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We study curvature properties in (k, p)-contact metric manifolds. We give the characterization of
7-Einstein (k, p)-contact metric manifolds with associated scalars.

1. Introduction

The class of (k, y)-contact manifolds [1] is of interest as it contains both the classes of Sasakian
and non-Sasakian cases. The contact metric manifolds for which the characteristic vector field
¢ belongs to (k, u)-nullity distribution are called (k, y) contact metric manifolds. Boeckx [2]
gave a classification of (k, p)-contact metric manifolds. Sharma [3], Papantoniou [4], and
many others have made an investigation of (k, j)-contact metric manifolds. A special class of
(k, u)-contact metric manifolds called N (k)-contact metric manifolds was studied by authors
[5, 6] and others. In this paper we study (k, )-contact metric manifolds by considering dif-
ferent curvature tensors on it (Table 1). We characterize 7-Einstein (k, y)-contact metric
manifolds with associated scalars by considering symmetry, ¢-symmetry, semisymmetry, ¢-
recurrent, and flat conditions on (k, y)-contact metric manifolds. The paper is organized as
follows: In Section 2, we give some definitions and basic results. In Section 3, we consider
conharmonically symmetric, conharmonically semisymmetric, ¢-conharmonically flat, ¢-
conharmonically flat, and ¢-recurrent (k, p)-contact metric manifolds and we prove that
such manifolds are #-Einstein or 5-parallel or cosymplectic depending on the conditions.
In Section 4, we prove that ¢-conformally flat (k, u)-contact metric manifold reduces to
N (k)-contact metric manifold if and only if it is an 7-Einstein manifold. Further we prove
conformally Ricci-symmetric and ¢-conformally flat (k, pr)-contact metric manifolds are -
Einstein. In Section 5, we prove that pseudoprojectively symmetric and pseudoprojectively
Ricci-symmetric (k, p)-contact metric manifolds are 7-Einstein. In Section 6 we consider Ricci-
semisymmetric (k, pt)-contact metric manifolds and prove that such manifolds are #-Einstein.
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Table 1: Comparison of the results for different curvature tensors in M(k, y).

Curvature tensor Condition Result

5 5 M(k, p) is cosymplectic &
CX,Y,Z W) (VwCO)(X,Y)Z =0 u=2(1-n)e
M(k, ) is n-Einstein

C(X,Y,Z,W) R-C=0 & n-Einstein with & = -2nk and f§ = A%k (k+p)
C C Ricci tensor is n7-parallel and y = 2n-1)
C(X,Y,Z,W) C(¢pX, Y, ¢Z,¢W) =0 1ccl is 7-p n= "

7-Einstein with = —a — 2nk,

C(X,Y,Z, W) CX,Y)=0 gk @2n-Dp[2np+2(n-1)](k-1)
- 2(n-1)-nu—-k

1-Einstein with = 2nk — a,
C is ¢- 2n-1)(k-1
C(X,Y,Z,W) M(k, p) is ¢-recurrent = —k+ u@n +)](< )[b—y(Zn—l)]
C(X,Y)Z C(X,Y)¢=0 M(k, p) reduces to N (k)-c.m.m & M(k, p) is 7-Einstein

M(1,-2) is n-Einstein with a = M,
CX,Y)Z C-S=0 (1 - ) 5n-2

P” 4n-1) +4n’k an-1
C(X,Y)Z 'CPX, §Y,$Z,¢W) =0  y-Einstein with a = "= 221+ mk g =1 2’;_ )
PX,Y)Z R-P=0 n-Einstein
PX,V)Z P-S=0 n-Einstein
R(X,Y)Z R-5=0 7-Einstein

In all the cases where (k, pt)-contact metric manifold is an #-Einstein manifold, we obtain
associated scalars in terms of k and p.

