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The way in which turbulent fluxes are usually represented in computations of large-scale flow in the convection zones of the sun and
other stars is briefly described. A model of an ensemble of eddies that is capable of generalization to circumstances more complica-
ted than the usual essentially spherically symmetrical convection zone is outlined. Generalization usually requires the introduc-
tion of new postulates, and, in so doing, also lays bare some of the assumptions, often implicit, in the usual mixing-length forma-
lisms.

1. Introduction

Computations of large-scale flow in stellar convection zones,
be it a meridional circulation or simply rotation, require
some representation of the fluxes of heat and momentum by
turbulent motion on scales too small to be resolved. It is
not uncommon in astrophysics to adopt the attitude that
since the theory upon which any such representation is
based (usually mixing-length theory) cannot be trusted, it
is hardly necessary to exercise care in deriving the formulae
for the fluxes. Readers can thus be faced with the prospect
of learning of the results of complicated numerical computa-
tions, yet being unable to know precisely what those results
mean.

The main point I wish to make is that the situation can
be improved. The so-called theory used for calculating the
turbulent fluxes can be refined, and the numerical machinery
that has been built to model the large-scale flow can be used
experimentally to test the refinements.

First I shall describe the broad principles behind many of
the computations of turbulent fluxes in astrophysics. Then
I shall outline a procedure whereby the representations of
the small-scale motion might be developed in a coherent
manner.

2. The Turbulent Fluxes

The first step in all computations of large-scale astrophysical
flow, whether it is stated explicitly or not, is to imagine a
separation of scales. Motion with characteristic length and
time scales greater than some value, usually implicitly pres-
cribed by the numerical technique, is treated by solving the
governing equations directly, using some parametrized ap-
proximation to describe the motion with characteristic scales
smaller than this value: ignoring the small-scale motion com-
pletely is a trivial form of such a parametrization. The large-
scale fields of velocity and temperature, say, may be con-
sidered to derive from the total fields v and T via the appli-
cation of an averaging procedure, which I denote by an over-
bar. Thus

v = v + u, T = T + ϑ. (1)

I shall refer to fields such as v and T as mean quantities; the
fields u and ϑ are fluctuations. In this account, I have in mind
particularly the convective envelopes of cool stars, in which
turbulent motion is driven predominantly by buoyancy.
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For simplicity of presentation I refer the fields to rectan-
gular Cartesian coordinates xi, with x3 vertical, and I shall
ignore the curvature of the convection zone. This is a fair
approximation if the scales to be parametrized are small
enough. Equations of motion may then be written, in an
obvious notation,

∂

∂t

(
ρvi
)

+
∂

∂xj

(
ρvivj

)
= − ∂p

∂xi
− gρδ3i, (2)

∂

∂t

(
ρε +

1
2
ρvivi

)
+

∂

∂xi

(
Fi + ρhvi +

1
2
ρvjvjvi

)
= −gρv3,

(3)

∂ρ

∂t
+

∂

∂xi

(
ρvi
) = 0, (4)

where ρ and p are density and pressure, ε and h are specific
internal energy and enthalpy (viz., internal energy and en-
thalpy per unit mass), g is the magnitude of the gravitational
acceleration gi, Fi is the radiative heat flux, t is time, and δi j is
the Kronecker delta. Throughout my discussion I adopt the
summation convention for repeated indices except where one
of them is enclosed in parentheses. The total energy equation
(3) is derived by combining the kinetic-energy equation, ob-
tained by taking the (scalar) product of (2) with vi to relate
the rate of change of the kinetic energy to the rate of working,
with the thermal-energy equation

ρcv

(
∂T

∂t
+ vi

∂T

∂xi

)
+ p

∂vi
∂xi

+
∂Fi
∂xi

= 0, (5)

which is a statement of the first law of thermodynamics. In
(5), cv is the specific heat at constant volume. These equa-
tions must, of course, be supplemented by an equation of
state and an equation determining Fi. Viscous terms have
been ignored; so too have perturbations to g.

To obtain equations for the large-scale flow the averaging
procedure is applied to the full equations of motion. Usually
some approximations are made in representing the fluctua-
tions, the most common being the neglect of density fluc-
tuations, except where they appear in the enthalpy flux. This
constitutes part of the Boussinesq approximation, which has
been justified by Spiegel and Veronis [1] for the case in which
vi = 0, when the fluctuations are generated by buoyancy
alone, and when the length scales of the fluctuations are all
much smaller than the scale heights of density and pressure
of the averaged state. Despite the fact that these conditions
are believed not to be satisfied in most stars, I too shall never-
theless adopt the practice, obtaining

∂
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)
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= −gρ v3,

∂ρ

∂t
+

∂

∂xi

(
ρ vi

) = 0.

(6)

The only fluxes arising from the small-scale turbulent
motion that need to be calculated for closing these equations
are evidently the Reynolds stress Rij = ρ uiuj , the turbulent
heat flux Fci = ρ h′ui, where the prime denotes a turbulent
fluctuation, and the turbulent kinetic-energy flux Kti =
(1/2)ρ ujujui.

