = x2
1 − x2

2 − · · · − x2
n, where

Hn(α) = π(n−2)/22α−1Γ
(
α − n + 2|ν|

2

)
Γ
(α
2

)
. (2.7)

Mα(u) is the hyperbolic kernel of Riesz [8, page 31].

Definition 2.2. Let x = (x1, x2, . . . , xn) be a point of R
n and |x| = x2

1 + x2
2 + · · · + x2

n the function
Re

α(x) denoted by the elliptic kernel of Marcel Riesz which is defined by

Re
α(x) =

|x|(α−n)/2
Wn(α)

, (2.8)

where

Wn(α) =
πn/22αΓ(α/2)
Γ((n − α)/2)

. (2.9)

α is a complex parameter and n is the dimension of the space R
n.
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Let α and β be complex numbers such that α + β /=n + 2r, r = 0.1, 2, . . . The function
Re

α(x) has the following properties [9]:

R0(x) = δ(x),

R−2k(x) = (−1)k�kδ(x),

�k{Rα(x)} = (−1)kRα−2k(x),

Rα(x) ∗ Rβ(x) = Rα+β(x).

(2.10)

Definition 2.3. Let x = (x1, x2, . . . , xn), ν = (ν1, ν2, . . . , νn) ∈ R
+
n. For any complex number α, we

define the distribution family Sα(x) by

Sα(x) =
|x|α−n−2|ν|
wn(α)

, (2.11)

where |x| = x2
1 + x2

2 + · · · + x2
n, |ν| = ν1 + ν2 + · · · + νn and

wn(α) =
∏n

i=12
νi−1/2Γ(νi + 1/2)

2n+2|ν|−2αΓ((n + 2|ν| − α)/2)
. (2.12)

Definition 2.4. Let x = (x1, x2, . . . , xn), ν = (ν1, ν2, . . . , νn) ∈ R
+
n, and denote by

V = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q (2.13)

the nondegenerated quadratic form. Denote the interior of the forward cone by

Γ+ = {x ∈ R
+
n : x1 > 0, x2 > 0, . . . , xn > 0, V > 0}, (2.14)

and Γ+ denotes its closure. For any complex number γ the distribution family Rγ(x) is defined
by

Rγ(x) =

⎧
⎪⎨
⎪⎩

V (γ−n−2|ν|)/2

Kn

(
γ
) , for x ∈ Γ+,

0, for x /∈ Γ+,
(2.15)

where

Kn

(
γ
)
=

π(n+2|ν|−1)/2Γ
((
2 + γ − n − 2|ν|)/2)Γ((1 − γ

)
/2

)
Γ
(
γ
)

Γ
((
2 + γ − p − 2|ν|)/2)Γ((p − γ

)
/2

) , (2.16)

where γ is a complex number.
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By putting p = 1 in R2k(x) and taking into account Legendre’s duplication formula for
Γ(z)

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
, (2.17)

we obtain

Nγ(x) =
u(γ−n−2|ν|)/2

En

(
γ
) , (2.18)

and u = x2
1 − x2

2 − · · · − · · · − x2
n, where

En

(
γ
)
= π(n+2|ν|−1)/22γ−1Γ

(
2 + γ − n − 2|ν|

2

)
Γ
(γ
2

)
. (2.19)

Lemma 2.5. Given the equation �k
Bu(x) = δ(x) for x ∈ R

+
n, where �k

B is defined by (1.8), then

u(x) = (−1)kS2k(x), (2.20)

where S2k(x) is defined by (2.11), with α = 2k.

Proof. See [6, page 379].

Lemma 2.6. Given the equation �k
Bu(x) = δ(x) for x ∈ R

+
n, where �k

B is defined by (1.9). Then

u(x) = R2k(x), (2.21)

where R2k(x) is defined by (2.15), with γ = 2k.

Proof. See [6, page 379].

Lemma 2.7. Let Sα(x)and Rβ(x) be the function defined by (2.11) and (2.15), respectively. Then

Sα(x) ∗ Sβ(x) = Sα+β(x),

(−1)kS−2k(x) ∗ (−1)kS2k(x) = (−1)2kS−2k+2k(x) = S0(x) = δ(x),
(2.22)

where α and β are a positive even number.