2. Preliminaries

A (2n+1) dimensional C*-differentiable manifold M is said to admit an almost contact metric
structure (¢, ¢, 7, g) if it satisfies the following relations [7, 8]

¢*=-I+neé @ =1,  $i=0, 7no¢=0, 2.1)
g(PX, 9Y) = (X, Y) = n(X)n(Y),

(2.2)
g(X, ¢Y)=-g(¢XY), g(X,¢X)=0,  g(X,¢)=n(X),

where ¢ is a tensor field of type (1,1), ¢ is a vector field, 7 is a 1-form, and g is a Riemannian
metric on M. A manifold equipped with an almost contact metric structure is called an almost
contact metric manifold. An almost contact metric manifold is called a contact metric mani-
fold if it satisfies

g(X,9Y) =dn(X,Y), (2.3)

for all vector fields X, Y.
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The (1,1) tensor field h defined by h = (1/2)L;$, where L denotes the Lie differentia-
tion, is a symmetric operator and satisfies h¢p = —¢h, trh = tr ¢h = 0, and h¢ = 0. Further we
have [1]

Vx¢=-pX - phX,  (Vxn)Y = g(X +hX,¢Y), (2.4)

where V denotes the Riemannian connection of g.
The (k, p)-nullity distribution N (k, ) of a contact metric manifold M(¢,¢,7,g) is a
distribution [1]

N(k,p) : p — Ny(k, p)

={ZeT,(M):RX,Y)Z=k[g(Y,2)X - g(X,Z)Y] + u[g(Y, Z)hX - g(X, Z)hY]},
(2.5)

for any vector fields X and Y on M.

Definition 2.1. A contact metric manifold is said to be
(i) Einstein if S(X,Y) = 1g(X,Y), where 1 is a constant and S is the Ricci tensor,
(ii) n-Einstein if S(X,Y) = ag(X,Y) + pn(X)n(Y), where a and f are smooth functions.

A contact metric manifold with ¢ € N (k, p) is called a (k, p)-contact metric manifold.
In a (k, p)-contact metric manifold, we have

R(X,Y)¢ = k[n(Y)X - n(X)Y] + u[n(Y)hX - n(X)hY]. (2.6)

If k =1, u = 0, then the manifold becomes Sasakian [1], and if y = 0, then the notion of (k, y)-
nullity distribution reduces to k-nullity distribution [9]. If k = 0, then N (k)-contact metric
manifold is locally isometric to the product E"*1(0) x S"(4). In a (2n+1)-dimensional (k, p)-
contact metric manifold, we have the following [1]:

W=(k-1)¢* k<1, (2.7)
(Vx§)(Y) = g(X +hX,Y)& - 1(Y)(X + hX), (2.8)

QX = [2(n—1) = nu] X + [2(n - 1) + ] hX
bR nK R0, 721, =
S(X,Y) = [2(n=1) - npu] (X, Y) + [2(n = 1) + p] g (X, Y) .10

+[20 - n) +n2k + ) |n(X)n(Y), n>1,

S(X,¢) = 2nkn(X), (2.11)
r=2n(2n-2+k-npy), (2.12)

(Vxh)(Y) = [(1 = K)g (X, §Y) + (X, hpY)]& + n(V)($X + phX) - un(X)PhY, ~ (2.13)

where Q is the Ricci operator and r is the scalar curvature of M.
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Throughout this paper M(k,p) denotes (2n+1)-dimensional (k, p)-contact metric

manifold.

3. Conharmonic Curvature Tensor in (k, 1)-Contact Metric Manifolds

The conharmonic curvature tensor in M(k, u) is given by [10]
EXNZ=RXNZ - 5 =[S, 2)X - S(X, 2)Y + 3%, 2)QX - g(X,2)QY]. (3D

A (k, p)-contact metric manifold is said to be

(1) conharmonically symmetric if

<vwé> (X,Y)Z=0, where X,Y,Z,W € T(M), (3.2)

(2) conharmonically semisymmetric if

(R(U,X) : é) (Y, Z,W) = RU, X)C(Y, Z)W - C(R(U, X)Y, Z)W
(3.3)
- C(Y,R(U, X)Z)W - C(Y, Z)R(U, X)W = 0.