In the absence of a large-scale mean flow the equations
for the fluctuations are given in Boussinesq approximation
by [1]

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)

= −∂p
′

∂xi
+ g

ρδ

T
ϑδi3, (7)

∂ϑ

∂t
+ ui

∂ϑ

∂xi
− βiui = − 1

ρ cp

∂F′i
∂xi

, (8)

∂ui
∂xi

= 0, (9)

where cp is the specific heat at constant pressure and

βi ≡ δ

ρ cp

∂p

∂xi
− ∂T

∂xi
(10)

is the superadiabatic lapse rate; δ = −(∂ ln p/∂ ln ρ)T is the
inverse dimensionless isothermal compressibility. In what
follows I shall assume that the perturbations are optically
thick, so, ignoring, for simplicity, fluctuations in the thermal
conductivity,

F′i = −K
∂ϑ

∂xi
, (11)

where K = 4acT
3
/3χ ρ, in which a is the first radiation

constant, c is the speed of light, and χ is the Rosseland mean
opacity. Various procedures have been suggested for treating
optically thin perturbations (e.g., [2–5]); I do not discuss
them here other than to suggest the procedure recommended
by Gough [6], which is consistent with the procedure adop-
ted here for dealing with the other fluctuation equations and
which, unlike the other procedures, provides a smooth tran-
sition from optically thick to optically thin fluctuations.

3. Rough Estimates of the Turbulent Fluxes

In most cases some kind of diffusion approximation based
on mixing-length theory is used to compute the turbulent
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fluxes. Let us consider first the convective heat flux. Since the
Boussinesq approximation has already been used to derive
(6), one might as well continue doing so and, in particular,
neglect the contribution to the convective heat flux from
pressure fluctuations. That flux can then be written

Fci = ρcpϑui. (12)

(It is perhaps worth pointing out that for a perfect unionizing
gas the pressure fluctuation makes precisely no contribution
to h′ when the latter is expressed in terms of the temperature
fluctuation.) In this and all subsequent equations overbars
are omitted from mean quantities, except where there is risk
of confusion.

If there were no large-scale motion the star would be
spherically symmetrical in the mean—I am ignoring the pos-
sibility of there being a substantial magnetic field—and only
the vertical components β and Fc of the superadiabatic lapse
rate and the convective flux would be nonzero. Moreover,
the Reynolds stress would be diagonal; I denote its (3,3)
component, the only component that enters hydrostatics
when the spherical geometry is ignored, by pt. In that case
the simplest mixing-length estimates for the magnitudes of
typical velocity and temperature fluctuations can be obtained
by first ignoring the time derivatives and also ignoring the
role of the pressure gradient in (7), so that the convective
motion is considered to be purely vertical, with velocity w.
Then one replaces ∂/∂xi by �−1, where �, called the mixing-
length, is some characteristic lengthscale of the largest tur-
bulent eddies. For upwardly directed turbulent motion, this
leads to

w2 � gδ�

T
ϑ,

(
�−1ϑ− β)w � −κ�−2ϑ, (13)

where κ is the thermal diffusivity: κ = K/ρcp. In obtaining
these estimates it was assumed that � is much less than the
scales of variation, H , of all the other variables appearing
in (13) including β. That assumption is the basis of so-
called local theories and allows fluctuations at any point to
be expressed in terms of the mean state at that point. It is
violated in any of the usual mixing-length models of stellar
convective envelopes, for which the calibration of �, usually
to reproduce the solar radius, leads to a value of �/H in excess
of unity (e.g., [7, 8]).

To estimate the average wϑ one simply multiplies the
estimates of w and ϑ from (13), and introduces a scaling
factor αH to account for the imperfect correlation between
velocity and temperature fluctuations, giving

Fc � 1
8
αHS

−1
(√

4S + 1− 1
)3
Kβ, (14)

where

S = gδT−1β�4

κ2
(15)

is the product of the Prandtl number and a locally defined
Rayleigh number based on the lengthscale �. The factor αH
depends on the way in which the mixing-length ideas have

been employed to describe the dynamics; in a description of
the turbulence more realistic than those assuming that all
motion is vertical, it depends also on the supposed geometry
of the turbulent eddies. The (3,3) component pt of the
Reynolds stress tensor Rij can be estimated similarly:

pt � αRρw
2 � 1

4
αR
(√

4S + 1− 1
)2
ρ
(
κ

�

)2

= αR

⎛

⎝

√

1 +
1
4
S−1 − 1

2
S−1/2

⎞

⎠

2

ρ
gδβ

T
�2,

(16)

in which αR plays a similar role to αH in (14). The turbulent
kinetic-energy flux is usually ignored; it is proportional to
ρw3, with a constant of proportionality that depends on the
(uncertain) spatial correlations of the turbulent velocity field.

Deep in stellar convection zones S is very large—in the
solar convection zone it exceeds 1020. This implies that the
coherent convective motion is essentially adiabatic. Micros-
copic diffusion of heat is negligible, and

w �
√
gδ

T
�β1/2, ϑ � �β. (17)

Then

Fc � αHρcp

√
gδ

T
�2β3/2 = αHS

1/2Kβ =: Kcβ,

pt � αR
gδρ

T
�2β,

(18)

which, of course, are independent of the thermal conductiv-
ity K .