Proof. See [10, pages 171–190].
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Lemma 2.8. The function R−2k(x) and (−1)kS−2k(x) are the inverse in the convolution algebra of
R2k(x) and (−1)kS2k(x), respectively, that is,

R−2k(x) ∗ R2k(x) = R−2k+2k(x) = R0(x) = δ(x),

Rβ(x) ∗ Rα(x) = Rβ+α(x).
(2.23)

Proof. See [6].

Lemma 2.9. Given P is a hyper-function, then

Pδk(P) + kδ(k−1)(P) = 0, (2.24)

where δ(k) is the Dirac-delta distribution with k derivatives and

P = P(x) = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q. (2.25)

Proof. See [1, page 233].

Lemma 2.10. Given the following equation:

�ku(x) = 0, (2.26)

where �k is defined by (1.5) and x = (x1, x2, . . . , xn) ∈ R
n, then

u(x) = δ(m)
(
r2

)
(2.27)

or

u(x) =
(−1)2m−n/2+1πn/2

Γ(m − n/2 + 2)4m−n/2+1R
e
−2(m−n/2+1)(x) (2.28)

is a homogeneous solution of (2.26)withm = n/2−k−1 for k = 1, 2, 3, . . .. The function Re
−2(m−n/2+1)

is defined by (2.8) and α = −2(m − n/2 + 1).

Proof. We first need to show that the generalized function u(x) = δ(m)(r2), where r2 = |x|2 =
x2
1 + x2

2 + · · · + x2
n, and

� u(x) = 0, (2.29)



8 ISRN Applied Mathematics

where �= (∂2/∂x2
1 + ∂2/∂x2

2 + · · · + ∂2/∂x2
n) is a Laplace operator. In fact,

∂

∂xi
δ(m)

(
r2

)
= 2xiδ

(m+1)
(
r2

)
,

∂2

∂x2
i

δ(m)
(
r2

)
= 2δ(m+1)r2 + 4x2

i δ
(m+2)

(
r2

)
.

(2.30)

Thus

� δ(m)
(
r2

)
=

n∑
i=1

∂2

∂x2
i

δ(m)
(
r2

)

= 2nδ(m+1)
(
r2

)
+ 4r2δ(m+2)

(
r2

)

= 2nδ(m+1)
(
r2

)
− 4(m + 2)δ(m+1)

(
r2

)

= (2n − 4(m + 2))δ(m+1)
(
r2

)
,

�2δ(m)
(
r2

)
= (2n − 4(m + 2)) � δ(m+1)

(
r2

)

= (2n − 4(m + 2))(2n − 4(m + 3))δ(m+2)
(
r2

)
,

�3δ(m)
(
r2

)
= (2n − 4(m + 2))(2n − 4(m + 3))(2n − 4(m + 4))δ(m+3)

(
r2

)
,

�kδ(m)
(
r2

)
= (2n − 4(m + 2))(2n − 4(m + 3))(2n − 4(m + 4))

· · · (2n − 4(m + k + 1))δ(m+k)
(
r2

)

= 22
(n
2
− (m + 2)

)
22

(n
2
− (m + 3)

)
22

(n
2
− (m + 4)

)

· · · 22
(n
2
− (m + k + 1)

)
δ(m+k)

(
r2

)
.

(2.31)

Thus

�kδ(m)
(
r2

)
= 22k

[(n
2
−m

)
− 2

][(n
2
−m

)
− 3

][(n
2
−m

)
− 4

]

· · ·
[(n

2
−m

)
− (k + 1)

]
δ(m+k)

(
r2

)
.

(2.32)

Using the following formula:

(z − 1)(z − 2) · · · (z − k) =
(−1)kΓ(−z + k + 1)

Γ(m + 1)
, (2.33)
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the above expression can be written in the following form:

�kδ(m)
(
r2

)
=

22k(−1)kΓ(n/2 −m − 2 + 1)
Γ(n/2 −m − 2 − k + 1)

δ(m+k)
(
r2

)

=
22k(−1)kΓ(n/2 −m − 1)

Γ(n/2 −m − k − 1)
δ(m+k)

(
r2

)
.