3.1. Conharmonically Symmetric (k, i)-Contact Metric Manifolds

Differentiating (3.1) covariantly with respect to W, we obtain

(VwC)(X,NZ = (WWR(X, V) Z - [(TwS) (X, D)X - (VwS)(X, )Y
2n—1 (3.4)

+8(Y, Z)(VwQ)(X) - g(X, Z)(VwQ) (V)]

If M(k, p) is conharmonically symmetric, then, from (3.4), we obtain

(VwR)(X,Y)Z = L [(VwS) (Y, 2)X - (VwS)(X, Z)Y
2n -1 (3.5)

+8(Y, 2)(VwQ)(X) - g(X, Z)(VwQ) (Y)].
Differentiating (2.6) covariantly with respect to W and using (2.4), we obtain

(VwR)(X, Y)& = k[g(W + hW,Y)X — g(W + hW, $X)Y] i
+ u[g(W + hW,$Y)hX — g(W + hW, pX)hY]. 30
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Differentiating (2.10) covariantly with respect to W and using (2.11), (2.4), we have

(VwS)(X,Y) = b[(1 - k)g(W, pX)n(Y) + g(W, hpX)n(Y) + n(X) g (hdW,Y)
+1(X)g(h¢hW, Y) — un(W)g($phX, Y)]

+c[g(W,dX)n(Y) + g(hW, dX)n(Y) + n(X)g (W, ¢Y) + n(X)g(hW, $Y)],
(3.7)

where
b=2n-1)+pu, c=2(1-n)+n(2k +p). (3.8)

From (3.7), we obtain

(VwQ)(X) = [(1 -k +m)pu +2k], [g(W,$X)¢ - n(X) (§W)]
+ [p(1 +n) +2nk], [g(W, hpX)¢ + 1(X) (hgW )] (3.9)
- [2(n=1) + p]n(W) ($hX).

Taking Z = ¢ in (3.5) and using (3.6), (3.7), and (3.9), we obtain

@1 =1)[k(g(W + B, $Y)X - (W + I, $X)Y)
+u(g(W + hW, pY)hX — g(W + hW, $X)hY)]
=1[g(W,¢Y) + (W, hpY)]X ~1[g (W, $X) + g(W, h$X)]Y (3.10)
+ 1Y) (mg (W, §X)¢ +1[g (W, hpX)¢ +n(X) (hpW)] = bn(W) ($hX))
= n(X) (mg(W, $Y)¢ +1[g (W, hpY)§ + n(Y) (hgW)] - by (W) ($hY)),

where

I=p(l+n)+2nk, m=(1-k+n)u+2k. (3.11)

Contracting (3.10) with ¢ and using (2.1), we obtain

k[(g(W,¢Y)n(X) - g(W,pX)n(Y)) (1 - )

(3.12)
+(g(hW, ¢Y)n(X) - g (AW, §X)n(Y)) (2n - 1)] = 0.
From (3.12), we get either k = 0 or
[(1= 1) (W, Y)1(X) = g(W, pX)1(Y))
(3.13)

+(g(hW, ¢Y)n(X) - g(hW, pX)n(Y))(2n - 1)] = 0.
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Taking Y = ¢Y in (3.13) and using (2.1), we obtain
(1-p) (g, W) =n(V)n(W)) + 2n - 1)g(Y,hW) = 0. (3.14)
Taking Y = ¢Y in (3.14), we obtain
(1- 1) g($Y, W) + (21— 1)g($Y, kW) = 0. (3.15)
Since p #1, from (3.15), it follows that y = 2(1 — n) if and only if

g(PY,W) +g(¢Y,hW) = 0. (3.16)

In view of (2.4), the above equation gives that M (k, ) reduces to a cosymplectic mani-
fold. Thus we have M(k, u) is cosymplectic if and only if y = 2(1 — n).

Further from (2.10) and Definition 2.1, we have M (k, y) is -Einstein with a = 2(n%-1),
B =2((1 — n?) + nk) if and only if u = 2(1 — n). Thus we have the following.

Theorem 3.1. In a conharmonically symmetric (k, p)-contact metric manifold M(k, p), the follow-
ing statements are equivalent.

(1) M(k, ) is cosymplectic.
(2) M(k, p) is n-Einstein with a = 2(n* = 1), f = 2((1 — n?) + nk).
B)u=2(1-n).