The formula (18) for Fc has been written as the product
of a gradient β and a transfer coefficient Kc. The reason for so
doing is that it is this form that has been the most common
basis for generalization to situations that are no longer sphe-
rically symmetrical in the mean. What is sometimes done
(e.g., [9]) is to assume that (18) is the 3-component of a
vector equation and that the transfer coefficient Kc is a scalar,
even though it appears to depend on the vectors βi and gi.
Thus one obtains

Fci = Kcβi, (19)

with the turbulent heat flux being parallel to the supera-
diabatic temperature gradient. One might more realistically
envisage trying to generalize the formula to something like

Fci = Kci jβj , (20)

since generally, as will become apparent later, one would not
expect Fci and βi to be parallel.

Accepting (19) exposes the difficulty of principle in deci-
ding how the coefficient Kc should be computed. Perhaps the
simplest hypothesis would be to leave g as it stands and con-
sistently replace β by the magnitude (βiβi)

1/2 of βi in the
formula (18) for Kc. But in practice even cruder approxi-
mations are often adopted, which at best are based on the
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value of Kc computed from an initial trial model in which vi
is constrained to be zero, even though the resulting available
heat energy advected by the large-scale flow in the final
model may turn out to be comparable with Fci.

The treatment of the Reynolds stress in the presence of
shear is also motivated by the desire to reduce the formula to
a linear Fick law. In most cases the usual scalar viscous law
is adopted, with a turbulent shear viscosity derived in some
way from the product of � and a turbulent-velocity estimate
such as that in (17).

It is convenient to consider the Reynolds stress tensor Rij
to be divided into two parts: a part R1i j that vanishes when
vi = 0 and the part R0i j that does not. In the absence of
a magnetic field or other perturbing agent, R0i j is diagonal
and acts as a (generally anisotropic) turbulent pressure pti. It
is usually ignored in computations of stellar structure. This
may be dangerous, because the presence of any anisotropy in
pti can modify large-scale flow (e.g., [10, 11]).

In modelling the remaining terms in the Reynolds stress,
once again an assumption of localness is usually adopted so
that it may be presumed that the mean flow may be replaced
by a truncated Taylor expansion about any point of interest.
Thus one can write

ρui uj = pt(i)δi j +Mijkm
∂vm
∂xk

+ higher-order terms. (21)

There is no term depending on undifferentiated mean velo-
cities vi because the formula must be invariant under
Galilean transformation.

Gross simplifications of the physics have always been
made in attempts to evaluate the viscosity tensor. For exam-
ple, Wasiutyński [12] assumed fluid elements to travel with
constant acceleration, relative to an inertial frame, from ini-
tial velocities having uncorrelated components. He obtained
a formula which in Cartesian coordinates would have been,
had spherical geometrical terms been ignored,

Mijkm =
(
δinδjm + δimδjn

)
Mnk, (22)

where Mnk is a symmetrical tensor with principal axes in
the east-west, north-south, and vertical directions. Such a
form, simplified further by assuming axisymmetry about
the vertical, was adopted in some of the early discussions
of the sun’s equatorial acceleration (e.g., [10, 12, 13]). The
assumptions upon which the derivation is based imply, for
example, that the convective velocities are not influenced
significantly by the solar rotation. Some investigators assume
complete isotropy of the turbulent motion, and no resistance
to dilatation of the mean flow, which yields

Mijkm =
(
δikδjm + δimδjk + δi jδkm

)
η, (23)

where η is a scalar. This is the ordinary shear viscosity law,
which, unlike the anisotropic formulae, has a (no doubt erro-
neous) tendency to push the mean flow towards a state of
rigid rotation.

4. The Eddy-Ensemble Approach

In order to refine the estimates of the turbulent fluxes one
must consider more carefully the dynamics of the turbulent

eddies. I adopt here an eddy-ensemble approach developed
originally for pulsating stars by Gough [6, 14], who subse-
quently discussed a generalization to accommodate rotating
flows [15] which this paper extends. The model representing
the turbulent motion is much more carefully defined than
in the previous section, and it is correspondingly more com-
plicated to evaluate. Yet in the simple circumstance of con-
vection in a fluid with no mean background flow it yields
essentially the same results. The merit in the approach is that
it lays bare the underlying assumptions, thereby making it
clear how the theory can be extended to more complicated
situations and what additional assumptions, if any, are
needed to do so.

It is safer and simpler to compute the fluxes directly from
the formulae ρuiuj and ρcpϑui rather than to attempt an eva-
luation of transport coefficients such as Kci j and Mijkm or
generalizations of them, as is more common (e.g., [16, 17]).
The reason is that (20) and (21) depend on assumptions
additional to those of the basic turbulence theory and must
therefore predict fluxes that are less soundly based and more
difficult to test. Moreover, the tensors Kci j and Mijkm are
of higher rank than the fluxes they determine, so one risks
exacerbating the complexity of the calculation unnecessarily.

