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The cyclic graph Γ
𝐺
of a finite group 𝐺 is as follows: take 𝐺 as the vertices of Γ

𝐺
and join two distinct vertices 𝑥 and 𝑦 if ⟨𝑥, 𝑦⟩ is

cyclic. In this paper, we investigate how the graph theoretical properties of Γ
𝐺
affect the group theoretical properties of 𝐺. First, we

consider some properties of Γ
𝐺
and characterize certain finite groups whose cyclic graphs have some properties. Then, we present

some properties of the cyclic graphs of the dihedral groups𝐷
2𝑛
and the generalized quaternion groups 𝑄

4𝑛
for some 𝑛. Finally, we

present some parameters about the cyclic graphs of finite noncyclic groups of order up to 14.

1. Introduction and Results

Recently, study of algebraic structures by graphs associated
with them gives rise to many interesting results. There are
many papers on assigning a graph to a group and alge-
braic properties of group by using the associated graph; for
instance, see [1–4].

Let 𝐺 be a group with identity element 𝑒. One can asso-
ciate a graph to 𝐺 in many different ways. Abdollahi and
Hassanabadi introduced a graph (called the noncyclic graph
of a group; see [4]) associated with a group by the cyclicity of
subgroups. It is a graph whose vertex set is the set𝐺\Cyc(𝐺),
where Cyc(𝐺) = {𝑥 ∈ 𝐺|⟨𝑥, 𝑦⟩ is cyclic for all 𝑦 ∈ 𝐺} and 𝑥 is
adjacent 𝑦 if ⟨𝑥, 𝑦⟩ is not a cyclic subgroup. They established
some graph theoretical properties (such as regularity) of this
graph in terms of the group ones.

In this paper, we consider the converse. We associate a
graph Γ

𝐺
with 𝐺 (called the cyclic graph of 𝐺) as follows:

take 𝐺 as the vertices of Γ
𝐺
and two distinct vertices 𝑥 and

𝑦 are adjacent if and only if ⟨𝑥, 𝑦⟩ is a cyclic subgroup of
𝐺. For example, Figure 1 is the cyclic graph of 𝑍

2
× 𝑍
2
, and

Figure 2 is Γ
𝑆3
. For any group 𝐺, it is easy to see that the

cyclic graph Γ
𝐺
is simple and undirected with no loops and

multiple edges. By the definition, we shall explore how the
graph theoretical properties of Γ

𝐺
affect the group theoretical

properties of 𝐺. In particular, the structure of the group by
some graph theoretical properties of the associated graph is
determined.

The outline of this paper is as follows. In Section 2, we
introduce a lot of basic concepts and notations of group and
graph theory which will be used in the sequel. In Section 3,
we give some properties of the cyclic graph of a group on
diameter, planarity, partition, clique number, and so forth and
characterize a finite group whose cyclic graph is complete
(planar, a star, regular, etc.). For example, the cyclic graph of
any group is always connected whose diameter is at most 2
and the girth is either 3 or∞; the cyclic graph Γ

𝐺
of group

𝐺 is complete if and only if 𝐺 is cyclic and is a star if and
only if𝐺 is an elementary abelian 2-group. In particular, for a
finite group 𝐺, Aut(Γ

𝐺
) = Aut(𝐺) if and only if 𝐺 ≅ 𝑍

2
× 𝑍
2
,

the Klein group. In Section 4, we present some properties
of the cyclic graphs of the dihedral groups 𝐷2𝑛, including
degrees of vertices, traversability (Eulerian andHamiltonian),
planarity, coloring, and the number of edges and cliques.
Furthermore, we get the automorphism group of 𝐷2𝑛 for all
𝑛 ≥ 3. Particularly, for all 𝑛 > 2, if𝐺 is a group with Γ𝐺 ≅ Γ𝐷2𝑛 ,
then 𝐺 ≅ 𝐷2𝑛. Similar to Section 4, we discuss the properties
of the cyclic graphs on the generalized quaternion groups𝑄4𝑛
in Section 5. In Section 6, we obtain some parameters on the
cyclic graphs of finite noncyclic groups of order up to 14.

2. Preliminaries

In this paper, we consider simple graphs which are undi-
rected, with no loops or multiple edges. Let Γ be a graph. We
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will denote 𝑉(Γ) and 𝐸(Γ) the set of vertices and edges of
Γ, respectively. Γ is, respectively called empty and complete
if 𝑉(Γ) is empty and every two distinct vertices in 𝑉(Γ) are
adjacent. A complete graph of order 𝑛 is denoted by 𝐾𝑛. The
degree of a vertex V in Γ, denoted by deg

Γ
(V), is the number of

edges which are incident to V. A subset Ω of 𝑉(Γ) is called a
clique if the induced subgraph ofΩ is complete. The order of
the largest clique in Γ is its clique number, which is denoted
by 𝜔(Γ). A 𝑘-vertex coloring of Γ is an assignment of 𝑘 colors
to the vertices of Γ such that no two adjacent vertices have the
same color. The chromatic number 𝜒(Γ) of Γ is the minimum
𝑘 for which Γ has a 𝑘-vertex coloring. If 𝑢, V ∈ 𝑉(Γ), then
𝑑(𝑢, V) denotes the length of the shortest path between 𝑢 and
V. The largest distance between all pairs of 𝑉(Γ) is called the
diameter of Γ and denoted by diam(Γ). The length of the
shortest cycle in the graph Γ is called girth of Γ; if Γ does not
contain any cycles, then its girth is defined to be infinity (∞).
For a vertex V of Γ, denote by 𝑁

Γ
(V) the set of vertices in Γ

which are adjacent to V. A vertex V of Γ is a cutvertex if Γ− {V}
is disconnected. An 𝑥 − 𝑦 path of length 𝑑(𝑥, 𝑦) is called an
𝑥−𝑦 geodesic; the closed interval 𝐼[𝑥, 𝑦] of 𝑥 and 𝑦 is the set
of those vertices belonging to at least one 𝑥−𝑦 geodesic. A set
𝑈 of 𝑉(Γ) is called a geodetic set for Γ if 𝐼[𝑈] = 𝑉(Γ), where
𝐼[𝑈] = ⋃