(2.34)

If we put m = n/2 − k − 1 for k = 1, 2, 3, . . . in (2.34), we obtain

�kδ(m)
(
r2

)
= 0δ(m+k)

(
r2

)
= 0. (2.35)

It follows that

u(x) = δ(m)
(
r2

)
(2.36)

is homogeneous solution of the equation �ku(x) = 0. On the other hand, by Aguirre Tellez
[11], we have

δ(m)
(
r2

)
=

(−1)mπn/2

Γ(m − n/2 + 1)4m−n/2+1�m−n/2+1δ(x)

=
(−1)mπ

n

2 (−1)m−
n

2
+1

Γ
(
m − n

2
+ 1

)
4
m−

n

2
+1

Re

−2
(
m−

n

2
+1

)(x).
(2.37)

If we put m = n/2 − k − 1 in (2.37), we obtain

δ(n/2−k−1)
(
r2

)
=

(−1)n/2−k−1πn/2(−1)n/2−k−1−n/2+1
Γ(n/2 − k − 1 − n/2 + 1)4n/2−k−1−n/2+1

Re
−2(n/2−k−1−n/2+1)(x)

=
(−1)n/2−k−1πn/2(−1)−k

Γ(−k)4−k Re
2k(x)

= 0.

(2.38)

By (2.36) and (2.37), we conclude

u(x) = δ(m)
(
r2

)
(2.39)

or

u(x) =
(−1)2m−n/2+1πn/2

Γ(m − n/2 + 2)4m−n/2+1R
e
−2(m−n/2+1)(x) (2.40)

is a homogeneous solution of the equation �ku(x) = 0. This completes the proof.
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Lemma 2.11. Given the following equation:

♦k♦k
Bu(x) = 0, (2.41)

where ♦k and ♦k
B are diamond operator and Bessel diamond operator iterated k-times defined by (1.3)

and (1.7), respectively, u(x) is an unknown function, we obtain

u(x) = RH
2k(u) ∗ (−1)kS2k(x) ∗ R2k(υ) ∗ δ(m)

(
r2

)
(2.42)

or

u(x) = RH
2k(u) ∗ (−1)kS2k(x) ∗ R2k(υ) ∗ (−1)2m−n/2+1πn/2

Γ(m − n/2 + 2)4m−n/2+1R
e
−2(m−n/2+1)(x) (2.43)

withm = n/2 − k − 1 as a homogeneous solution of (2.41).

Proof. Since

♦k = �k�k, ♦k
B = �k

B�k
B. (2.44)

Consider the following homogeneous equation:

♦k♦k
Bu(x) = 0. (2.45)

The above equation can be written as

�k�k�k
B�k

Bu(x) = 0. (2.46)

By Lemma 2.10, we have

�k�k
B�k

Bu(x) = δ(m)
(
r2

)
. (2.47)

Convolving both sides by RH
2k(u) ∗ (−1)kS2k(x) ∗ T2k(x), we obtain

RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ �k�k

B�k
Bu(x) = RH

2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ δ(m)
(
r2

)
.

(2.48)

By properties of convolution, we have

�RH
2k(υ) ∗ �k

B(−1)kS2k(x) ∗ �k
BR2k(x) ∗ u(x) = RH

2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ δ(m)
(
r2

)
.

(2.49)
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By (2.4), Lemmas 2.5, and 2.6, we obtain

δ(x) ∗ δ(x) ∗ δ(x) ∗ u(x) = RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ δ(m)

(
r2

)
. (2.50)

Thus

u(x) = RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ δ(m)

(
r2

)
(2.51)

or

u(x) = RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (−1)2m−n/2+1πn/2

Γ(m − n/2 + 2)4m−n/2+1R
e
−2(m−n/2+1)(x) (2.52)

is a homogeneous solution of (2.41).

Lemma 2.12. Consider the following:

� u(x) = f(x, u(x)), (2.53)

where f is defined and has continuous first derivatives for all x ∈ Ω ∪ ∂Ω, Ω is an open subset of Rn,
and ∂Ω is the boundary of Ω. Assume that f is bounded, that is, |f(x, u)| ≤ N, and the boundary
condition u(x) = 0 for x ∈ ∂Ω. Then we obtain u(x) as a unique solution of (2.53).

Proof. We can prove the existence of the solution u(x) of (2.53) by the method of iterations
and the Schuder’s estimates. The details of the proof are given by Courant and Hilbert, [12,
pages 369–372].