4.1. Axially Symmetric Convection. In order to establish the
procedure, I consider first the simple case of a star that is
spherically symmetrical. Then the turbulence is (statistically)
axially symmetrical about the vertical, and Rij = pt(i)δi j has
only two independent components.

The approach I adopt here assumes that an eddy comes
into being spontaneously (as a result of the convective insta-
bility acting on some random fluctuation in the medium)
and subsequently grows in accordance with equations of
motion linearized about the mean, background, state, and
at all times there is some likelihood that it breaks up due to
internal shear instability. The disruption is regarded as being
instantaneous and occurs stochastically with probability
proportional to the rms rate of strain in the eddy. It is
assumed that the smaller-scale motion so generated contri-
butes negligibly to the fluxes. I shall describe here only a local
theory, using the Boussinesq approximation with βi constant
within any eddy. The discussion is based on the review by
Gough [18], where further elaborations and refinements,
such as an approximate account of the smaller-scale motion,
can be found.

To render the notation more transparent I rename the xi
coordinates (x, y, z), use vector notation where convenient,
and denote the components ui of the fluctuating velocity
field u by (u, v,w). The convective flow is represented by a
superposition of eigenfunctions of the linear problem, each
of which is confined between two horizontal planes a dis-
tance±(1/2)� from its central level z0. I adopt stress-free iso-
thermal boundary conditions, which yield the simplest for-
mulae. Thus for z0 − (1/2)� ≤ z ≤ z0 + (1/2)�, a convectively
unstable eddy created at time t0 with an initial vertical velo-
city amplitude W0 may be represented by

(u, v,w, ϑ) =
(
û, v̂, ŵ, ϑ̂

)
W0e

q(t−t0), (24)
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in which

û
(
x, y, z − z0

) = −k−2
h kv sin[kv(z − z0)] fx,

v̂
(
x, y, z − z0

) = −k−2
h kv sin[kv(z − z0)] fy ,

ŵ
(
x, y, z − z0

) = cos[kv(z − z0)] f ,

ϑ̂
(
x, y, z − z0

) = βq−1ŵ
(
x, y, z − z0

)
,

(25)

where the planform f (x, y) satisfies

∇2
h f + k2

h f = 0, f 2 = 1, (26)

and where kh = (kx, ky , 0) is the horizontal component, with
magnitude kh, of a wavenumber k characterizing the eddy,
having magnitude k; kv = π/� is its vertical component. Also
fx := ∂ f /∂x, and so forth, ∇2

h is the horizontal Laplacian
operator; the overbar denotes horizontal, or ensemble, ave-
rage. Furthermore, the growth rate q of the mode is given by

q = −1
2
k2κ +

√

μ2 +
1
4
k4κ2 = 1

2

(√
4S + 1− 1

)
k2κ, (27)

in which

μ2 = gδβ

ΦT
, Φ = 1 +

k2
v

k2
h

, (28)

and now

S = μ2

κ2k4
(29)

(e.g., [19]), which differs from the definition (15) by just a
constant geometrical factor. Where |z − z0| > (1/2)�, u =
0 and ϑ = 0 (although, of course, there are other eddies
there). The formulae can easily be generalized to account for
optically thin eddies [6]. Note that formally stable eddies also

exist, with ϑ̂ = −βq−1ŵ, but their direct contribution to the
fluxes is not significant; they formally contribute indirectly

via a filling factor f̂ to be introduced below. The geometrical
factor Φ and the planform f define the degree of anisotropy
of the turbulence.

An eddy is presumed to come into existence as a residue
of the turbulent cascade from the breakup of previously
existing eddies. The instant at which it is considered to have
an existence of its own is not completely specified, although
to be unstable it must have a temperature fluctuation that has
a (randomly achieved) positive correlation with the vertical
velocity. The actual criterion that is adopted to define the
initial conditions is absorbed into the definition of the scaling
factor Λ appearing in (35) and (37) for the turbulent fluxes,
which in practice is subsequently calibrated by comparison
with astronomical observation.

The turbulent fluxes can now be computed at height z
by first constructing the appropriate fluxes due to a single
eddy and then averaging over all eddies that intersect the
horizontal plane through z, weighting the average by the
probability that the eddy has not been disrupted. The diffi-
culties in performing this average arise from the computation

of that probability, from assigning the distribution of initial
amplitudes and the rate at which eddies are created, and
for assigning a probability distribution to the eddy geometry
characterized by the parameter Φ and, in the case of rotating
flow discussed in the next subsection, the function f .