3.2. Conharmonically Semisymmetric (k, u)-Contact Metric Manifolds
Suppose R - C = 0. Then from (3.3), we have
R, X)C(Y, Z)W - C(RE, X)Y, Z)W - C(Y,R(&, X)Z)W - C(Y, Z)R(@E, X)W =0.  (3.17)
Using (2.5), (2.9), (2.6), (2.10), and (2.11) in (3.17) and taking W = Y = ¢, we get
K2 [n(Z)n(X) - 8(Z,X)]¢ - kug(hZ, X)é
- % (4nkn(Z)n(X) - 2nkg(X, Z) - S(Z,X))¢

- kug(Z, hX)g - 128 (hZ, hX)§ - - [2nkg(hX, Z) - S(Z,hX)]8

RO 2~ Z) +

—1(X) [4nkn(2)¢ - 2nkZ - Q7]

+kR(X,Z)¢ - [2nkn(Z2)X - 2nkn(X)Z + n(Z2)QX - n(X)QZ]

2n -1
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+uR(hX, Z2)¢ - [2nkn(Z2)X - 2nkn(X)Z + n(Z2)QX - QZ]

U
2n-1
+kn(Z)R(, X)¢ - an_lq(Z) [4nkn(X)¢ - 2nkX - QX]

+ un(D)REhX)E - —=n(Z)[-2nk(hX) - Q(hX)]

- K*n(X)[n(2)¢ - Z] +

S N(X)[2nkZ - QZ]

+kR(, Z)X - ZnL_l [S(Z,X)& - 2nkn(X) Z + 2nkg(Z, X)& - n(X)QZ]

+ uR(, Z)hX - —E— [S(Z, hX)& - S(hX, &) Z + 2nkg(Z, hX)¢E] = 0.

2n -1
(3.18)
Taking X = ¢ and using (2.9), (2.6), and (2.11), we obtain
4dnk
Q7 = % (k + p)n(2)& - 2nkZ. (3.19)
That is, M(k, p) is an 5-Einstein manifold.
Conversely, suppose in M(k, i) the relation (3.19) holds. Then we have
R-C=REX)CY, Z)W - C(RE,X)Y, )W - C(Y, R, X)Z)W - C(Y, 2)R(, X)W
(3.20)

- ﬂ(z)§<—2i"_k1 (k + ,4)) . 2n”_ -(QnkZ +QZ).

Using (3.19) in (3.20), we get R - C = 0 which implies that M (k, p) is conharmonically semi-
symmetric. Thus we have the following.

Theorem 3.2. A (k, p)-contact metric manifold is conharmonically semisymmetric if and only if it is
n-Einstein with a = —2nk and p = (4nk/p)(k + p).
3.3. p-Conharmonically Flat (k, ji)-Contact Metric Manifolds

Suppose M (k, p) is ¢-conharmonically flat, that is, C(¢pX, ¢Y, $pZ, W) = 0 for all vector fields
X,Y,Z,W. Then from (3.1), we obtain

ROX Y, 9Z, W) = s [SPYHZ)SGX, 9W) - 84X, $2)S(9Y, gW)

+5(9Y, $Z)(9X, §W) - S($X, $Z)g (Y, §W)].

(3.21)
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Let {e1,e,...,e2,¢} be a local orthonormal basis of the tangent space Tp(M) at each P in
M(k, u). Then in M(k, ), the following relations hold:

2n
Zg(ei, ej) =2n,
i=1

2n
> S(ei,ei) = r - 2nk, (3.22)

i=1

2n

> g(ei, 2)S(Y,e:) = S(Y, Z) - 2nkn(Y)n(Z),

i=1

2n
N g(ei, $Z)S(Y,e) = S(Y, $2). (3.23)
i=1

Taking X = W = ¢; in (3.21) and summing up from 1 to 2n, we have

iztﬁ«bei, $Y, $Z, per)
- G S ADSGesde) - s d2)S @Y ge)
+S(9Y,pZ) g (pei, pei) — S(Pei, Z) g (PY, dpei)].-
Using (2.13), (3.22), in (3.24), we obtain
S(¢Y,9Z) = (r - 2nk)g (Y, $Z). (3.25)
Replacing Y by ¢Y and Z by ¢Z in (3.25) and using (2.1), we have
S(Y,2) = (r - 2nk)g(Y, Z) + (dnk - 1) (Y)n(2). (3.26)

Taking Y = Z = e; in (3.26) and taking summation over i = 1 to (2n + 1), we obtain r = 2nk.
Substituting this in (3.26) and taking the covariant derivative with respect to X, we
obtain

VxS(9Y,¢pZ) =0. (3.27)

That is, S is -parallel.
Further substituting r = 2nk in (2.12), we obtain

(3.28)

Thus from the above discussions we can state the following.
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Theorem 3.3. Ina (2n+1)-dimensional ¢p-conharmonically flat (k, p)-contact metric manifold, Ricci

tensor is n-parallel and p = 2(n - 1) /n.