3. Main Results

Theorem 3.1. Given the following equation:

♦k♦k
Bu(x) = f(x), (3.1)

where ♦k and ♦k
B are defined by (1.3) and (1.7), respectively, f(x) is the generalized function, u(x) is

an unknown function x = (x1, x2, . . . , xn) ∈ R
n, and m = n/2 − k − 1. We obtain

u(x) = RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ δ(m)

(
r2

)

+ RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x)
(3.2)
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or

u(x) = RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (−1)2m−n/2+1πn/2

Γ(m − n/2 + 2)4m−n/2+1R
e
−2(m−n/2+1)(x)

+ RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x)
(3.3)

as a general solution of (3.1).

Proof. Consider the following equation:

♦k♦k
Bu(x) = f(x), (3.4)

or

�k�k�k
B♦k

Bu(x) = f(x). (3.5)

Convolving both sides of (3.1) by RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ (−1)kS2k(x) ∗ R2k(x), we obtain

RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ R2k(x) ∗ (−1)kS2k(x) ∗ �k�k�k
B�k

Bu(x)

= RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ R2k(x) ∗ (−1)kS2k(x) ∗ f(x).
(3.6)

By properties of convolution, we have

�kRH
2k(υ) ∗ �k(−1)kRe

2k(x) ∗ �k
B(−1)kS2k(x) ∗ �k

BR2k(x) ∗ u(x)

= RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ R2k(x) ∗ (−1)kS2k(x) ∗ f(x).
(3.7)

By (2.4), Lemmas 2.5, and 2.6, we obtain

δ(x) ∗ δ(x) ∗ δ(x) ∗ δ(x) ∗ u(x) = RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x). (3.8)

Thus

u(x) = RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x). (3.9)

Consider the following homogeneous equation:

♦k♦k
Bu(x) = 0. (3.10)

By Lemma 2.10, we have a homogeneous solution as

u(x) = RH
2k(u) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ δ(m)

(
r2

)
. (3.11)
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Thus, the general solution of (3.1) is

u(x) = RH
2k(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ δ(m)

(
r2

)

+ RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x),
(3.12)

or

u(x) = RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (−1)2m−n/2+1πn/2

Γ(m − n/2 + 2)4m−n/2+1R
e
−2(m−n/2+1)(x)

+ RH
2k(υ) ∗ (−1)kRe

2k(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x).
(3.13)

The proof is complete.

Theorem 3.2. Consider the following nonlinear equation:

♦k♦k
Bu(x) = f

(
x,�k−1�k♦k

Bu(x)
)
, (3.14)

where ♦k,♦k
B,�k−1, and �k are defined by (1.3), (1.7), (1.5), and (1.1), respectively. Let f be defined

and having continuous first derivatives for all x ∈ Ω ∪ ∂Ω,Ω is an open subset of R
n and ∂Ω denotes

the boundary of Ω and n is even with n ≥ 4. Suppose f is bounded, that is,

∣∣∣f(x),�k−1�k♦k
Bu(x)

∣∣∣ ≤ N, (3.15)

and, the boundary condition for all x ∈ ∂Ω let be

�k−1�k♦k
Bu(x) = 0. (3.16)

We can assume �k−1�k♦k
Bu(x) = U(x) and U(x) is a continuous function for x ∈ ∂Ω, then we

obtain

u(x) = (−1)k−1Re
2(k−1)(x) ∗ RH

2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗U(x) (3.17)

as a solution of (3.14) with the boundary condition as

u(x) = δ(m)
(
r2

)
∗ RH

2k(υ) ∗ (−1)kS2k(x), (3.18)

for all x ∈ ∂Ω and m = n/2 − k. The function S2k(x), R2k(x), Re
2(k−2)(x), and RH

2k(υ) are given by
(2.11), (2.15), (2.8), and (2.2), respectively. Moreover,

W(x) = (−1)k−1Re
2(1−k)(x) ∗ (−1)kS−2k(x) ∗U(x) (3.19)
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is a solution of the following equation:

�k�k
BW(x) = U(x), (3.20)

where �k,�k
B are defined by (1.1), (1.9), respectively, andU(x) is obtained from (3.11). Furthermore,

if we put p = k = 1, thenW(x) is reduced to

W(x) = MH
2 (u) ∗NH

2 (u) ∗U(x), (3.21)

which is a solution of the following inhomogeneous elastic wave equation:

(
∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

)
· (Bx1 − Bx2 − Bx3 − · · · − Bxn)W(x) = U(x). (3.22)

Proof. We have

♦k♦k
Bu(x) =� �k−1�k♦k

Bu(x)

= f
(
x,�k−1�k♦k

Bu(x)
)
.

