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We present experimental evaluations of human-induced perturbations on received-signal-strength-(RSS-) based ranging measure-
ments for cooperative mobile positioning. To the best of our knowledge, this work is the first attempt to gain insight and under-
stand the impact of both body loss and hand grip on the RSS for enhancing proximity measurements among neighbouring devices
in cooperative scenarios. Our main contribution is represented by experimental investigations. Analysis of the errors introduced
in the distance estimation using path-loss-based methods has been carried out. Moreover, the exploitation of human-induced
perturbations for enhancing the final positioning accuracy through cooperative schemes has been assessed. It has been proved that
the effect of cooperation is very limited if human factors are not taken into account when performing experimental activities.

1. Introduction

With the advent of positioning systems, especially those
relying on received signal strength (RSS), it became under-
stood that the accuracy of location estimations is highly
affected by the surrounding environment. A plethora of stud-
ies concerning presumed accurate solutions show custom
coarse experimental activities, with limited repeatability for
performance comparisons.

Additionally, the indoor environment sets great, al-
though interesting, challenges for location-based applica-
tions since its intrinsic complexity severely affects the
accuracy of measurements, causing huge signal fluctuations
[1, 2]. Overlapping channels, shadowing, multipath, objects,
and sensitivity variations of heterogeneous wireless cards
make it difficult to perform accurate applications targeting
positioning services [2–6].

Alternatively to traditional approaches [7], new branches
of positioning methods and techniques have been developed
under the name of Cooperative Mobile Positioning [4]. The
exploitation of the most reliable RSS measurements detected
in the ad hoc links represent a valid and complementary
approach to traditional noncooperative methods. The hybrid

cooperative mobile positioning with signals of opportunity
is deeply rooted in the exploitation of the most likely reliable
short-range RSS measurements coming from neighbouring
devices [4, 5]. It also depends on the estimation of the
distances among them (ranging), and processing data-fusion
using nonlinear filtering, enhancing indeed the final position
estimation with respect to conventional non-cooperative
schemes [4].

The human body represents an additional source of inac-
curacies causing unpredictable fluctuations in the RSS. The
human body contains around 70% water, which absorbs
part of the 2.4 GHz WLAN radio signal causing a significant
decay in the signal amplitude. In particular, the direction
of the user body has attracted the research interest and has
been identified as source of errors in the location estimation
[3, 8]. This is mainly because in one orientation there is
a direct propagation path between the WLAN access point
(AP) and the mobile station (MS) held by the user, while
in the opposite orientation the user’s body is obstructing
the path in line-of-sight (LOS). For instance, experimental
results in [8] indicate that the signal strength at a given
location varies by up to 5 dBm depending on the direction
that the user is facing. Hence, the body of the user creates
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a systematic source of error and introduces a constant bias in
the estimated locations that, if correctly accounted, can offer
a beneficial impact on the positioning accuracy. Moreover
mobile devices are held by the users, adding another source
of errors for the RSS measurements: the hand grip [3]. The
recent fervor on the iPhone 4 antenna-gate has contributed
to surface in layman terms to the general public how impor-
tant is the influence of the hand, due to the close proximity,
showing an impact greater than the rest of the body.

In this paper, we demonstrate that human-induced errors
cannot be ignored when performing experimental activities.
In fact we show that both hand-grip and body-loss effects
highly compromise even the undisputed benefits of coop-
erative schemes, highly corrupting the expected accuracy
enhancements. We also experimentally demonstrate that
although the effects of hand grip and body loss generate sys-
tematic errors, if correctly accounted and cognitively ex-
ploited, rather than roughly discarded or mitigated, it is pos-
sible to enhance the beneficial effects of the cooperation
among devices in terms of positioning accuracy. To the best
of our knowledge, this work is the first attempt to gain insight
and understand the impact of both body loss and hand grip
on the RSS for enhancing ranging measurements among
neighbouring devices in cooperative scenarios. Our main
contribution is represented by experimental investigations
on ranging estimations, analysis of the errors introduced in
the distance estimation using path-loss-based methods and
exploitation of human-induced perturbations information
for enhancing the final positioning accuracy of cooperative
schemes.

The paper is organized as follows: Section 2 describes
the conceptual flow from conventional to cooperative posi-
tioning lying the theoretical foundation for the subsequent
experimental results shown in Section 3. Conclusions are
finally presented in Section 4.

2. From Conventional to
Cooperative Positioning

2.1. Wireless Positioning. In wireless positioning different
methods and techniques, based on signal of opportunity
(SoO), have been proposed and adopted for experimental
activities towards commercial location-based services [7]
(Figure 1). Such methods can be divided into two main
categories: mobile-based and network-based. While in the
first the mobile station (MS) takes advantage of parameters
gathered from base stations (BSs) or APs to determine its
position, in the latter the BSs/APs measure parameters from
signals coming from the MS, and the position calculation is
performed on servers deployed in the network. In this sec-
tion, we provide a brief overview of the main measurements
and positioning techniques that can be used for positioning
a MS using SoO.