3.4. ¢(-Conharmonically Flat (k, u)-Contact Metric Manifolds

Suppose M (k, p) is ¢-conharmonically flat, that is, C(X,Y)¢ =0.
Then from (3.1), we obtain

R(Y)E = 50 (SOLOX ~S(X, Y + 5(LHQX - 5(X,QY).

Using (2.9), (2.6), and (2.11) in (3.29), we obtain

@n - Du[n(Y)hX - n(X)hY] - k[7(Y)X - n(X)Y] - [1(Y)QX - n(X)QY] = 0.

Taking Y = ¢ in (3.30) and using (2.1), we obtain
QX = kX - (k+2nk)n(X)¢ - 2n - 1)uhX.
Contracting (3.31) with W, we obtain
S(X,W) = kg(X, W) ~ (k + 2nk)n(X)n(W) — (2n - Dpg(hX, W).
Replacing X by hX in (3.32) and using (2.7) and (2.10), we obtain

[Cn-1)p+2(n-1)+u](k-1)[g(X, W) - n(X)n(W)]
2(n-1)-npu -k '

g(hX, W) =

Tha above equation with (3.32) yields
S(X,W) = ag(X, W) + pn(X)n(W),

where

i @n-Du2np+2(n-1)](k-1)
-t 2(n-1)-nu-k !

p=—-a-2nk.

Hence M (k, p) reduces to an 1-Einstein manifold.
Thus we have the following.

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

Theorem 3.4. A (2n + 1)-dimensional ¢-conharmonically flat (k, p)-contact metric manifold is an

1-Einstein manifold.
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3.5. ¢-Recurrent (k, u)-Contact Metric Manifolds

A (2n+1)-dimensional (k, pr)-contact metric manifold M(k, u) is said to be ¢-recurrent if and
only if there exists a nonzero 1-form A such that

P*((VwR)(X,Y)Z) = AW)R(X,Y)Z. (3.36)

Differentiating (3.1) covariantly with respect to W, we obtain

(Vw6> X, Y)Z=(VwR)(X,Y)Z - %((VWS)(X,Y)Z - (Vw9 X, 2)Y

+8(Y, Z)(VwQ)(X) - g(X, 2)(VwQ)(Y)).

(3.37)
Suppose M (k, pt) is ¢-recurrent. Then from (3.37), we have
-(vwé) X, Y)Z + q(<vwé) (X, Y)Z>§ = AWCX,Y)Z. (3.38)
Contracting (3.38) with ¢, we obtain
AW)n(CE(X,1)Z) = 0. (3.39)

Since A is a nonzero 1-form, we have q((NZ(X, Y)Z)=0.
Using (3.1), the above equation yields

AR, Y)Z) = 5 L[S, Z3n(X) = S(X, 2)n(Y) + 84, Z)1(QX) - g(X, 2)n(QY)] =0.

(3.40)
Using (2.6) and (2.9) in (3.40), we obtain
k[g(Y, Z)n(X) - (X, Z)n(Y)] + u[g(hY, Z)n(X) - g(hX, Z)n(Y)]
= 5 1S4 20 = S(X, 2)n(Y) + 2nkg (Y, 2)n(X) - 2nkg (X, Z)n(Y)]. o
Taking X = ¢ in (3.41), we get
S(Y,Z) = —kg(¥, ) + (2n+ Dn(Y)n(Z) + @n ~ Dug(hY, Z). (3.42)

Replacing Y by hY in (3.42), we obtain

S(hY, Z) = —kg(hY, Z) - (2n - 1) (k - Du(g(Y, Z) - n(Y)n(2)). (3.43)
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Replacing Y by hY in (2.10) and comparing the resulting equation with (3.43), we obtain

(k=1)(b-p(2
a

g(hY,Z) = n-1) (8(Y,2) -n(V)n(2)), (3.44)

wherea=2(n-1)-nu, b=2(n-1) +pu.
Using (3.44) in (3.42), we get

S(Y,2) = ag(¥, 2) + pn(Y)n(2), (3.45)

where a = -k + (u2n-1)(k-1)/(a+k))[b-pu(2n-1)] and p = 2nk — a.
That is, M(k, ) is an 5-Einstein manifold.
Thus we have the following.