Let us consider first the computation of the disruption
probability. Eddy disruption is thought to occur predom-
inantly as a result of shear instability within the eddy; its
probability of occurring is therefore proportional to the
magnitude of that shear. The coefficient of proportionality
depends on the geometry of the eddy and is difficult to
estimate because shear instability is ill understood. Perhaps
the most plausible first guess is to take as the measure of the
internal shear the square root e = e0 exp [q(t − t0)] of
the total squared rate of strain e2 = 〈ei jei j〉, where ei j =
(1/2)(∂ui/∂xj + ∂uj/∂xi) and the angular brackets denote
average over the volume occupied by the eddy. The ansatz
is plausible, for at least it has the correct form in the limits
of large and small kv/kh when the eddy motion approaches
rectilinear shear. From the structure (25) of the velocity field,
the disruption probability per unit time can then be evalua-
ted to be

γe = 1
2
γ
(
1−Φ−1)kvW0 exp

[
q(t − t0)

]
, (30)

where γ is some (constant) parameter to be calibrated later.
The probability that an eddy created at time t0 still exists is
therefore

P (t; t0) = exp
[
−λ
(

eq(t−t0) − 1
)]

, (31)

where λ = γq−1e0. It is an important assumption of the
theory that the eddy dynamics is dominated by its growth
against the unstably stratified environment, which can be
well approximated by linear theory. Then the duration of the
process of eddy disruption can be regarded as being short
compared with the mean eddy lifetime τ, which permits dis-
ruption to be considered to be instantaneous. This implies
that the mean eddy lifetime is given by

τ = γe0

∫∞

t0
(t − t0)P dt � ln

(
1
λ

)
q−1, (32)

the final, approximate, expression having been obtained as
the leading term in an expansion for small λ.

We come now to the distribution of W0 and the eddy
creation rate. I shall adopt the common practice of assuming
that the turbulent convective flow is dominated at any point
by eddies with a unique size and shape. Since the flow in a
spherically symmetrical (nonrotating) star is statistically axi-
symmetrical, all orientations of the planform f are equally
probable. Furthermore, since the theory is local and, for
the present, the convection zone is considered to be time
independent in the mean, the formula for the creation rate
and the initial amplitude W0 depend on neither z0 nor t0 at
any given value of z.

If n(z0) is the rate of creation of eddies centred at z =
z0 per unit eddy-volume, then the proportion of the volume
occupied by eddies at time t is

f̂ = n
∫ t

−∞
P dt0 = nτ, (33)
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whence n = f̂ τ−1; f̂ is essentially the filling factor of eddies
with positive linear growth rates.

One is now in a position to evaluate the convective heat
flux by integrating the contributions from all eddies. For-
mally

Fc = ρcp

∫

n

(∫ t

−∞
wϑP dt0

)

dz0. (34)

Only eddies that exist at height z contribute to the integral
over eddy locations z0, so the outer integral in this simple
theory extends only from z − �/2 to z + �/2. Moreover, con-
sistent with the Boussinesq approximation, when evaluating
that integral the spatial variation of n can be ignored.

Note that if the horizontal and vertical wavenumbers
are of the same order of magnitude, this expression for the
probability is similar to that derived from the more literal
interpretation of the mixing-length annihilation hypothesis
suggested by Spiegel [20] in terms of vertically rising and
falling fluid elements, which yields a breakup probability per
unit time of w/�, which is proportional to kvW0. It is evident
from (30) that the two expressions are rather different,
especially for the highly elongated eddies having kv 
 kh
that are sometimes favoured by that literal interpretation
[6], particularly if only those eddies with the greatest growth
rates are considered, as Spiegel suggested. According to the
formula proposed here, such eddies are prone to rapid disin-
tegration by the shear in the highly elongated turbulent flow.
Nevertheless, this approach is tantamount to no more than a
sophisticated mixing-length formalism. It is evident that the
manner in which the mixing-length hypothesis is interpreted
affects the predicted anisotropy.

With these assumptions the averages can easily be per-
formed. The analysis is essentially the same as that presented
by Gough [6, 18]. The resulting fluxes are

Fc = ΛΦ−5/2(Φ− 1)
ρcpT

gδ
q3�2

= ΛΦ−5/2(Φ− 1)
(√

1 + 4S−1 − 1
2
S−1

)3

ρcp

√
gδβ

T
�2β,

(35)

which is essentially of the same form as (14). In this formula,

Λ = 4 f̂
π2γ2 ln 1/λ

, (36)

which demonstrates how the filling factor f̂ , the amplitude at
which the eddy is considered to come into existence (which
determines the value of e0), and the scaling factor γ defining
the eddy destruction rate combine together into a single
(calibrateable) parameter. Note that if the assumption that �
is proportional to a scale height H of the background state is
made: � = αH , the constant of proportionality α combines
similarly. Equation (35) also demonstrates that the fluxes
depend only weakly on λ, and therefore only weakly on when
one considers the eddy to have come into existence. One can

evaluate the mean-squared velocities for determining the
Reynolds stress similarly:

pt = ρw2 = ΛΦ−3(Φ− 1)ρ�2q2

= ΛΦ−3(Φ− 1)
(√

1 + 4S−1 − 1
2
S−1

)2

ρ
gδβ

T
�2,

(37)

u2 = v2 = 1
2

(Φ− 1)w2. (38)

Equations (35)–(37) with (29) are the same as (14)–(16),
except for the constants multiplying the functional forms of
Fc, pt, and S, and they show the relation between αH and
αR, and Λ and Φ. Finally one can evaluate the flux of kinetic
energy, Kt, likewise:

Kt = ΛCΦ−9/2(Φ− 1)3/2(Φ + 3)
(√

1 + 4S−1 − 1
2
S−1

)3

× ρ
(
gδβ

T

)3/2

�3,

(39)

where C = 8
√

2 f 3/3π2γ is a velocity correlation constant.
It requires yet another independent assumption to specify
C. If, for example, it is assumed that γ = 1 and that every
horizontal plane is tessellated with Christopherson hexagons
(e.g., [21]), which can be represented by six wavenumbers kh
of equal magnitude k orientated uniformly in a circle, then
C = 4/3

√
3π2 � 0.078 (cf. [22, 23]); if instead the plane

is filled with closely packed cylinders with stagnant fluid
in the interstices, as Böhm-Vitense [2] might prefer, then
C � 0.034.

The analysis has not yet provided a method for comput-
ing the anisotropy parameter Φ. The simplified formalism
presented here is incomplete, and it exposes important issues
that must be resolved in order to close what remains a rather
naive eddy-ensemble approach. However, before attempting
a generalization, an observation of the structure of the for-
mulae (35)–(37) is perhaps not out of place.

Although it has been assumed that turbulent eddies with
a given value of Φ dominate the flow, it is appreciated that
actually this Φ is merely meant to be representative of a spec-
trum of eddy shapes. What is meant by an eddy that domi-
nates the flow is one that contributes maximally to a particu-
lar flux. Thus w2 is maximized at fixed � when Φ = 1.5, and
u2 is maximized at Φ = 3. If these values are used separately
for the two fluxes, which is not an implausible procedure if
the distribution of eddy shapes is rather flat, one finds

u2 = 1
2
w2. (40)

This relation is also a property of a single eddy with Φ = 2
(which is close to the geometric mean of the two stress-
maximizing values, namely 3/

√
2 = 2.1). So perhaps this

intermediate value of Φ should be used to describe the rep-
resentative eddy for computing the stress tensor. It is inte-
resting, though perhaps merely coincidental, that the eddy
shape that maximizes Fc at fixed � has Φ = 5/3, which does
not differ substantially from 2.
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4.2. Convection in a Rotating Fluid. Generalization of the
procedure outlined in the previous subsection in the pres-
ence of a general background mean flow is not straightfor-
ward, because it requires additional hypotheses. Neverthe-
less, some progress can be made.

The large-scale currents in stars envisaged here include
both meridional circulation and zonal flow. I continue to
assume that a meaningful separation of the scales of motion
is possible, so that a local theory provides a fair first approx-
imation to the turbulent fluxes. As usual only the leading
terms in the Taylor expansion of v about a point will be
considered.

Note first that the mean motion in the vicinity of
a point can be decomposed into a translation, a rotation,
a pure shearing motion, and an isotropic dilatation. The first
does not affect the turbulent motion; the last modifies the
turbulent pressure but does not add to it off-diagonal terms;
it can be dealt with by generalizing the analysis by Gough
[6] for sinusoidally pulsating stars. Rotation modifies the
turbulence via the Coriolis forces, and pure shearing motion
stretches the eddies; both of these do generate off-diagonal
terms. Here I consider the special case where only the local
rotation is appreciable; it is the simplest of the steady flows to
deal with because there is no shear, and the modifications to
the eigenfunctions that the mean flow imposes are relatively
straightforward to calculate. Steps towards accounting for
rectilinear shearing flow are being taken by Smolec et al. [24,
25].

In order to proceed I shall make two additional simpli-
fying assumptions. Firstly, I assume that surfaces of constant
potential temperature (or entropy) are horizontal. This may
not be strictly the case, as Durney [9] has pointed out,
although the absence of a large pole-equator temperature
difference in the sun suggests that at least in that case the
assumption may not be a bad first approximation, at least in
the upper parts of the convection zone. Secondly, I assume
that the vorticity of the mean flow is much less than the eddy
growth rate, which (almost) circumvents the issue of how
axisymmetry is broken by rotation. This assumption too is
easily satisfied in the upper parts of the solar convection zone,
but not so well for the slowest eddies that occupy much of
the zone beneath. Thus, as with the (sometimes implicit)
assumption that the mixing length is much less than the
background scale heights, the formulae I derive are not
strictly valid, and one should be aware of that when they are
used in larger-scale calculations.