2.1.1. Angle of Arrival (AOA). AOA makes use of multiarray
antennas to estimate the angle of the line of arrival of the
signal. The final position of the target MS is located at
the intersection of the lines using triangulation. As antenna
arrays are large in size, the positioning estimation is suitable
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Figure 1: Wireless positioning.

to be performed by the network. AOA is mainly adopted
for outdoor positioning [6], even though results on AOA-
based positioning have also been performed indoors and
reported in [6]. The direction of the arrival of the signals
is highly corrupted by reflections and non-line-of-sight
(NLOS) conditions deteriorating indeed the final accuracy.

2.1.2. Time of Arrival (TOA). TOA information can be
retrieved by evaluating the time of arrival of the signal from
MSs to fixed reference points with known coordinates [7]
(GNSS satellites, BSs, APs, etc.) or vice versa. However, both
entities need to be accurately synchronized in time. Once
the distance between MS and at least three BSs is obtained
from TOA, the final position estimation is then performed
by using trilateration through the intersection of circles with
radii determined from TOA measurements and centers at the
known BS coordinates. Additional to synchronization pro-
blems, also reflections and non-line-of-sight (NLOS) condi-
tions distort the TOA of the signals.

2.1.3. Time Difference of Arrival (TDOA). TDOA is based on
evaluating the difference in the arrival times of signals from
two different transmitters to receivers. TDOA values define
hyperbolas between the two receivers on which the MS is
potentially located. Positions of the MSs are then estimated
at the intersection of the hyperbolas. [4]. Compared to TOA,
the main advantage of this technique is that knowledge of the
absolute time of the transmission is not needed as synchro-
nization between transmitters and receivers is not required.
Only synchronization among transmitters is required.

2.1.4. RSS. Positioning methods based on RSS estimate the
MS location through theoretical, statistical, or empirical
models to relate the strength of the received radio signal
either to the distance between the BSs/APs and MS or to the
MS location directly.

Parameters in the applied models are in principle experi-
mentally determined in order to better adapt to the appli-
cation environment. RSS-based positioning methods are
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divided into three main categories: cell identifier-based,
fingerprinting, and pathloss-based. For mass market loca-
tion-based applications, the RSS is considered more easily
available than the aforementioned parameters as it can be
passively listened from the APs of the infrastructure (e.g.,
WLAN). Technically the APs periodically broadcast beacon
frames containing information for network identification
(e.g., SSID, BSSID, RSS, RSSI) [3–7]. For network manage-
ment and connectivity quality purposes MSs can switch
through different channels and store information from any
received beacon. The aforementioned process allows the MS
to determine the cell identifiers and signal strengths of all vis-
ible APs.

(a) Cell ID. In the Cell identifier method, MSs perform pas-
sive scanning of the available radio channels (e.g., WLAN),
and the position estimate is reported as the position of
the relative BS (or AP) from which the strongest signal is
received. With such method prior information about the
locations of BSs/APs and their unique media access control
(MAC) addresses or custom unique identifiers are required.
The main characteristic of the method is the easy deployment
and implementation despite its coarse accuracy level.

(b) Fingerprinting. Fingerprinting method is based on exten-
sive and time-consuming experimentally built models relat-
ing recorded RSS values directly to the measured position.
Models are obtained from off-line collected data from
different locations sufficiently covering the area targeting
positioning service [1, 6]. For each location, a signal pattern
is extracted and saved to the database of fingerprints with
the location coordinates. In positioning phase, the on-the-
fly recorded set of RSS measurements in the coverage area
are compared to the patterns stored in database and the
position estimate is obtained from the pattern with the
closest match with the measured RSS vector. Among all RSS-
based methods, fingerprinting algorithms are considered
robust against environmental impairments, as it makes use
of location-dependent error characteristics of radio signals.
The main disadvantage of fingerprinting is the tedious data
collection phase as it is laborious and time consuming [6].

(c) Pathloss-Based. Pathloss models are conventionally
adopted to convert RSS measurements into actual distances
between the MS and BSs/APs. Once the aforementioned dis-
tances are estimated, trilateration can be adopted to estimate
the position of the MS where at least three fixed reference
points are needed. In indoor environments, multipath and
attenuation caused by walls, other structures and even people
complicate the modeling of signal propagation. Because of
environmental impairments, the pathloss-based accuracy is
typically worse than fingerprinting [6]. On the other hand,
methods that utilize path-loss models to estimate distances
are needed for fast and robust ranging measurements, like
ad hoc WLAN connections between two MSs such as in
cooperative positioning. Because of the low system set-up
cost of pathloss-based positioning, and its better suitability
for incorporating measurements from ad hoc connections,
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Figure 2: Cooperative scenario.

we concentrate on this technique by going deep into the main
challenges encountered when building empirical pathloss
models.