Theorem 3.5. A ¢-recurrent (k, p)-contact metric manifold is an n-Einstein manifold.

4. Conformal Curvature Tensor in (k, y)-Contact Metric Manifolds

The conformal curvature tensor C in M(k, p) is defined by [11]

C(X,Y)Z=R(X,Y)Z- 21%1 [S(Y, 2)X - S(X, Z)Y + g(Y, Z)QX — g(X, Z)QY]

(4.1)

1
+ @1 [s(Y,2)X - g(X, Z2)Y].

Definition 4.1. A (k, p)-contact metric manifold M (k, p) is
(1) ¢-conformally flat if C(X,Y)¢ =0,

(2) conformally Ricci symmetricif C-S =0,

(3) ¢-conformally flat if 'C(¢X, Y, ¢pZ,¢W) =0forall X, Y, Z,and W € T(M).

4.1. ¢-Conformally Flat (k, yu)-Contact Metric Manifolds

Suppose that (k, pt)-contact metric manifold M(k, ) is ¢-conformally flat. Then from (4.1),
we obtain

RO Y)E= 2= [SOLDX - S(X, Y + 5(XHQX - 5(X, QY]

1
2n(2n-1) [

(4.2)
gV, )X -g(X,8)Y].
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Using (2.1), (2.6), and (2.11) in (4.2), we obtain

2nk 1
(k- 5oy + . 1))(11(Y)X—11(X)Y) + u((Y)RX = n(X)hY)

- (znl—_l)(’l(Y)QX -n(X)QY) =0.

Putting Y = ¢ in (4.3) and using (2.1) and (2.10), we obtain

QX = (2n - 1)<ﬂ B (k B 2in—k1 * 2n(2111 = 1)))’7(X)g

2n -1
2nk . 1
2n-1 2n(2n-1)

+(2n—1)<k— >X+(2n—1)y(hX).

Contraction of the above with Y yields

2nk(2n-1) -1 1-2nk

S(X,n:(T)n(X)n(m S Eg(X,Y) + (21— Dug(hX, ).

From (4.5), we have the following.
S(X,Y)=ag(X,Y) + pn(X)n(Y),

witha = (1 -2nk)/nand = 2nk(2n +1) —1)/2n if and only if y = 0.
Thus we have the following.

(4.3)

(4.4)

(4.5)

(4.6)

Theorem 4.2. A ¢-conformally flat (k, p)-contact metric manifold reduces to N (k)-contact metric

manifold if and only if it is an n-Einstein manifold.

4.2. Conformally Ricci-Symmetric (k, u)-Contact Metric Manifolds

If C-S =0, then we have

S(C(, X)Y,Z) +5(Y,C(¢,X)Z) = 0.

Taking Z = ¢ in (4.7) and using (4.1), (2.6), (2.9) to (2.12), we obtain

4n’k*  2nk(2n-2+k—np) b2(k-1)
2 _ B D .
<2nk o1t 1 +bu(k-1) ] 2(X,Y)

ab
+ <2nky— ap+ 5 — 1)g(hlf,X)

(4.7)
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(k-1
btk 1) + ﬁ)nmnm

. (a+c)2nk . 2cnk  4n’k*
2n -1 2n-1 2n-1

_ (k— Zna . (2"_2+k_””)>5(x,1f),

-1 2n -1
(4.8)
where
a=2(n-1)-npy, b=2(n-1)+p, c=2(1-n)+n(2k +p). (4.9)
Taking Y = ¢ in (4.8), we obtain u = —2k.
Ifk=1thenh=0,y=-2.
Thus for k = 1, (4.8) reduces to
S(X,Y) = ag(X,Y) + pr(X)n(Y), (4.10)
where
_ 2n(2n-1) , B= 2n(1 - n), (4.11)
5n-2 5n-2

that is, M (k, u) reduces to 7-Einstein.
Thus we have the following.

Theorem 4.3. A conformally Ricci-symmetric (1,-2)-contact metric manifold is an 1-Einstein
manifold.