𝑥,𝑦∈𝑈
𝐼[𝑥, 𝑦]. A geodetic set ofminimum cardinality

in Γ is called a minimum geodetic set and this cardinality is
the geodetic number. A set 𝑆 of vertices of Γ is a dominating
set of Γ if every vertex in 𝑉(Γ) \ 𝑆 is adjacent to some vertex
in 𝑆; the cardinality of a minimum dominating set is called
the domination number of Γ and is denoted by 𝛾(Γ). Γ is a
bipartite graph means that 𝑉(Γ) can be partitioned into two
subsets 𝑈 and𝑊, called partite sets, such that every edge of
Γ joins a vertex of𝑈 and a vertex of𝑊. If every vertex of𝑈 is
adjacent to every vertex of𝑊, Γ is called a complete bipartite
graph, where𝑈 and𝑊 are independent. A complete bipartite

graph with |𝑈| = 𝑠 and |𝑊| = 𝑡 is denoted by 𝐾
𝑠,𝑡
. For more

information, the reader can refer to [5].
In this paper, all groups considered are finite. Let 𝐺 be a

finite group with identity element 𝑒. The number of elements
of 𝐺 is called its order and is denoted by |𝐺|. The order of
an element 𝑥 of 𝐺 is the smallest positive integer 𝑛 such that
𝑥
𝑛
= 𝑒. The order of an element 𝑥 is denoted by |𝑥|. For more

notations and terminologies in group theory consult [6].

3. Some Properties of the Cyclic Graphs

Definition 1. In group theory, a locally cyclic group is a group
inwhich every finitely generalized subgroup is cyclic. A group
is locally cyclic if and only if every pair of elements in the
group generates a cyclic group. It is a fact that every finitely
generalized locally cyclic group is cyclic. So a finite locally
cyclic group is cyclic.

Definition 2 (see [7, 8]). Let𝐺 be a group.The cyclicizer of an
element 𝑥 of 𝐺, denoted Cyc

𝐺
(𝑥), is defined by

Cyc
𝐺
(𝑥) = {𝑦 ∈ 𝐺 | ⟨𝑥, 𝑦⟩ is cyclic} . (1)

In general, the cyclicizer Cyc𝐺(𝑥) of 𝑥 is not a subgroup of
𝐺. For example, let 𝐺 = 𝑍4 × 𝑍2, then Cyc𝐺((2, 0)) = {(0, 0),
(1, 0), (1, 1), (2, 0), (3, 0), (3, 1)} is not a subgroup.

Definition 3. The cyclicizer Cyc(𝐺) of 𝐺 is defined as follows:

Cyc (𝐺)=⋂
𝑥∈𝐺

Cyc𝐺 (𝑥)={𝑦 ∈ 𝐺|⟨𝑥, 𝑦⟩ is cyclic ∀𝑥∈𝐺} .

(2)

By [9, Theorem 1], Cyc(𝐺) is a normal subgroup of 𝐺 and
Cyc(𝐺) ≤ 𝑍(𝐺).

Definition 4. Let 𝐺 be a group. The cyclic graph Γ
𝐺
of 𝐺 is

a graph with 𝑉(Γ
𝐺
) = 𝐺 and two distinct vertices 𝑥, 𝑦 are

adjacent in Γ
𝐺
if and only if ⟨𝑥, 𝑦⟩ is a cyclic subgroup of 𝐺.

Proposition 5. For any group 𝐺, deg
Γ𝐺
(𝑥) = |Cyc

𝐺
(𝑥)| − 1,

where 𝑥 ∈ 𝐺.

Proof. By Definitions 2 and 4, it is straightforward.

Proposition 6. Let 𝐺 be a group with the identity element 𝑒.
Then diam(Γ𝐺) ≤ 2. In particular, Γ𝐺 is connected and the girth
of Γ𝐺 is either 3 or∞.

Proof. Suppose that 𝑥 and 𝑦 are two distinct vertices of Γ
𝐺.

If ⟨𝑥, 𝑦⟩ is a cyclic subgroup of 𝐺, then 𝑥 is adjacent to 𝑦,
and hence 𝑑(𝑥, 𝑦) = 1. Thus we may assume that ⟨𝑥, 𝑦⟩ is
not cyclic. Note that both ⟨𝑒, 𝑥⟩ and ⟨𝑒, 𝑦⟩ are cyclic and the
vertices 𝑥 and 𝑦 are adjacent to 𝑒; hence we get 𝑑(𝑥, 𝑦) = 2.
This means that Γ𝐺 is connected and diam(Γ𝐺) ≤ 2. If there
exist 𝑥 ̸= 𝑒, 𝑦 ̸= 𝑒 such that 𝑥 and 𝑦 are joined by some edge,
then {𝑥, 𝑦, 𝑒} is a cycle of order 3 of Γ

𝐺
and so the girth of Γ

𝐺

is 3. Otherwise, every two vertices (nonidentity elements of
𝐺) of Γ

𝐺
are not adjacent; that is, Γ

𝐺
is a star, which implies

that the girth of Γ
𝐺
is equal to∞.
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The following proposition is obvious; we omit its proof.

Proposition 7. Let 𝐺 be a group with |𝐺| > 2. Then {𝑒} is a
dominating set of order 1 of Γ

𝐺
. In particular, 𝛾(Γ

𝐺
) = 1 and

deg
Γ𝐺
(𝑒) = |𝐺| − 1.

Corollary 8. Let 𝐺 be a group. Then {𝑥} is a dominating
set if and only if 𝑥 ∈ Cyc(𝐺). Moreover, the number of the
dominating sets of size 1 is |Cyc(𝐺)|.

Theorem 9. Let 𝐺 be a nontrivial group. Then diam(Γ𝐺) = 1
(or equivalently Γ𝐺 is complete) if and only if𝐺 is a cyclic group.

Proof. Let 𝑥 and 𝑦 be two arbitrary elements of 𝐺. Suppose
that diam(Γ𝐺) = 1. Then ⟨𝑥, 𝑦⟩ is a cyclic subgroup of 𝐺. By
Definition 1,𝐺 is a cyclic group as𝐺 is finite. For the converse,
if 𝐺 is a cyclic group, then ⟨𝑥, 𝑦⟩ is a cyclic subgroup of 𝐺.
Thus diam(Γ𝐺) = 1, as desired.