2.2. Cooperative Mobile Positioning. Cooperative mobile pos-
itioning (CMP) [4] uses hybrid schemes and data-fusion
filters to combine short-range (MSs-MSs) and long-range
(BSs/APs-MSs) measurements (Figure 2). The main concept
is that “exploiting the most likely reliable short-range measure-
ments coming from the neighboring mobile devices it is possible
to enhance the location accuracy with respect to conventional
techniques” [4, 5]. In fact it has been demonstrated how the
exploitation of spatial proximity estimated within a group
of neighboring devices can enhance the location estimation
accuracy [4, 6] and it can be easily applied in case of (i)
outdoor environments, by merging the measurements from
hybrid technologies; (ii) indoor environments, by combining
infrastructure and ad hoc mode WLAN communications
signals; (iii) GPS-equipped mobiles, where the location
estimation can be enhanced in challenging environments
[4]. The most promising approaches proposed in [4, 5]
adopt least squares (LS), non-linear-least-squares (NLLS)
algorithms and Bayesian filters. While Bayesian filters could
be a potential alternative to the previous ones [4], the nonlin-
ear characteristics of measurements and positions make the
common Kalman filter (KF) not suitable for solving the pro-
posed problem. Better results could be reached with extended
Kalman filters (EKF), widely used for both positioning and
tracking by linearizing the models and applying then the clas-
sical KF to the linearized system [4]. In this paper, we demon-
strate results achieved by using an NLLS algorithm [1, 2] in
the experimental activity with and without mitigating the
effect of human-induced perturbations in RSS ranging mea-
surements for the data-fusion algorithm adopted (NLLS). A
fundamental step of cooperative mobile positioning is in the
accurate ranging measurements based on the estimation of
the close distances among peer neighbors connected in ad
hoc mode. However, when the aforementioned distances are
not properly and accurately estimated, the beneficial effects
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of cooperation are highly compromised. The effect of the
hand grip and body loss not only corrupts long-range mea-
surements (APs-MSs) but also short-range ones (MSs-MSs),
hence degrading the potentials of a cooperative approach.
The data-fusion algorithm, based on NLLS, is adopted.
First RSS (APs-MSs link) are used to estimate the position
of the MSs by using the LS algorithm [1]. The obtained
estimates are the needed initial guesses for the NLLS when
used in the non-cooperative case (conventional technique)
(Figure 3(a)) [5]. Further details concerning the positioning
algorithm can be found in [4, 5]. To enhance the positioning
accuracy (Figure 3(b)), RSS from the ad hoc MS-MS links
are used to estimate the relative distances between the MSs
and NLLS is used as data-fusion algorithm to combine all the
measurements. Some notations need to be defined as follows:

X[ j] =
[
x j y j

]T
,
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[
x̂(i) ŷ(i)

]T
,

d̂
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}T{
x̂(i) − x̂[ j]

}
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(1)

X[ j] represents the coordinates of AP j ; X̂(i) the estimated

coordinates of MSi; d̂
(i)[ j]
k defines the estimated distance

between AP j and MSi at iteration k of the optimization

routine when considering RSS from APs; d̂
(i)( j)
k represents

the estimated distance between MSi and MSi at iteration k of
the optimization routine when considering RSS from ad-hoc
links. The objective function to be minimized in order to
determine the location of the MSs is described as follows
[4, 5]:
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n is the total number of MSs and N is the total number of
APs. The functions J(◦) can be defined as follows:

JT
(
x̂(i)
)
= d̂

(i)[ j]
k , (3)

JP
(
x̂(i)
)
= d̂

(i)( j)
k . (4)

2.3. The Human Impact. The present section illustrates some
cross-layer and cross-field topics often neglected in studies
which focus on specific narrow areas without following
holistic approaches that would result in a better compre-
hension of the underlying phenomena governing the appli-
cation under investigation. In fact, there is often the selfish
tendency of conducting experiments that do not result in
providing a better understanding of the actual phenomena,
mainly, because of their lack of generalization potential. A
simplistic approach in designing experiments and carrying
out measurement campaigns is undoubtedly a widespread
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Figure 3: Data-fusion algorithms.