4.3. p-Conformally Flat (k, u)-Contact Metric Manifolds
Suppose M (k, p) is ¢-conformally flat, that is, 'C(¢X, ¢Y, $pZ, W) = 0 for all vector fields X,
Y, Z, and W. Then from (4.1), we obtain

'R($X, §Y, Z, $W)

1 (S@PY$2) (X, W) - S(PX, $Z) 3 ($X, W)

(4.12)
+8(PY, 9Z)S($pX, ¢W) — g(¢X, pZ)S(9Y, W)

’ 2n(2—7r1 —1) 8PV PZ2)3(PX, 9W) = 3($X, §Z) 3 ($Y, §W))-

Let {ej1, e, ...e2,,¢} be alocal orthonormal basis of the tangent space Tp(M) at P in M(k, p).



14 ISRN Geometry

Taking X = W = g; in (4.12) and summing up from 1 to 2n, we obtain

2'R<¢ei,¢r 97, ger)

2n
51 2 (S 92)3(0es de) - 39 $Z)S(@Y. o)

(4.13)
= S(pei, §Z)g(PY, pei) + g(9Y, $Z)S(pei, pei)

r 2n
* 1) S WD) (Bei o) - 5B d2)3 (Y, ).

Using (3.22) in (4.13), we obtain

S(PY. 9pZ) = Wg(dﬂ, $Z). (4.14)

Replacing Y by ¢Y and Z by ¢Z in (4.14) and using (2.1), we have
S(Y,2) = ag(Y, Z) + pn(Y)n(2), (4.15)

where

_ r(4n—1) +4n’k _ —r(4n-1) 416
a=—"7 — ﬁ—T. (4.16)

From the relation (4.15), we conclude that M(k, i) is an 5-Einstein manifold.
Hence we can state the following.

Theorem 4.4. A ¢-conformally flat (k, u)-contact metric manifold is an n-Einstein manifold with
a=(r(4n-1)+4n’k)/2n,p = -r(4n-1)/2n.

5. Pseudoprojective Curvature Tensor in (k, 4)-Contact
Metric Manifolds

In M(k, y), the pseudoprojective curvature tensor P is given by [11]

P(X,Y)Z = aR(X,Y)Z +b[S(Y, Z)X - S(X, Z)Y]
(5.1)

-t (o4 ) 52X - g(x, 2)Y],

where a and b are constants such that a, b#0, R is the curvature tensor, S is the Ricci tensor,
r is the scalar curvature.
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5.1. Pseudoprojectively Symmetric (k, u)-Contact Metric Manifolds

Suppose R - P = 0 holds in M(k, y). Then we have
R X)P(Y, Z)W - P(R(, X)Y, Z)W -~ P(Y, R X)Z)W -~ P(Y, Z)R(E, X)W =0.  (52)
Taking Y = W = ¢in (5.2) and using (5.1), (2.5), (2.10), and (2.11), we have

<ak2 +2bnk? - an: : <% + b> +bu(2(n—1) + p) (k- 1)) [1(Z)n(X) - g(Z,X)]¢

— [akp +2nkbp - p = bu(2(n - 1) — np)| g(Z,hX)§

4 < 2ker (i + b)2ak2 —4nk2b)11(X)(71(Z)§ -Z)

2n+1\2n

+ <ak2 +2bnk? - an: - (% + b> —ap?(k - 1)>11(Z) (n(X) - X) .

+(Z)hX (—akp + akpn(Y)) + n(X)hZ(-2akp — p — akpn(Y))

k
+ <ak2 +2bnk? - : - (% + b)>11(1r) [1(2)X - n(X)Z]

+ 42 (k- 1) [n(Z)n(X)é - n(Z)X] + ak?* [g(X, Z2)¢ — n(X) Z] + kbS(Z, X)¢
- k<2nkb + Zn’+ - <% + b>>11(X)Z - an: - (% + b>g(Z,X)§ = 0.

Contracting the above with ¢, we obtain

S(Z,X) = %([an% +bu(@n—1) + p) (k - 1)]g(z,X)

2k
" [Zn T (% * ”) ~bu(@n=1) + ) (ke - 1)]11(X)11(Z) (5.4)

+ [2nkbp — bu((2n - 1) - np) (k - 1)] g(Z, hX)).