Corollary 10. Let𝐺 be noncyclic group.Then Γ𝐺 is not regular.

Theorem 11. Let𝐺 be a groupwith the identity element 𝑒.Then
Γ𝐺 ≅ 𝐾1,|𝐺|−1 (or equivalently Γ𝐺 is a star) if and only if 𝐺 is an
elementary abelian 2-group.

Proof. Assume that Γ
𝐺
is a star. Let 𝑥 be a nonidentity element

of 𝐺. If |𝑥| ≥ 3, then 𝑥 and 𝑥−1 are adjacent since ⟨𝑥, 𝑥−1⟩ is
a cyclic subgroup of 𝐺, which is contrary to Γ𝐺 being a star.
Hence |𝑥| = 2. It follows that the order of every element of 𝐺
is 2. If 𝑥 and 𝑦 are two elements of 𝐺, then (𝑥𝑦)2 = 𝑥𝑦𝑥𝑦 =
𝑥𝑥𝑦𝑦 = 𝑒, and hence 𝑥𝑦 = 𝑦𝑥. It means that 𝐺 is an abelian
group and exp(𝐺) = 2. It follows that 𝐺 is an elementary
abelian 2-group.

Conversely, suppose that 𝐺 is an elementary abelian 2-
group. Then the order of every cyclic subgroup of 𝐺 is 2. Let
𝑥 is a nonidentity element of 𝐺. If there exists an element 𝑦
such that ⟨𝑥, 𝑦⟩ is cyclic, then ⟨𝑥, 𝑦⟩ = ⟨𝑥⟩, which implies
𝑦 ∈ ⟨𝑥⟩. Note that 𝑥 is an element of order 2; then 𝑦 = 𝑒 as
𝑥 ̸= 𝑦. It follows that the unique element 𝑒 is adjacent to 𝑥 in
Γ
𝐺
. So Γ
𝐺
≅ 𝐾
1,|𝐺|−1

.

Corollary 12. Let 𝐺 be an elementary abelian 2-group. Then
Aut(Γ

𝐺
) is isomorphic to the symmetric 𝑆

|𝐺|−1
on |𝐺|−1 letters.

Corollary 13. Let𝐺 be group.Then Γ
𝐺
is a tree if and only if𝐺

is an elementary abelian 2-group.

Corollary 14. Let 𝐺 be group with |𝐺| > 2. If Γ
𝐺
is bipartite,

then Cyc(𝐺) = {𝑒}.

Proof. Assume, on the contrary, Cyc(𝐺) ̸= {𝑒}. Then there
exist two adjacent vertices 𝑥 and 𝑦 such that 𝑥, 𝑦 ∈ Cyc(𝐺).
Since |𝐺| > 2, there is an element 𝑧 such that 𝑧 ̸= 𝑥, 𝑧 ̸= 𝑦.
By Definition 3, {𝑥, 𝑦, 𝑧} is a cycle of length 3 and so the
subgraph of Γ

𝐺
induced by {𝑥, 𝑦, 𝑧} is an odd cycle, which is a

contradiction to Γ
𝐺
being bipartite (see [5,Theorem 1.12, page

22]).

Remark 15. Let 𝐺 = 𝑍
2
. Then Γ

𝐺
is a bipartite graph, while

Cyc(𝐺) ̸= {𝑒}.

Corollary 16. Let 𝐺 be group. Then Γ
𝐺
is bipartite if and only

if 𝐺 is an elementary abelian 2-group.

Proposition 17. Let𝐺
1
and𝐺

2
be two groups. If𝐺

1
≅ 𝐺
2
, then

Γ
𝐺1
≅ Γ
𝐺2
.

Proof. Let𝜙 be an isomorphism from𝐺
1
to𝐺
2
. Obviously,𝜙 is

a one-to-one correspondence between Γ
𝐺1

and Γ
𝐺2
. Let 𝑥 and

𝑦 be two vertices of Γ
𝐺1
. If ⟨𝑥, 𝑦⟩ = ⟨𝑔⟩ is cyclic, then there

exist two positive integers 𝑛,𝑚 such that 𝑥 = 𝑔𝑛 and 𝑦 = 𝑔𝑚,
so 𝑥𝜙 = (𝑔𝜙)𝑛 and 𝑦𝜙 = (𝑔𝜙)𝑚; It means that 𝑥𝜙, 𝑦𝜙 ∈ ⟨𝑔𝜙⟩,
that is, ⟨𝑥𝜙, 𝑦𝜙⟩ is a subgroup of ⟨𝑔𝜙⟩. Thus ⟨𝑥𝜙, 𝑦𝜙⟩ is cyclic.
Note that 𝜙 is invertible. It follows that 𝑥 and 𝑦 are adjacent
in Γ𝐺1 if and only if 𝑥

𝜙 is adjacent to 𝑦𝜙 in Γ𝐺2 . Consequently,
𝜙 is a graph automorphism from Γ𝐺1 to Γ𝐺2 , namely, Γ𝐺1 ≅
Γ𝐺2

.

Remark 18. The converse of Proposition 17 is not true in
general. Let 𝐺1 be the modular group of order 16 (a group is
called a modular group if its lattice of subgroups is modular)
with presentation

⟨𝑠, 𝑡 : 𝑠
8
= 𝑟
2
= 𝑒, 𝑠𝑡 = 𝑡𝑠

5
⟩ . (3)

Clearly, 𝐺
1
= {𝑠
𝑘
𝑡
𝑚
| 𝑘 = 0, 1, . . . , 7, 𝑚 = 0, 1}. Let 𝐺

2
= 𝑍
2
×

𝑍
8
. For 𝐺

1
, this is the same subgroup lattice structure as for

the lattice of subgroups of 𝐺
2
. It is easy to see that Γ

𝐺1
≅ Γ
𝐺2
,

however, 𝐺
1
≇ 𝐺
2
because 𝐺

1
is not abelian.

Theorem 19. Let 𝐺 be a group and let 𝑎 be an element of 𝐺. If
|𝑔| ≤ |𝑎| for all 𝑔 ∈ 𝐺, then 𝜔(Γ

𝐺
) = |𝑎|.