practice in most studies in literature. In fact, it is mandatory
to take into account the most sensitive biases and properly
identify beforehand the potential source of uncertainty [9].
As a result, the problem of oversimplification affects the
understanding of channel behavior as well, which often does
not consider at all the human-induced anomalies [9, 10].
Unrealistic reference cases and optimistic assumptions might
significantly deviate with respect to both-worst case scenario
and average-use case. Though on one hand a certain degree
of model simplification is always needed as a starting point,
the subsequent investigations should tend to isolate the
sources of uncertainty and trace back the particular sources
of both errors and performance enhancement. Despite exten-
sive research in localization over the past decade, quite lit-
tle in proportion has been done to take into account the
human-induced perturbations which users would experience
through their smartphones in realistic environments that
often are far away from the models presented in literature.
The unpredictable temporal signal fluctuation arising from
user interaction with any handheld device in the form of
both signal blocking and motion in a multipath environment
constitutes a major challenge for wireless communication
performance. The user is an inescapable part of the wireless
communication channel, and often it has not been included
in models more because of oversimplification than gross lack
of knowledge in the whole radiating mechanism. In addition
to the regular and well-known dynamics in the propagation
channel, mobile devices experience further dynamics in the
antenna characteristic itself due to the often unavoidable and
changing near-field interaction with users. Proper terminal
design has to include not only the user interaction to yield
good system performance on the overall wireless communi-
cation, but should integrate this information with the higher
layers through a dedicated cross-layer design approach.
Unlike simplistic static propagation channel assumptions,
the user interaction itself is rarely static, having a further
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randomizing impact on the overall communication channel
performances. The observed user-induced randomness and
the underlying dynamics in the whole propagation channel
highlight a strong challenge in designing effective localization
systems, making it clear that it would be highly beneficial
to put more effort in understanding the potential of user-
induced anomalies cognitivity in cooperative localization,
rather than focusing on the mere observation of the limits
posed by an unfriendly propagation environment.

2.3.1. Conventional Indoor Channel Modeling. The perfor-
mance optimization of cooperative localization algorithms
requires dedicated efforts, such as the topics addressed in this
section, as mobile terminals will often operate in far-from-
ideal wireless channel conditions. When modeling an indoor
wireless channel, it is useful to break down the propagation
mechanism as a superposition of different effects (expressed
in logarithmic scale): channel = pathloss + static shadowing +
dynamic shadowing + fading.

2.3.2. Pathloss and Fading. The usual path-loss is simply
defined as that portion of the propagation loss which
depends uniquely on the distance between the access point
and the terminal or between two terminals. However, for
indoor-to-indoor links, the path loss is also dependent on the
number of walls in between the transmitter and the receiver,
having different weights for walls of different materials, such
as thick brick walls and thin plasterboard walls. Small-scale
variations of the signal power are accounted for in the fading
part, which also depends on the speed of the mobile terminal.

2.3.3. Static and Dynamic Shadowing. Static shadowing is
due to signal obstructions related to the shadowing effect of
large objects which are time-invariant and it is also due to
the emergence of destructive and constructive interference of
coherent multipaths. Dynamic shadowing is the propagation
portion reflecting the well-described large-scale variations
around the pathloss, which typically follow a log-normal dis-
tribution and may be correlated between different links.

2.3.4. Channel in Presence of the User. The operating envi-
ronment of wireless communications in proximity with the
user’s body is quite different from more traditional wireless
networks, as one end of the link is affected by the fact that
the body is in the near field of the device, dictating the non-
stationary behavior of the channel. Proximity of a wireless
device to external objects such as user’s body, tinted doors,
and metallic doors and strongly affects the propagation envi-
ronment. Nevertheless, most of the propagation phenomena
happen away from the body in the surrounding space, allow-
ing the usage of the aforementioned well-established prop-
agation models. The reliability of a wireless link operating
in such an environment is strongly conditioned by the user’s
body influence, whose impact on propagation demands a rig-
orous analysis. There are a series of time-varying conditions,
such as user movement, orientation, hand grip, and posture.
Using a very simplistic approach, the human body can be
modeled electromagnetically as a homogeneous dielectric
cylinder, where impinging waves generate reflection and