Replacing X by hX in (5.4) and using (2.7) and (2.10), we obtain

2nkby — bul — kbm
kbl — (2nk?b + bum(k — 1))

8(Z,hX) = (k-1 [nX)n(2) - ¢(X,2)], (5.5)

where

1=2(n-1)-npy,
(5.6)
m=2n-1)+p.
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Substituting for g(Z, hX) in (5.4), we obtain

S(Z,X) = ag(Z,X) + pn(X)n(2), (5.7)

where

_ 1 2
a—E<2nk b+bum(k -1)

1/ 2kr [ a (2nkbp — bul — kbm) (2nkbp — bpul)
= — —+b)-b k-1 k-1)).
P=% <2n+ 1 <2n " ) pm(k = 1) + (2nk?b + bum(k - 1)) (k=1)

(2nkby — bul — kbm) (2nkby — bul) (k-1)
kbl — (2nk2b + bpm(k — 1)) ’

(5.8)

From relation (5.7), we conclude that M (k, p) is an 7-Einstein manifold.
Hence we can state the following.

Theorem 5.1. A pseudoprojective symmetric (k, p)-contact metric manifold is an r-Einstein mani-
fold.

5.2. Pseudoprojective Ricci-Symmetric (k, i)-Contact Metric Manifolds

If P- S =0, then we have
s(ﬁ(g, X)Y, z) + S<Y, P, x)Z) =0. (5.9)
Taking Y = ¢ in (5.9) and using (5.1), (2.1), (2.5), (2.10), and (2.11), we obtain
! <[2mnk —apu(k-1)g- a2nk2]g(X, Z)

m— ak (5.10)
+[apl — ap2nk] g(hX, Z) + ap(k - 1)q11(X)11(Z)>,

S(X,Z) =

where

I=2(n-1)-nu, g=2(n-1)+p,

r a
m= 2n+1<§+b>. (5.11)

Replacing X by hX in (5.10) and using (2.7) and (2.10), we obtain

~ [apl — ap2nk — q(m — ak)] (k - 1)
§(hX,2) = I(m — ak) — [2mnk — ap(k — 1)q — a2nk?] [1X)n(2) - 5(X, 2)]. (>12)

Now substituting for g(hX, Z) in (5.10), we obtain

S5(X,2) = ag(X, Z) + pn(X)n(Y), (5.13)
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where

__ 1 2
a=_— <2mnk ap(k —1)q — a2nk

[apl — ap2nk — q(m — ak)] (k - 1)
I(m - ak) — [2mnk — ap(k - 1)q — a2nk?] )’

m — ak

f - 1 <a‘u(k— 1)+ l [aul — ap2nk — q(m — ak)] (k - 1) >

(m — ak) - [2mnk — apu(k — 1)q — a2nk?]
(5.14)

From (5.13), we have that M(k, u) is an #-Einstein manifold.
Hence we can state the following.

Theorem 5.2. A (k, u)-contact metric manifold is an n-Einstein manifold if P- S = 0.

6. Ricci Semisymmetric (k, y1)-Contact Metric Manifolds
If a (2n+1)-dimensional (k, pt)-contact metric manifold is Ricci semisymmetric, then R-S = 0.
That is,

S(R(W,X)Y, Z) + S(Y,R(W,X)Z) = 0. (6.1)

Taking W =Y = ¢in (6.1) and using (2.5), (2.7), and (2.11), we obtain

S(X,Z) = % [(2nk2 + bu(k - 1)) g(X, Z) + (2nkpu — ap) g(hX, Z)

62)
~bu(k - Dn(X)m(2)],
where
a=2n-1)-ny,  b=2n-1)+pu (6.3)
Replacing Z by hZ in (6.2) and using (2.7) and (2.10), we obtain
g hzy = Crku-ap=bR)(k=1) o7 o(x, 7)), (6.4)

ak - 2nk? - bu(k - 1)

Then (6.2) reduces to

S(X,Z) = ag(X, Z) + pn(X)n(2), (6.5)
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where
a=2(n-1)-ny, b=2(n-1)+y,

) . (2nkp — ap) 2nkp - ap - bk) (k - 1)
<2"k +oulk=1) ak — 2nk? — bu(k - 1) ’

1 [/ (2nkp — ap) (2nkp — ap - bk) (k- 1)
p= E< ak — 2nk? — bpu(k — 1) _b”(k_1)>‘

oa =

(6.6)

-

From relation (6.5), we conclude that the manifold is an 7-Einstein manifold.
Hence we can state the following.

Theorem 6.1. A Ricci semisymmetric (k, p)-contact metric manifold is an n-Einstein manifold.
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