Proof. Let |𝑎| = 𝑛. Then the induced subgraph of {𝑎,
𝑎
2
, . . . , 𝑎

𝑛−1
, 𝑒} is complete; hence {𝑎, 𝑎2, . . . , 𝑎𝑛−1, 𝑒} is a clique

of Γ
𝐺
. On the other hand, if 𝜔(Γ

𝐺
) = 𝑚, then there exists a

subset𝐶 of𝑉(Γ
𝐺
) such that the subgraph of Γ

𝐺
induced by𝐶 is

complete and |𝐶| = 𝑚. Note that the order of the largest clique
is𝑚; 𝑒must be an element of 𝐶. If 𝑥 ∈ 𝐶, then we have ⟨𝑥, 𝑔⟩
being cyclic for every 𝑔 in 𝐶 \ {𝑥}. Clearly ⟨𝑥, 𝑔⟩ = ⟨𝑥−1, 𝑔⟩;
that is, 𝑥−1 ∈ 𝐶. Let 𝑥, 𝑦 be two arbitrary elements of 𝐶. So
⟨𝑥, 𝑦⟩ is cyclic. Since ⟨𝑥𝑦, 𝑥⟩ ≤ ⟨𝑥, 𝑦⟩ and ⟨𝑥𝑦, 𝑦⟩ ≤ ⟨𝑥, 𝑦⟩,
𝑥𝑦 and 𝑥 are adjacent in Γ

𝐺
; yet, 𝑥𝑦 is adjacent to 𝑦. Suppose

𝑧 ∈ 𝐶 \ {𝑥, 𝑦}, it is easy to see that ⟨𝑥𝑦, 𝑧⟩ ≤ ⟨𝑥, 𝑦, 𝑧⟩. Since
⟨𝑥, 𝑦, 𝑧⟩ is a locally cyclic group by Definition 1, ⟨𝑥, 𝑦, 𝑧⟩ is a
cyclic group; namely, ⟨𝑥𝑦, 𝑧⟩ is cyclic. Consequently, 𝑥𝑦 and
𝑧 are joined by an edge of Γ

𝐺
. From what we have mentioned

above, we can see that 𝐶 is a group of 𝐺. Again, 𝐶 is a cyclic
subgroup of 𝐺 by Definition 1. Let 𝐶 = ⟨𝑏⟩, where 𝑏 is an
element of 𝐺. It follows that |𝑏| ≤ |𝑎| from the hypothesis;
that is, 𝜔(Γ𝐺) = |𝑎|.

Corollary 20. Let 𝐺 be group. If 𝐶 = {𝑥, 𝑥2, . . . , 𝑥|𝑥|−1, 𝑒} =
⟨𝑥⟩, then 𝐶 is a clique of Γ

𝐺
. Converse holds only when 𝐶 is the

largest clique.

Corollary 21. Let 𝑛 ≥ 3. Then 𝑆
𝑛
and 𝐴

𝑛
are planar if and

only if 𝑛 = 3 or 4.
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Theorem 22. Let 𝐺 be a group. Then deg
Γ𝐺
(𝑥) = |𝑥| − 1 for all

𝑥 ∈ 𝑉(Γ
𝐺
) \ {𝑒} if and only if every element of𝐺\{𝑒} is of prime

order.

Proof. Assume that deg
Γ𝐺
(𝑥) = |𝑥| − 1 for every nonidentity

element 𝑥 of 𝐺. If there exists an element 𝑥 of 𝐺 \ {𝑒} such
that 𝑥 is not of prime order, then we may choose 𝑡 such that
𝑡 divides the order of 𝑥 and 1 < 𝑡 < |𝑥|. Thus 𝑥𝑡 ̸= 𝑒 and 𝑥 is
adjacent to 𝑥𝑡, since ⟨𝑥, 𝑥𝑡⟩ = ⟨𝑥⟩. while 𝑥 ∉ ⟨𝑥𝑡⟩ (otherwise,
⟨𝑥⟩ = ⟨𝑥

𝑡
⟩, a contradiction). so𝑁

Γ𝐺
(𝑥
𝑡
) = {𝑥} ∪ (⟨𝑥

𝑡
⟩ \ {𝑥
𝑡
}).

This is contrary to deg
Γ𝐺
(𝑥
𝑡
) = |𝑥

𝑡
| − 1.

For the converse, suppose every nonidentity element 𝑥 of
𝐺 is of prime order. If ⟨𝑥, 𝑦⟩ is a cyclic subgroup of 𝐺, then
|⟨𝑥, 𝑦⟩| is a prime number. Thereby, ⟨𝑥, 𝑦⟩ = ⟨𝑥⟩, and so 𝑦 ∈
⟨𝑥⟩. That is, Cyc

𝐺
(𝑥) = ⟨𝑥⟩. Hence the theorem follows.

Theorem 23. Let 𝐺 be a group. Then 𝑁
Γ𝐺
(𝑥) ∪ {𝑥} is a cyclic

subgroup for all 𝑥 ∈ 𝐺 \ {𝑒} if and only if every element 𝑥 of
𝐺\ {𝑒} is contained in precisely one maximal cyclic subgroup of
𝐺.

Proof. Assume that every element of 𝐺 \ {𝑒} is contained in
exactly onemaximal cyclic subgroup of𝐺. If𝑥 is an element of
𝐺\ {𝑒}, then there is a maximal cyclic subgroup ⟨𝑦⟩ such that
𝑥 ∈ ⟨𝑦⟩. Let 𝑎 ∈ Cyc𝐺(𝑥). Since ⟨𝑥, 𝑎⟩ is cyclic, ⟨𝑥, 𝑎⟩ = ⟨𝑧⟩. If
⟨𝑥, 𝑎⟩�⩽⟨𝑦⟩, then there exists a maximal cyclic subgroup ⟨𝑤⟩
such that 𝑧 ∈ ⟨𝑤⟩ as 𝑧 ̸= 𝑒. However 𝑥 ∈ ⟨𝑤⟩; this gives a
contradiction to ⟨𝑦⟩ being the precisely one maximal cyclic
subgroup of containing 𝑥. Consequently ⟨𝑥, 𝑎⟩ ≤ ⟨𝑦⟩, and so
𝑎 ∈ ⟨𝑦⟩. Also, if 𝑏 ∈ ⟨𝑦⟩, then ⟨𝑥, 𝑏⟩ ≤ ⟨𝑦⟩, so 𝑥 and 𝑏 are
adjacent in Γ