diffraction phenomena. The extent of these effects will
depend on several factors such as the operating frequency,
the relative dimensions of the body with respect to the wave-
length, and the average composition of the human tissues.
However, not all the body parts respond in the same way to
the exposition to electromagnetic waves, as if one particular
body part is not large with respect to the wavelength, it
will have a negligible effect on the propagation mechanism
and will yield small fluctuations. When we are dealing with
wireless devices with low operating frequencies, their ground
plane will result to be comparable with respect to the half
a wavelength, becoming an integral part of the radiating
structure. The presence of the user’ body naturally leads
to changes in the purity of the antenna radiation pattern
and input impedance, causing a corresponding reduction of
the total efficiency. Antennas in common devices are very
seldom directional, as they have to cope with a rich multi-
path environment. In fact there is no sense in designing a
directional antenna that would be immediately corrupted
by the effect of the user’s head and hand. When a standard
wireless device rotates around a blocking object such as the
user’s body, its radiation pattern is affected in such a way
to emulate the behavior of a directional antenna. Moreover,
the presence of a large object in between the wireless links
causes a consistent drop in the RSS. Though such a drop is
typically the strongest when the receiving device is totally
in the shadow area of the user’s body, it might also happen
that because of the multipath effect there is a signal drop of
different entity. By using the RSS measured at one or multiple
locations, it is possible to give a first estimation of the dis-
tance between the transmitter and the receiver making basic
assumptions on the propagation model. However they end
up in being inaccurate in reflecting the user-induced anoma-
lies in a practical environment. In fact, the idealized simple
assumption that RSS decreases as the receiver moves away
from the transmitter often breaks down in practice and spoils
even the beneficial cooperation potential in localization. An
important matter is also the choice of the maximum physical
radius within which human-induced disturbances may be
considered to be an integral part of the antenna. The human
body is nothing else but a lossy dielectric load for the antenna
system point of view [11–15]. Beside health hazard specu-
lations, electromagnetic waves naturally tend to dissipate in
our bodies by Joule effect. In fact it is more relevant to focus
on the influence of the body on the antenna rather than the
contrary [11]. This has several effects on the antenna system,
such as lowering of the total antenna efficiency, radiation
pattern deterioration, and throughput reduction [11].

2.3.5. Statistical Antenna Modeling. There is an undisputable
need for simple but representative channel models in such a
way of being able to account for the variability of the pro-
pagation in a parameterized manner. This can be achieved
either by using advanced models or by properly extracting
statistical models from ad hoc databases. Even though it is
possible to describe antennas in a deterministic way, their
performance in the presence of the user has an inherently
stochastic nature. In [16], a model is presented for the
stochastic signal variations in the presence of the user’s body,
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assuming as a first approximation a normal distribution and
being able to quantify both mean and standard deviations.
It was found that for a typical WiFi signal, the standard
deviation in the received signal may reach up to 2 dB when
only the user’s torso is considered. However, as stated in
several publications, the effect of the hand is typically more
significant than the rest of the body, adding further sources of
randomness in the link budget determination. Only recently
the first attempts to statistically model the antenna system
close-by environment are being found in the literature [12],
recognizing that the influence of the human body hides a
substantial fraction of the link budget [13]. In fact, when
a link budget is typically defined from the overall system
perspective [14, 15, 17–21], there is always a lack of real
usage figures of merit and typical values tend to be collected
referencing papers that might not be appropriated and
pertinent anymore due to the actual changing conditions.
One of the best examples is the 3 dB body-loss figure
recommended for GSM, while it is always 10 dB or more in
real usage and even 20–25 dB in low-end mobile phones [14].
This misleading approach is for instance one of the main
reasons for problems in DVB-H, which has almost no indoor
coverage support and suffers because of the influence of the
hand [15, 21–25].

2.3.6. The Superantenna Concept. The user interaction with
the device is condensed in a single propagation aspect, so
that the rest of propagation can be seen as a superposition of
easily identifiable combinations [16, 25–28] of propagation
parts, ensuring the practical applicability of the aforemen-
tioned statistical antenna modeling. In [29–31], the user’s
body is considered as an integral part of the handheld
device, leading to the concept of super-antenna. This makes
it possible to extend the composite channel approach to
include user effects by combining the channel with the radia-
tion patterns of the super-antenna.

2.3.7. The Hand-Grip Effect. The original sin of many mobile
device manufacturers has been the fact of overlooking the
importance of the hand grip on the communication per-
formance. Usually usability studies are performed on a lim-
ited number of users that might not fully capture the exact
complexity of real usage patterns [9]. Several studies are
mainly focused on ergonomics and operability, while only
recently we have witnessed a growing awareness of the user’s
influence on the radiating performance [17]. The hand’s
influence, due to the close proximity, is greater than the rest
of the body [21], and the overall variation of the RSS is very
sensitive also to the relative position of individual fingers [17,
18]. Though very often literature studies present exceptional
performances, however common practice tells us that if all
the real-life conditions are correctly accounted for most
proposed schemes it might even be worse than the reference
case. The recent fervor on the iPhone 4 antenna-gate has
contributed to surface in layman terms to the general public
how important is the interaction between the user and the
mobile device. Only recently the first hand phantoms have
been standardized and investigated by CTIA and COST2100
[20, 21]. However, even using standardized hand phantoms

does not solve all problems, as manufacturers might tend
to optimize the mobile phones only for passing a very
specific certification tests. This means that not only proper
mobile phone design should take into account the real usage
variability, but any successful service which relies on sensing
link quality-related quantities must properly include the
effect of the hand.