As before, the linear eigenfunctions of a plane Boussinesq
layer are computed, but now the layer is presumed to rotate
with angular velocity Ω = (1/2) curl v. The Cartesian axes
are orientated such that Ω lies in the x − z plane. In view of
the assumption Ω := | Ω | 
 q � μ, there is no question of
the rotation stabilizing the convection; the growth rate of the
convective mode and its eigenfunction can be expanded in
powers of ε := Ω/μ, here up to second order:

q = q0
(
1 + εq̃1 + ε2q̃2 + · · · ),

û = û0 + εû1 + ε2û2 + · · · , etc.
(41)

The leading-order solution is given by

ŵ0 = cos[kv(z − z0)] f = q0β
−1ϑ̂0,

û0 = −k−2
h kv sin[kv(z − z0)] fx = fx f

−1
y v̂0,

(42)

which are equivalent to the formula (25) with q0 given by
(27)–(29) for q. Thermal diffusion is important only in the
immediately subphotospheric layers of the star. There the
growth rate is high, ε is very small, and therefore so typically
is the influence of the rotation. Deeper down where rotation
may matter, the motion is close to being adiabatic. Therefore
in calculating the corrections to the structure of the eddies
it is expedient to assume adiabaticity, approximating q0 by
μ and omitting some terms in the formulae for the eigen-
functions, in order to maintain a degree of lucidity. It would
be quite straightforward to retain the nonadiabatic correc-
tions were the necessity to arise, but I refrain from doing so
here because the added complexity of the formulae would
render them less easy to appreciate. The rotational modifica-
tion to the convective mode can accordingly be represented
by

q̃1 = 0, ŵ1 = 0, ϑ̂1 = 0,

û1 = −2k−2
h

[
cos θ sin[kv(z − z0)] fy

− sin θ cos[kv(z − z0)] fxy
]

,

v̂1 = 2k−2
h

[
cos θ sin[kv(z − z0)] fx

− sin θ cos[kv(z − z0)] fxx
]
,

q̃2 = −2k−2
(
f 2
x sin θ + k2

v co s2θ
)

ŵ2 = −2 sin 2θ · (z − z0) cos[kv(z − z0)] fx,

ϑ̂2 = μ−1β
[
k−2

(
−sin2θ fxx+k2

vcos2θ f
)
−ŵ2

]
,

û2 = −2k−2
h sin 2θ{cos[kv(z − z0)]

−kv(z − z0) sin[kv(z − z0)]} fxx
= fxx f

−1
xy v̂2,

(43)

where θ is the angle of inclination of Ω to the vertical in the
positive x direction.

One can now go through the procedure described in
Section 4.1 to evaluate the turbulent fluxes. That is quite
straightforward except for one issue: the determination
of the potential horizontal anisotropy of the turbulent
velocity amplitudes resulting from the existence of a pre-
ferred direction introduced by the rotation. The assump-
tion that the growth of the eddies satisfies linearized
dynamics implies that anisotropy formally arises only from
an anisotropy of initial conditions. Since the creation of
the unstable convective eddy perturbations is not directly
addressed by the formalism, an additional assumption
must therefore be made. The assumption that I adopt

here is simply that the filling factor f̂ is isotropic. When
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it was introduced in the discussion in Section 4.1 of
axisymmetric turbulence I implicitly presumed it to be
constant. But now that axisymmetry is lost, that pre-
sumption must be relaxed. Here, I adopt the principle of de-
tailed balance, by applying (33) separately in every horizontal
direction. That implies that the creation rate n is propor-
tional to q and therefore shares with q the same O(ε2) ani-
sotropy. However, it transpires that the anisotropy it imparts
to the velocity field is even smaller, reducing the O(ε2) terms
by an O(ln 1/ε) factor; it can therefore be neglected. After
carrying out the averaging, there results

Fc =
(
ε2 sin 2θ, ε sin θ, 1

)
ψFc, (44)

Rij

=

⎛

⎜
⎜
⎜
⎜
⎝

1
2

(Φ− 1) +
1
2
ε2Rx 0 2ε2 sin 2θ

0
1
2

(Φ− 1) +
1
2
ε2Ry ε sin θ

2ε2 sin 2θ ε sin θ 1

⎞

⎟
⎟
⎟
⎟
⎠
ψpt,

(45)

in which

Rx = Φ− 1, Ry = (Φ− 1)cos2θ +
3
4

sin2θ,

ψ = 1− 2εΦ−1 sin θ − ε2Φ−2
[

6(Φ− 1)cos2θ − sin2θ
]

,

(46)

and where Fc and pt are given by (35) and (37). The general
formula for Kt is algebraically complicated, but in the case
when the planform is composed of randomly orientated har-
monic hexagons it simplifies to

Kt = 1
3
√

6π

(
1

12
ε2(Φ− 1) sin 2θ, 4(Φ− 1)ε sin θ, 1

)
ψKt,

(47)

where Kt is given by (39).
The most obvious influence of the rotation on the con-

vective fluxes is to rotate them principally out of the plane of
g and Ω, namely, in the y direction in the coordinate system
adopted here. The angle of rotation is proportional to ε =
Ω/μ. There are additional O(ε2) components generated in
the plane of g and Ω, and also the overall magnitudes of
the fluxes are reduced somewhat, also by O(ε2). The rotation
of the momentum fluxes generates off-diagonal terms in the
Reynolds-stress tensor.