𝐺
; it means that 𝑏 ∈ Cyc

𝐺
(𝑥). Thus Cyc

𝐺
(𝑥) =

⟨𝑦⟩; that is, Cyc
𝐺
(𝑥) is cyclic. In other words,𝑁

Γ𝐺
(𝑥) ∪ {𝑥} is

a cyclic subgroup of 𝐺.
Conversely, let 𝑥 be an element of 𝐺 \ {𝑒} such that 𝑥 ∈

⟨𝑦⟩ and 𝑥 ∈ ⟨𝑧⟩, where ⟨𝑦⟩ and ⟨𝑧⟩ are two maximal cyclic
subgroups of 𝐺. Assume that𝑁Γ𝐺(𝑥) ∪ {𝑥} is cyclic. Since 𝑥 is
adjacent to 𝑦, we have ⟨𝑦⟩ ≤ 𝑁Γ𝐺(𝑥) ∪ {𝑥}, so ⟨𝑦⟩ = 𝑁Γ𝐺(𝑥) ∪
{𝑥}. Similarly, ⟨𝑧⟩ = 𝑁Γ𝐺(𝑥) ∪ {𝑥}, and thus ⟨𝑦⟩ = ⟨𝑧⟩; that
is, 𝑥 is contained in precisely one maximal cyclic subgroup of
𝐺.

Theorem 24. Let𝐺 be a group.ThenAut(Γ
𝐺
) = Aut(𝐺) if and

only if 𝐺 is isomorphic to the Klein group 𝑍
2
× 𝑍
2
.

Proof. First we suppose that Aut(Γ
𝐺
) = Aut(𝐺) for group 𝐺.

We shall show that𝐺 is isomorphic to the Klein group𝑍
2
×𝑍
2

by the following steps.

Step 1 (𝐺 is abelian). Let𝜓 be an automorphism of Γ
𝐺
.Then𝜓

is an automorphismof group𝐺, so (𝑥𝑦)𝜓 = 𝑥𝜓𝑦𝜓 for all𝑥, 𝑦 ∈
𝐺. Now we define the mapping 𝛼: 𝑥𝛼 = 𝑥−1 for all 𝑥 in𝑉(Γ𝐺).
It is well known that 𝛼 is a bijection and ⟨𝑎, 𝑏⟩ is cyclic if and
only if ⟨𝑎−1, 𝑏−1⟩ is cyclic; that is, 𝑎𝑏 is an edge of Γ

𝐺
if and

only if 𝑎𝛼𝑏𝛼 is an edge of Γ
𝐺
.Thus 𝛼 ∈ Aut(Γ

𝐺
). By hypothesis,

𝛼 ∈ Aut(𝐺), so (𝑥𝑦)𝛼 = 𝑥𝛼𝑦𝛼 = (𝑥𝑦)−1 = 𝑦−1𝑥−1 = 𝑥−1𝑦−1
for all 𝑥, 𝑦 ∈ 𝐺; namely, 𝑥𝑦 = 𝑦𝑥, and hence 𝐺 is a abelian
group.

Step 2 (𝐺 is not a cyclic group). If 𝐺 is a cyclic group, then
we can see that Γ

𝐺
is isomorphic to the complete graph

𝐾
|𝐺|

by Theorem 9, and hence Aut(Γ
𝐺
) is isomorphic to the

symmetric group 𝑆
|𝐺|
. Since |𝐺| ≥ 3 (if |𝐺| = 2, then

Aut(𝐺) = {𝑒}, but Aut(Γ
𝐺
) ≅ 𝑍

2
, a contradiction), Aut(Γ

𝐺
) is

nonabelian. However, Aut(𝐺) must be abelian as 𝐺 is cyclic,
a contradiction.

Step 3 (𝐺 is an elementary abelian 2-group). By Step 1, we
have 𝐺 = ⟨𝑎1⟩ × ⟨𝑎2⟩ × ⋅ ⋅ ⋅ × ⟨𝑎𝑟⟩, where |𝑎𝑖| | |𝑎𝑖+1| for
all 𝑖 = 1, 2, . . . , 𝑟 − 1. It is clear that 𝑟 > 1 by Step 2.
Obviously, there exists a graph automorphism 𝜓 such that
𝑎
𝜓

1
= 𝑎1, 𝑎

𝜓

𝑟
= 𝑎𝑟, (𝑎1𝑎𝑟)

𝜓
= (𝑎1𝑎𝑟)

−1, and ((𝑎1𝑎𝑟)
−1
)
𝜓
=

𝑎1𝑎𝑟. Since Aut(Γ
𝐺
) = Aut(𝐺), we have 𝜓 ∈ Aut(𝐺) and

(𝑎
1
𝑎
𝑟
)
𝜓
= 𝑎
𝜓

1
𝑎
𝜓

𝑟
. It follows that 𝑎2

1
= 𝑎
−2

𝑟
∈ ⟨𝑎
1
⟩ ∩ ⟨𝑎

𝑟
⟩ = {𝑒}.

Furthermore, |𝑎
1
| = |𝑎
𝑟
| = 2. In particular, |𝑎

2
| = |𝑎
3
| = ⋅ ⋅ ⋅ =

|𝑎
𝑟−1
| = 2. It follows that 𝐺 is an elementary abelian 2-group.

Step 4 (finishing the proof). Let |𝐺| = 2𝑛 for some positive
integer 𝑛. By Step 3 and Theorem 11, Γ

𝐺
is isomorphic to the

star𝐾1,2𝑛−1. So Aut(Γ𝐺) is the symmetric group 𝑆2𝑛−1 of degree
2
𝑛
−1, while Aut(𝐺) is isomorphic to the general linear group

GL(𝑛, 2). Thus 𝑛 = 2 as Aut(Γ𝐺) = Aut(𝐺). That is, 𝐺 ≅ 𝑍2 ×
𝑍2.

For the converse, we suppose that 𝐺 ≅ 𝑍2 × 𝑍2. Then
we have Aut(𝐺) = 𝑆3. On the other hand, Γ𝐺 ≅ 𝐾1,3, and so
Aut(Γ𝐺) = Aut(𝐺) = 𝑆3.