2.3.8. Cognitive Design. Harnessing the influence of the
human body on the overall measurements and performances
of mobile phones can bring unexpected advantages [22].
By knowing statistically what is the most likely grip for a
mobile phone it is possible to realize more robust antenna
designs [22]. Moreover, the growing number of sensors
on mobile phones and the upcoming cognitivity in smart-
phones can provide additional information that can ease
communication and measurements analysis and even pave
the way for new features [23]. Adaptive impedance matching
and capacitive sensing of the position of the fingers of the
user [24, 25] has, for example, demonstrated to improve
the antenna efficiency by compensating both mismatch and
absorption loss in real products. This can also be used in
localization algorithms that would be able to filter out the
aforementioned effect of the near-field in the RSS depending
on what the usage pattern is [26]. Thus, there are still many
exciting research opportunities ahead on compact antenna
systems in a radio channel context for the years to come from
which positioning would really benefit in terms of reliability
and accuracy of measurements.

2.4. Related Works Concerning Human Body Impact. Con-
sidering research on localization, the user’s impact on RSS
measurements is shown to yield a 67% accuracy degradation
[8] in the median error when the neighbour technique is con-
sidered and the user’s body blocks the signal between the APs
and the MSs. Moreover, other authors show that a human
body may corrupt the RSS up to 3.5 dBm and that exists a
strong correlation between the measured RSS and the direc-
tion that the user is facing. In fact it is observed that omni-
directional signals are given directional properties because of
the presence of the user’s body, where usually the statistical
distribution of the RSS varies more than the mean [30]. The
effect of the user’s presence on the RSS distribution is shown
in [30], where a large spread of the RSS range is reported, that
is, a standard deviation increase from 0.6 dBm to 3.0 dBm
and a mean value change from −70.4 dBm to −71.6 dBm.
However, it is not clear if the user’s body is really responsible
for blocking the propagation path from the AP or not. By
using samples collected in four different directions and LOS
and NLOS paths between the mobile device and the WLAN
AP, the effect of user’s orientation was also studied in [30]. In
case of NLOS, the signal coming from the AP had an atten-
uation of 6.0 dBm between the highest and the lowest RSS
levels, while for the LOS case a 10.0 dBm loss was observed in
the user’s body obstruction direction. Even worse, if the user
turned to the opposite direction, another AP having low RSS
values when the user was directly facing it was completely
undetectable. The performance of positioning methods that
exploit RSS measurements may be severely degraded by
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the aforementioned effects. As the exact number and sizes
of humans in a building at any time is generally a finite but
random number [8], it is virtually impossible to characterize
the variable signal loss precisely as far as pathloss model-
based methods are concerned. Fortunately, in fingerprint-
based methods the effect of the user’s body can be taken into
account explicitly by extending the radio map and including
fingerprints collected at each location while the user’s body
is facing at different directions. As an example, in [8] it is
also recorded the direction (d)—north, south, east, or west—
in addition to the user’s location (x, y). However, in the
aforementioned paper the information on the direction is
only used to assess the effect on the positioning error of a
wrong direction assumption. Likewise, the RSS fingerprints
at each location in two opposing directions were collected
[32–35]. The accuracy performance could be enhanced if the
direction of the user’s body during positioning was known or
could be implied somehow. At this purpose, we may mention
[31] where low cost and low power digital compasses are
used to detect the user’s orientation, so that only those
fingerprints collected during the offline phase that have a
similar orientation are selected in determining the user’s
position. The positioning accuracy has been recently shown
to greatly improve using the digital compass integrated into
the Google Nexus One smart phone [36]. Another solution
to mitigate the user’s body effect is to exploit novel antenna
designs, for example, omnidirectional wearable antenna, as
suggested in [8]; this would be applicable to model-based
methods as well. There is a general agreement that the
impact of user’s orientation consists in a significant signal
loss in the LOS direction that the user’s body is blocking.
However, holding the mobile device in different orientations,
for example, vertically or horizontally, while the user is static,
is an ulterior case that has not been studied in the literature
before. The relative location of the antenna with respect to
the neighboring AP has an effect on the observed RSS values
which depends on the orientation of the device. Moreover,
the user may block the antenna unintentionally with his
particular hand grip, causing additional signal attenuation
and accuracy degradation (Figure 5) as reported in [3]. To
the best of our knowledge, our work is the first genuine
attempt to gain insight on the impact of mobile device’s
orientation, the body loss, and the hand grip on the RSS
measurements in the localization of mass market devices in
cooperative scenarios. Our main contribution is the on-the-
field experimental analysis of the aforementioned parameters
on the RSS samples. We then investigate the amount of error
introduced in the distance estimation from the respective
MSs that is due to these conditions showing in a test environ-
ment the impact on the final position estimation.