(3.23)

Since u(x) has continuous derivative up to order 4p for k = 1, 2, 3, . . .. thus we can assume

�k−1�k♦k
Bu(x) = U(x), ∀x ∈ Ω. (3.24)

Then (3.17) can be written in the following form:

♦k♦k
Bu(x) =� U(x) = f(x,U(x)). (3.25)

By (3.2), we have

∣∣f(x,U(x))
∣∣ ≤ N, ∀x ∈ Ω, (3.26)

For U(x) = 0 or

�k−1�k♦k
Bu(x) = 0 ∀x ∈ ∂Ω, (3.27)

Convolving both sides of (3.24) by

(−1)kRe
2(k−1)(x) ∗ RH

2k(x) ∗ (−1)kS2k(x) ∗ R2k(x), (3.28)
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we obtain

(
(−1)kRe

2(k−1)(x) ∗ RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x)

)
�k−1�k♦k

Bu(x)

=
(
(−1)kRe

2(k−1)(x) ∗ RH
2k(x) ∗ (−1)kS2k(x) ∗ R2k(x)

)
∗U(x).

(3.29)

By properties of convolution, we have

(
�k−1(−1)kRe

2(k−1)(x)
)
∗
(
�kRH

2k(υ)
)
∗
(
♦k
B(−1)kS2k(x) ∗ R2k(x)

)
∗ u(x)

=
(
(−1)kRe

2(k−1)(x) ∗ RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x)

)
∗U(x).

(3.30)

By Lemma 2.8, we obtain

δ ∗ δ ∗ δ ∗ u(x) =
(
(−1)kRe

2(k−1)(x) ∗ RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x)

)
∗U(x). (3.31)

Thus

u(x) =
(
(−1)kRe

2(k−1)(x) ∗ RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x)

)
∗U(x), (3.32)

as a solution (3.14).
Now, considering the boundary condition we have

�k−1�k♦k
Bu(x) = 0. (3.33)

By Lemma 2.10, we obtain

�k♦k
Bu(x) = δ(m)

(
r2

)
, (3.34)

withm = n/2−k. Convolving both sides of (3.34) by RH
2k(υ) ∗ (−1)kS2k(x) ∗R2k(x), we obtain

RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x)�k♦ku(x) = RH

2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ δ(m)
(
r2

)
(3.35)

or

u(x) = RH
2k(υ) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (−1)m+k−2 (−1)mπn/2

Γ(m − n/2 + 1)4m−n/2+1R
e
−2(m−n/2+1)(x),

(3.36)

for x ∈ ∂Ω.



16 ISRN Applied Mathematics

Lastly, convolving both sides of (3.36) by (−1)k−1Re
2(1−k)(x) ∗ (−1)kS−2k(x), we obtain

(−1)k−1Re
2(1−k)(x) ∗ (−1)kS−2k(x) ∗ u(x) = RH

2k(x) ∗ R2k(x) ∗U(x). (3.37)

Setting

W(x) = (−1)k−1Re
2(1−k)(x) ∗ (−1)kS−2k(x) ∗ u(x). (3.38)

By Lemmas 2.8 and 2.5, we obtain W(x) as a solution of the following equation:

�k�k
BW(x) = U(x). (3.39)

If we put p = 1, then RH
2k(υ) and R2k(x) are reduced to MH

2k(u) and N2k(u) and are defined
by (2.6) and (2.18), respectively. Moreover, if we put p = k = 1, then the operator �k and �k

B

is reduced to

∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

,

Bx1 − Bx2 − Bx3 − · · · − Bxn ,

(3.40)

respectively, and the solution W(x) is reduced to

W(x) = MH
2 (u) ∗NH

2 (u) ∗U(x), (3.41)

which is solution of the following inhomogeneous elastic wave equation:

(
∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

)
· (Bx1 − Bx2 − Bx3 − · · · − Bxn)W(x) = U(x). (3.42)

The proof is complete.
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