Remark 25. Suppose 𝐺 = 𝑍2 × 𝑍2, then Γ𝐺 ≅ 𝐾1,3. Let 𝑍2 ×
𝑍
2
= {𝑒, 𝑎, 𝑏, 𝑎𝑏 | 𝑎

2
= 𝑏
2
= 𝑒, 𝑎𝑏 = 𝑏𝑎}. Then |Aut(𝐺)| = 6,

more specifically,

𝜑1 =

{{{{{

{{{{{

{

𝑎 → 𝑎,

𝑏 → 𝑎𝑏,

𝑎𝑏 → 𝑏,

𝑒 → 𝑒,

𝜑2 =

{{{{{

{{{{{

{

𝑎 → 𝑏,

𝑏 → 𝑎𝑏,

𝑎𝑏 → 𝑎,

𝑒 → 𝑒,

𝜑
3
=

{{{{{

{{{{{

{

𝑎 → 𝑎𝑏,

𝑏 → 𝑏,

𝑎𝑏 → 𝑏,

𝑒 → 𝑒,

𝜑
4
=

{{{{{

{{{{{

{

𝑎 → 𝑏,

𝑏 → 𝑎,

𝑎𝑏 → 𝑎𝑏,

𝑒 → 𝑒,

𝜑
5
=

{{{{{

{{{{{

{

𝑎 → 𝑎𝑏,

𝑏 → 𝑎,

𝑎𝑏 → 𝑏,

𝑒 → 𝑒,

𝜑
6
= 𝑒,

(4)

here 𝜑
𝑖
∈ Aut(𝐺) for 𝑖 = 1, 2, . . . , 6. Clearly, we can see that

Aut(𝐺) is nonabelian; that is, Aut(𝐺) ≅ 𝑆
3
.

Proposition 26. Let 𝐺 be an elementary abelian 𝑝-group for
some prime integer 𝑝. Then Γ

𝐺
is isomorphic to Figure 3.

Proof. Let 𝑥 be an element of 𝐺 and 𝑥 ̸= 𝑒. Since 𝐺 is an
elementary abelian 𝑝-group, we conclude that the order
of 𝑥 is 𝑝. It follows that the subgraph of Γ

𝐺
induced by
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𝑒

𝐾𝑝−1 𝐾𝑝−1

𝐾𝑝−1

Figure 3: The cyclic graph of the elementary abelian 𝑝-group.

{𝑥, 𝑥
2
, . . . , 𝑥

𝑝−1
} is isomorphic to the complete graph𝐾

𝑝−1
of

order 𝑝 − 1. Let 𝑦 be an element such that 𝑦 ∉ ⟨𝑥⟩. If 𝑥 and
𝑦 are adjacent, then ⟨𝑥, 𝑦⟩ is a cyclic subgroup of 𝐺, which
implies ⟨𝑥, 𝑦⟩ = ⟨𝑥⟩ = ⟨𝑦⟩ since ⟨𝑥, 𝑦⟩ is a cyclic subgroup
of order 5, and this gives a contradiction to 𝑦 ∉ ⟨𝑥⟩. Thus 𝑥 is
uniquely adjacent to every vertex of {𝑒, 𝑥, 𝑥2, . . . , 𝑥𝑝−1}. This
completes the proof.

Remark 27. Let 𝑝 be composite. Then, in general, 𝑍
𝑝
× 𝑍
𝑝
×

⋅ ⋅ ⋅ × 𝑍
𝑝
is not isomorphic to Figure 3. For example, let 𝐺 =

𝑍
4
× 𝑍
4
, then deg

Γ𝐺
((2, 0)) = 5 > 4. In fact, 𝑁

Γ𝐺
((2, 0)) =

{(1, 2), (0, 0), (3, 2), (1, 0), (3, 0)}.

4. The Cyclic Graphs of the Dihedral Groups

For 𝑛 ≥ 3, the dihedral group 𝐷
2𝑛

is an important example
of finite groups. As is well known, 𝐷

2𝑛 = ⟨𝑟, 𝑠 : 𝑠
2
= 𝑟
𝑛
= 𝑒,

𝑠
−1
𝑟𝑠 = 𝑟

−1
⟩. As a list,

𝐷2𝑛 = {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
= 𝑒, 𝑠𝑟

1
, 𝑠𝑟
2
, . . . , 𝑠𝑟

𝑛
} . (5)

Theorem 28. Let Γ
𝐷2𝑛

be the cyclic graph of 𝐷
2𝑛

and 𝑛 ≥ 3.
Then

(1) deg
Γ𝐷2𝑛
(𝑠𝑟
𝑖
) = 1 for any 1 ≤ 𝑖 ≤ 𝑛;

(2) deg
Γ𝐷2𝑛
(𝑟
𝑖
) = 𝑛 − 1 for any 1 ≤ 𝑖 < 𝑛;

(3) Γ
𝐷2𝑛

is not Eulerian;
(4) Γ
𝐷2𝑛

is not Hamiltonian;
(5) Γ
𝐷2𝑛

is planar if and only if 𝑛 = 3 or 4;
(6) Γ
𝐷2𝑛

is a split graph;
(7) Aut(Γ

𝐷2𝑛
) ≅ 𝑆
𝑛
× 𝑆
𝑛−1

.

Proof. (1) Clearly, the order of 𝑠𝑟𝑖 is 2 for all 1 ≤ 𝑖 ≤ 𝑛 by
the definition of 𝐷

2𝑛
. Since every cyclic subgroup of 𝐺 has

a uniquely cyclic subgroup of order 2, ⟨𝑠𝑟𝑖, 𝑠𝑟𝑗⟩ is noncyclic;
that is, 𝑠𝑟𝑖 and 𝑠𝑟𝑗 are not adjacent to each other. If 𝑠𝑟𝑖 is
adjacent to 𝑟𝑗, where 𝑗 ̸= 𝑛, then ⟨𝑠𝑟𝑖, 𝑟𝑗⟩ is cyclic and hence
⟨𝑠𝑟
𝑖
, 𝑟
𝑗
⟩ = ⟨𝑟

𝑘
⟩, which is a contradiction.Thus, 𝑒 is the unique

element of 𝐺 which is adjacent to 𝑠𝑟𝑖, as required.
(2) It is easy to see that deg

Γ𝐷2𝑛
(𝑟
𝑖
) ≥ 𝑛−1 for any 1 ≤ 𝑖 < 𝑛.