2.5. Human-Induced Effects on Cooperation. In this context,
heterogeneous technologies and mobile terminals coexist
and cooperate with the objective of helping each other for
enhancing accuracy of their estimated positions. This can be
accomplished by sharing link information with peer nodes
connected in ad-hoc mode and exploiting their spatial diver-
sity with advanced positioning algorithms [4]. Sharing radio
signals that are just enough to ensure network connectivity

among mobiles, the ad hoc network model achieves better
performances over the stand-alone infrastructure one [3, 4].
However, as the close-proximity [37] range estimation is
the core of the proposed cooperative approach, it needs to
be very accurate, which does not happen due to the effect
of body loss and hand grip (Figure 6) in the RSS to dis-
tance estimations using path-loss models, as it will be
demonstrated in Figures 14 and 15.

3. Experimental Activity

In this section we present the effect of the human body and
the hand grip on RSS measurements for localization of mass
market devices in indoor environments, demonstrating the
strong influence they have in the evaluation of the RSS and
distance estimations to be used in cooperative schemes. The
experiment has been performed at Tampere University of
Technology, Department of Computer Systems in an open
area, with dimensions of 20×20 meters by using mass market
devices. In particular we have adopted Nokia N900 Smart
Phones for recording RSS from a total of four APs 802.11n
Cisco.

3.1. Empirical Pathloss Model. Theoretically, a free-space
propagation model could be used for converting RSS into
distance [3]. However, the accuracy of measurements will
decrease in environments where obstructions and other
impairments are present. As mentioned before, indoor scen-
arios can be characterized by several objects (static or mov-
ing) producing reflections, diffraction, and scattering [37].
This means that the signal decay is affected not only by
the distance between transmitters and receivers, but also by
obstructions [3]. The theoretical model described in [2, 3]
shows the large scale behavior of the propagation given by
[6]:

d=10((Ptx−Prx+Gtx+Grx−Xa+20log10(λ)−20log10(4π))/10n). (5)

However, this model does not take into account any
characteristics of the environment and it is not suitable at
all for practical applications in real life. At this purpose
the pathloss model adopted in this work has been obtained
empirically (Figure 7) by following the procedure described
in [2, 3], hence placing the MS at several distances from 1 m
to 20 m respect to the AP (Figure 8), measuring the RSS, and
storing the value with the highest number of occurrences
at each step. Figure 8 shows the obtained model, which has
been filtered with a 4th order polynomial approximation.

3.2. Long-Range versus Short-Range Measurements. Figures 9
and 10 show the RSS measured in short-range, close pro-
ximity (2 m), and at long-range (15 m). As expected, mea-
surements from 2 m are more reliable if compared to long-
range ones as they appear to be more stable and less affected
by fluctuations [3]. Being more reliable the short-range
measurements offer the possibility to accurately estimate the
distances between MSs deployed in the area. However, this is
only true if measurements are performed without the effect
of both hand grip and body loss, hence, if they are sufficiently
stable or not corrupted.
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Figure 5: Human body impact on positioning estimation [3].

3.3. Device Orientation. Measurement campaigns with mass
market devices are always a tricky task since devices’ speci-
fications are not always detailed and companies do not share
technical secrets and performances capabilities. In addition
to the traditional environmental factors to take into account
[3] related to RSS, the orientation of the device with respect
to the AP is one of them. Specifically, depending on the
particular position respect to the AP, different values of RSS
are measured. In [3], 32 positions have been defined. Hence
devices report different RSS values depending on the specific
orientation respect to the AP and it is straightforward to
understand that by applying a RSS-to-distance conversion
model [3, 6] the orientations of the device highly affect the
distance estimation, consequently compromising the posi-
tioning estimation accuracy.

3.4. Body-Loss Effect. The human body [37] has a huge
impact on the RSS measurements for localization purposes

User 1 User 2

User 3

AP3

AP2

AP1

RSS

RSS

Figure 6: Cooperative positioning with human body effect.

[3]. Figure 11 shows the measured effect in four extreme
cases: (a) (front) line-of-sight (LOS) between AP and MS;
(b) (back) no LOS between AP and MS, with the user’s body
fully occluding the path; (c) (right) AP on the right side of
the user; (d) (left) AP on the left side of the user. In this case
the MS is placed at 3 m from the AP. Figures 11 and 12 show
the real effect of the human body on the RSS measurements
and estimated distances performed using the empirical
pathloss model reported in Section 3.1. As expected, case
(a) shows the highest RSS, while case (b) shows the lowest.
Consequently, also the distance estimation from the AP is
compromised as reported in Figure 12.

3.5. Hand-Grip Effect. The hand-grip effect experiment has
been performed using the simple grips shown in Figures 4(a)
and 4(b) by maintaining the same orientation (a) as reported
in Section 3.4. In Figure 4(a), the hand is not covering the
WLAN antenna, while in Figure 4(b) the antenna is fully
covered. The AP is placed 3 meters away from the MS
under test and the recorded RSS with the estimated distances
are reported in Figure 13 (squares) and Figure 14 (squares)
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respectively. The hand grip introduces a loss of approxi-
mately 20 dBm in average for the MS under test if compared
to the case without the hand impact as shown in Figure 13
(circles) and Figure 14 (circles).