5. Discussion

Many assumptions have been necessary to arrive at a trac-
table procedure. Most notably, it has been assumed here that
the turbulent medium can be represented as an ensemble
of eddies that not only do not interact directly with each
other—they do so implicitly via the background (mean)
stratification, however—but that nonlinear advection pro-
cesses and nonlinearities in the thermodynamics within an
eddy (the latter being a consequence of the assumption

that the theory is local, which is intimately linked with the
Boussinesq assumption) can be ignored throughout almost
the entire lifetime of each eddy. The only explicit nonlinearity
is the eddy-disruption process, which is assumed to occur on
a timescale short compared with the eddy lifetime, which is
essential, although not sufficient, for the validity of the linea-
rization assumption: each eddy is presumed to grow via the
linear influence of the background state, although there is
an implicit nonlinear backreaction on the mean state via the
turbulent fluxes. That reaction has been presumed to pre-
serve the alignment of the superadiabatic temperature gradi-
ent with gravity, although one can, with additional assump-
tion about the preservation (or otherwise) of eddy shape,
take a departure formally into account. Relating that to the
fluxes, however, would require a subsequent global calcula-
tion.

The formalism is basically a mixing-length approach,
which itself is also characterized by linear reasoning, either
explicitly when describing the energy exchange with the
background state or implicitly via the preservation of eddy
size and shape, which is not predicted by the simplest forms
of the theory; in any case, it always requires admitting the
necessity of an additional assumption about eddy shape.
Even though in linear theory the harmonic relation (26)˜is
sufficient for determining the growth rate q and the z and
t dependence of the eigenfunctions, more detailed speci-
fication is necessary for relating the kinetic-energy flux to
the heat flux and the Reynolds stress, in particular for deter-
mining the correlation constant C. Eddy size is basically the
mixing length, which is not an integral part of the theory.
Therefore nor is any procedure to define how it changes with
changing vorticity (and, in more general circumstances, the
changing shear) in the mean flow. Here I have assumed that
the “filling factor” of eddies, a fundamental property of the
eddy correlation, is unaffected, leaving the way clear to deter-
mine the effect on the eddy shape from the linearized dynam-
ics. As always in such a theory, the value of the vertical extent
of the eddy is left to other considerations. In particular, no
attempt has been made to address how it might change with
the properties—in the simple case considered in this paper,
the value of the local rotation—of the background flow.

There remains much work to do before an even modestly
reliable general theory emerges. Relaxing the restrictions that
were imposed in the discussion above not only complicates
the analysis but also requires one to face new problems whose
resolution may depend on introducing new hypotheses. Ac-
cepting that rotation is not small compared with eddy growth
rates, for example, raises the issue of the dependence of eddy
creation on the orientation of the eddy. Imagining constant
entropy surfaces to deviate from the horizontal introduces
the possibility of baroclinic instability. How do these com-
pete with the convective modes? It is easy to invent a set
of superficially plausible hypotheses for tackling these pro-
blems, but some other no less implausible models may yield
rather different results. The simple formulae (14)–(16), for
example, result from a relatively wide variety of physical
pictures of the turbulent motion, but the more subtle results
such as (44)–(47) are more sensitive to the details of the
assumptions. Can one even hope to develop a theory on the
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basis of linear eigenmodes? Or do nonlinearities play an es-
sential role during the growth of an eddy? How inaccurate is
the process of separating scales? It is certainly quite evident
that assuming a unique eddy lengthscale at any location can
be a poor recipe, especially near the edges on convection
zones where local stability changes sense. One might improve
the description of the small-scale turbulence by using a non-
local theory, but how can one develop a procedure that is
both tractable and realistic? Can the mixing-length forma-
lism in any guise be expected to provide an adequate descrip-
tion of the turbulence?

It has been argued that because mixing-length theory is
even less reliable at predicting fluxes in complicated situa-
tions than it is in the simplest of cases, the complexities of its
consequences should be ignored and that it is not worthwhile
attempting to generalize the theory. I disagree with this point
of view. The mixing-length theory is still the only prac-
tical tool available for modelling stellar convection zones for
evolutionary calculations—although work such as that by
Trampedach and Augustson [26] may change that, but per-
haps not before mixing-length theory has been calibrated
more precisely [27]—and it should be utilized to fullest
advantage until it is superseded. Why prefer a formula such
as (23), which is surely incorrect, to one that attempts to
include the effects of phenomena that are known to exist?
Maybe the results obtained with a more intricate theory will
at first be numerically no better at reproducing astronomical
observations, but only by studying the consequences of rota-
tion, shear, baroclinicity, and also of magnetic fields on the
turbulence can some idea of the importance of these factors
be acquired. Ogilvie [28], for example, has made some prog-
ress with the latter, using a rather different approach from
the one adopted here. The introduction of each new factor
tends to require new hypotheses, or to bring into prominence
already existing hypotheses upon which the theory did not
previously depend in an important way. With these come
new parameters which need to be determined. In principle
we have at our disposal laboratory experiments and numer-
ical experiments performed with the solar modelling pro-
grammes to calibrate the formulae. Both should be utilized—
indeed, some have already (e.g., [24, 25, 29]), but only to a
limited extent—although eventually care must also be taken
to ensure that sufficient checks remain to test the predictive
power of the theory.
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[2] E. Böhm-Vitense, “Über die wasserstoffkonvektionszone in
sternen verschiedener und effektivtemperaturen und leucht-
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