Now (1) completes the proof.

(3) Since deg
Γ𝐷2𝑛
(𝑠) is an odd integer by (1), Γ

𝐷2𝑛
is not

Eulerian (see [5, Theorem 6.1, page 137]).
(4) In view of (1) and (2), Γ𝐷2𝑛 contains a cut-vertex 𝑒. In

the light of [5, Theorem 6.5, page 145] , we conclude that Γ𝐷2𝑛
cannot be Hamiltonian.

(5) If 𝑛 = 3 or 4, then it is easy to see that Γ𝐷2𝑛 is planar.
Now suppose that Γ𝐷2𝑛 is planar. Since the complete graph of
order 5 is not planar, we have 𝜔(Γ𝐷2𝑛) < 5. Since the subgraph
of Γ
𝐷2𝑛

induced by {𝑟, 𝑟2, . . . , 𝑟𝑛−1, 𝑟𝑛} is complete, we have 𝑛 <
5. That is, 𝑛 = 3 or 4, as desired.

(6) By (1) and (2), the vertex set of Γ𝐷2𝑛 can be partitioned
into the clique {𝑟, 𝑟2, . . . , 𝑟𝑛−1, 𝑒} and the independent set
{𝑠𝑟
1
, 𝑠𝑟
2
, . . . , 𝑠𝑟

𝑛−1
, 𝑠}, and hence Γ

𝐷2𝑛
is a split graph.

(7) It is straightforward.

Corollary 29. Let Γ
𝐷2𝑛

be the cyclic graph of 𝐷
2𝑛

and 𝑛 ≥ 3.
Then Γ

𝐷2𝑛
is not bipartite.

Corollary 30. Let 𝑛 ≥ 3. Then |𝐸(Γ
𝐷2𝑛
)| = 𝑛(𝑛 + 1)/2.

Corollary 31. Let 𝑛 ≥ 3. Then 𝜔(Γ
𝐷2𝑛
) = 𝜒(Γ

𝐷2𝑛
) = 𝑛.

Theorem 32. Let 𝑛 > 2 be an integer. If 𝐺 is a group with
Γ
𝐺
≅ Γ
𝐷2𝑛

, then 𝐺 ≅ 𝐷
2𝑛
.

Proof. We have |𝐺| = 2𝑛 by Definition 4. In view of
Theorem 28, we can see that 𝜔(Γ

𝐺
) = 𝑛. It follows from

Theorem 19 that there exists an element 𝑟 ∈ 𝐺 such that ⟨𝑟⟩ is
a cyclic subgroup of order 𝑛. Note that |𝐺 : ⟨𝑟⟩| = 2; we have
⟨𝑟⟩ being a normal subgroup of 𝐺. Since there are 𝑛 vertices
in Γ𝐺 such that the degrees equal 1, there exist 𝑛 elements of
order 2 in 𝐺. Now we choose an involution 𝑠 of order 2 of 𝐺
such that 𝑠 ∉ ⟨𝑟⟩. It is easy to see that 𝐺 = ⟨𝑟⟩ ⋊ ⟨𝑠⟩; that is,
𝐺 ≅ 𝑍𝑛 ⋊ 𝑍2. By the definition of dihedral group, 𝑍2 acts on
𝑍𝑛 by inversion. This implies that 𝐺 ≅ 𝐷2𝑛, as required.

5. The Cyclic Graphs of the Generalized
Quaternion Groups

The quaternion group 𝑄
8
is also an important example of

finite nonabelian groups; it is given by

𝑄
8
= ⟨−1, 𝑖, 𝑗, 𝑘 : (−1)

2
= 1, 𝑖

2
= 𝑗
2
= 𝑘
2
= 𝑖𝑗𝑘 = −1⟩ .

(6)

As a generalization of 𝑄
8, the generalized quaternion

group 𝑄4𝑛 is defined as

𝑄4𝑛 = ⟨𝑎, 𝑏 : 𝑏
2
= 𝑎
𝑛
, 𝑎
2𝑛
= 𝑒, 𝑏𝑎𝑏

−1
= 𝑎
−1
⟩ , (7)

where 𝑒 is the identity element and 𝑛 ≥ 2 (if 𝑛 = 2, then
𝑄
4𝑛
= 𝑄
8
). Clearly, 𝑄

4𝑛
has order 4𝑛 as a list

𝑄
4𝑛
= {𝑎, 𝑎

2
, . . . , 𝑎

2𝑛−1
, 𝑒, 𝑏, 𝑎𝑏, . . . , 𝑎

2𝑛−1
𝑏} . (8)

Moreover, 𝑍(𝑄
4𝑛
) = {𝑒, 𝑎

𝑛
} and |𝑎𝑖𝑏| = 4, where 1 ≤ 𝑖 ≤ 2𝑛.
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Table 1

Cyclic graph Isomorphic graph Vertex degree sequences Clique number Geodetic number Planarity
Γ
𝑍2×𝑍2

𝐾
1,3

3, 1, 1, 1 2 3 Planar
Γ
𝑆3

5, 2, 2, 1, 1, 1 3 5 Planar
Γ
𝑍2×𝑍2×𝑍2

𝐾
1,7

7, 1, 1, 1, 1, 1, 1, 1 2 7 Planar
Γ
𝑍2×𝑍4

7, 5, 3, 3, 3, 3, 1, 1 4 6 Planar
Γ
𝐷8

7, 3, 3, 3, 1, 1, 1, 1 4 7 Planar
Γ
𝑄8

7, 7, 3, 3, 3, 3, 3, 3 4 6 Planar
Γ
𝑍3×𝑍3

8, 2, 2, 2, 2, 2, 2, 2, 2 3 8 Planar
Γ
𝐷10

9, 4, 4, 4, 4, 1, 1, 1, 1, 1 5 9 Nonplanar
Γ
𝑍2×𝑍6

11, 9, 9, 5, 5, 5, 3, 3, 3, 3, 1, 1 6 10 Nonplanar
Γ
𝐷12

11, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1 6 11 Nonplanar
Γ
𝑄4×3

11, 11, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3 6 10 Nonplanar
Γ
𝐴4

11, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 3 11 Planar
Γ
𝐷14

13, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1 7 13 Nonplanar

Lemma 33. 𝐶𝑦𝑐(𝑄4𝑛) = {𝑒, 𝑎𝑛}.