3.6. Effects on Position Estimation. In this experiment we
test the effect that the aforementioned human-induced

AP User 1 User 2
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Figure 10: Short-range versus long-range scenario.

0 10 20 30 40 50 60
Number of measurements

A front

B back

C right
D left

−25

−30

−35

−40

−45

−50

−55

−60

R
SS

 (
dB

m
)

Figure 11: Body-loss impact on RSS measurements.

impairments have on the cooperation and hence in the
accuracy of the final position estimation. At this purpose, we
have devised a squared testing environment using four APs
and placing MSs in the center area (Table 1).
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Figure 13: Hand-grip impact on RSS measurements.

Table 1: Experimental setup.

Device x (m) y (m)

AP1 0 0

AP2 0 14

AP3 −7 7

AP4 7 7

MS1 −1 7

MS2 1 7

MS3 0 8

A set of 50 RSSs measurements are recorded from each
AP by three MSs. Then the empirical path-loss model is
applied and the estimated distances from the four APs are
sent to the NLLS algorithm (Figure 3(a)). The average of the
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Figure 14: Estimated distances with hand-grip effect.
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Figure 15: Estimated positions without cooperation.

50 estimated positions is shown in Figure 15 showing a clear
bias and confirming expected results [3].

3.7. Effects on Range Estimation and Cooperation. Results
obtained in Figure 15 could in theory be enhanced by using
the proposed data-fusion algorithm as demonstrated in [4–
6]. However, short-distance measurements are corrupted
by the influence of the human body and hand-grip as the
users are placed like in Figure 18(a), making the proxi-
mity estimations very inaccurate so that the data-fusion
algorithm underperforms without providing the expected
improvements in terms of positioning accuracy (Figure 16).
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Figure 16: Estimated positions with corrupted cooperation.
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Figure 17: Estimated positions with augmented cooperation.

At this point, by knowing the most likely grip effect and
orientation of the users among each other (e.g., with the
use of an embedded compass) it is possible to apply the
correction factors driven by the effect of the human-induced
impairments. When applying such corrections to the RSS
measured from ad hoc links the cooperation (augmented
cooperation) among devices finally has the expected ben-
eficial effect on the overall group positioning accuracy as
shown in Figure 17. The overall improvements provided by
the cooperation among devices and knowledge of the human
impairments are then highlighted in Figures 19 and 20, where
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Figure 18: User back and front signal blockage.
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Figure 19: RMSE of estimated positions.

the enhancement levels are shown in terms of root mean-
squared error (RMSE) [5] and percentage gain, respectively.

4. Conclusions

In this paper we have first introduced the broad field of
wireless positioning for mass market devices, trying to give
an overview of the current advancements in literature, high-
lighting both their potentials and limitations. Reviewing the
conventional positioning techniques it has been asserted that
they are not able to keep their promise in term of accu-
racy and feasibility. In fact, indoor environments constitute
a highly challenging scenario because of their intrinsic com-
plexity and unpredictability. Even though some attempts
have been done to overcome the aforementioned limitations
by proposing coarse cooperative techniques on top of
conventional algorithms, it has been found that a simplistic
modeling of the wireless scenario is not able to capture
the intrinsic variability of indoor environments. In fact
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the presence of the user’s body is an inescapable part in
the broader picture of indoor channel modeling. In the
past, the user-induced anomalies in the wireless signals have
been neglected not only within literature, but also by the
very mobile devices manufacturers. At this purpose, in this
contribution we have highlighted first and foremost the
effect of the user’s body on the far-field part of the wire-
less link, mainly identifying it as a time-varying blocking
object. Moreover, the effects of the near-field perturbations
caused by the close by environment have been presented. In
particular, the influence of the hand-grip on mass market
devices has been shown to have a growing importance in
mobile positioning algorithms. In this paper, many experi-
mental results have been presented to assess the potential of
user’s body cognitivity on the cooperative positioning per-
formances. Surprisingly, it has been found that cooperation
is not improving significantly the accuracy of the estimated
positions of the users with respect to the noncooperative
case. In fact, as stated before, the presence of the user should
be correctly accounted for in the data-fusion algorithm. This
means that if the hand grip and the blocking is somehow
accessible to the algorithm we could see a real boost in the
cooperative approach. For all these reasons, the encouraging
measurement results suggest that future work will highly
benefit from a proper knowledge of what surrounds the
mobile devices. Additionally, we would like to point out that
these benefits could be achieved in a straightforward manner
by using off-the-shelf mobile devices that already embed all
the needed sensors to unleash cooperative-based positioning
services.
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