Proof. Since (𝑎𝑖𝑏)2 = 𝑏2 = 𝑎𝑛 and |𝑎𝑖𝑏| = 4 for all 𝑖,
⟨𝑎
𝑖
𝑏, 𝑎
𝑛
⟩ = ⟨𝑎

𝑖
𝑏⟩; that is, 𝑎𝑛 ∈ Cyc

𝑄4𝑛
(𝑎
𝑖
𝑏) for all 𝑖. On the

other hand, it is obvious that ⟨𝑎𝑗, 𝑎𝑛⟩ is a cyclic subgroup of
𝑄
4𝑛
for all 𝑗 as ⟨𝑎𝑗, 𝑎𝑛⟩ ≤ ⟨𝑎⟩, where 1 ≤ 𝑗 ≤ 2𝑛. Consequently

𝑎
𝑛
∈ 𝐶𝑦𝑐

𝑄4𝑛
(𝑎
𝑗
) for all 𝑗, namely, 𝑎𝑛 ∈ Cyc(𝑄

4𝑛
). However,

Cyc(𝑄
4𝑛
) ⊆ 𝑍(𝑄

4𝑛
), so Cyc(𝑄

4𝑛
) = 𝑍(𝑄

4𝑛
) = {𝑒, 𝑎

𝑛
}.

Proposition 34. Let Γ
𝑄4𝑛

be the cyclic graph of 𝑄
4𝑛
. Then

(1) deg
𝑄4𝑛
(𝑎
𝑖
𝑏) = 3 for all 1 ≤ 𝑖 ≤ 2𝑛;

(2) deg
𝑄4𝑛
(𝑎
𝑗
) = 2𝑛 − 1 for all 1 ≤ 𝑗 < 𝑛 and 𝑛 < 𝑗 < 2𝑛;

(3) deg
𝑄4𝑛
(𝑒) = deg

𝑄4𝑛
(𝑎
𝑛
) = 4𝑛 − 1.

Proof. (1) Since |𝑎𝑖𝑏| = 4 for all 1 ≤ 𝑖 ≤ 2𝑛, deg
𝑄4𝑛
(𝑎
𝑖
𝑏) ≥

3. Obviously, {𝑒, 𝑎𝑛, (𝑎𝑖𝑏)−1} ⊆ 𝑁
Γ𝑄4𝑛
(𝑎
𝑖
𝑏). If 𝑎𝑖𝑏 and 𝑎𝑗𝑏 are

joined by an edge, then ⟨𝑎𝑖𝑏, 𝑎𝑗𝑏⟩ is a cyclic subgroup of order
4; Note that ⟨𝑎𝑖𝑏⟩ is a cyclic subgroup of order 4, then 𝑎𝑖𝑏 =
𝑎
𝑗
𝑏 or 𝑎𝑖𝑏 = (𝑎𝑗𝑏)−1. On the other hand, it is easy to see that
⟨𝑎
𝑖
𝑏, 𝑎
𝑗
⟩ cannot be cyclic, where 1 ≤ 𝑗 < 𝑛 and 𝑛 < 𝑗 < 2𝑛.

Consequently, we have {𝑒, 𝑎𝑛, (𝑎𝑖𝑏)−1} = 𝑁
Γ𝑄4𝑛
(𝑎
𝑖
𝑏), and so

deg
𝑄4𝑛
(𝑎
𝑖
𝑏) = 3.

(2) By the proof of (1), we see that ⟨𝑎𝑖𝑏, 𝑎𝑗⟩ is not cyclic
for all 1 ≤ 𝑗 < 𝑛 and 𝑛 < 𝑗 < 2𝑛, so deg

𝑄4𝑛
(𝑎
𝑗
) = 2𝑛 − 1.

(3) Obviously by Lemma 33.

Corollary 35. Let 𝑛 ≥ 2. Then |𝐸(Γ
𝐷4𝑛
)| = 2𝑛

2
+ 4𝑛.

Corollary 36. Let 𝑛 ≥ 2. Then 𝜔(Γ
𝐷4𝑛
) = 𝜒(Γ

𝐷4𝑛
) = 2𝑛.

Theorem 37. Let Γ
𝑄4𝑛

be the cyclic graph of 𝑄
4𝑛
. Then Γ

𝑄4𝑛
is

planar if and only if 𝑛 = 2.

Proof. Suppose 𝑛 = 2. It is easy to see that Γ
𝑄8

is planar. Now
assume that Γ

𝑄4𝑛
is a planar graph. Then 𝜔(Γ

𝐷2𝑛
) < 5 since𝐾

5

is nonplanar. ByTheorem 19, there exists no the element 𝑔 of
𝑄
4𝑛
such that |𝑔| ≥ 5. However |𝑎| = 2𝑛, and hence 𝑛 = 2.

Theorem 38. Let Γ
𝑄4𝑛

be the cyclic graph of 𝑄
4𝑛

and 𝑛 ≥ 2.
Then

(1) Γ𝑄4𝑛 is not Eulerian;
(2) Γ
𝑄4𝑛

is not Hamiltonian.

Proof. (1) It is similar to the proof of (3) in Theorem 28.
(2) Let 𝑘(Γ

𝑄4𝑛
) denote the number of components in the

graph Γ
𝑄4𝑛

. By Theorem 6.5 of [5] on page 145, if Γ
𝑄4𝑛

is
Hamiltonian, then for every nonempty proper set 𝑆 of vertices
of Γ
𝑄4𝑛

, we have 𝑘(Γ
𝑄4𝑛
− 𝑆) ≤ |𝑆|. Now suppose 𝑆 = {𝑒, 𝑎𝑛}.

Then the number of components of the resulting graph Γ
𝑄4𝑛
−𝑆

is equal to 𝑛 + 1. However, 𝑛 + 1 > |𝑆|, a contradiction.

6. The Cyclic Graphs of Noncyclic Groups of
Order up to 14

It is significant to obtain detailed information on the cyclic
graphs of some noncyclic groups of lower order. In this
section, we present a table on the cyclic graphs of noncyclic
groups of order up to 14, as shown in Table 1.
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