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We de�ne a map 𝑣𝑣 between the symmetric group 𝑆𝑆𝑛𝑛 and the set of pairs of Dyck paths of semilength 𝑛𝑛. We show that the map 𝑣𝑣 is
injective when restricted to the set of 1234-avoiding permutations and characterize the image of this map.

1. Introduction

We say that a permutation 𝜎𝜎 𝜎 𝜎𝜎𝑛𝑛 contains a pattern 𝜏𝜏 𝜏𝜏𝜏 𝑘𝑘
if 𝜎𝜎 contains a subsequence that is order-isomorphic to 𝜏𝜏.
Otherwise, we say that 𝜎𝜎 avoids 𝜏𝜏. Given a pattern 𝜏𝜏, denote
by 𝑆𝑆𝑛𝑛(𝜏𝜏𝜏 the set of permutations in 𝑆𝑆𝑛𝑛 avoiding 𝜏𝜏.

e sets of permutations that avoid a single pattern 𝜏𝜏 𝜏
𝑆𝑆3 have been completely determined in last decades. More
precisely, it has been shown [1] that, for every 𝜏𝜏 𝜏𝜏𝜏 3, the
cardinality of the set 𝑆𝑆𝑛𝑛(𝜏𝜏𝜏 equals the 𝑛𝑛th Catalan number,
which is also the number of Dyck paths of semilength 𝑛𝑛 (see
[2] for an exhaustive survey). Many bijections between 𝑆𝑆𝑛𝑛(𝜏𝜏𝜏,
𝜏𝜏 𝜏𝜏𝜏 3, and the set of Dyck paths of semilength 𝑛𝑛 have been
described (see [3] for a fully detailed overview).

e case of patterns of length 4 appears much more
complicated, due both to the fact that the patterns 𝜏𝜏 𝜏𝜏𝜏 4
are not equidistributed on 𝑆𝑆𝑛𝑛, and the difficulty of describing
bijections between 𝑆𝑆𝑛𝑛(𝜏𝜏𝜏, 𝜏𝜏 𝜏𝜏𝜏 4, and some set of combinato-
rial objects.

In this paper we study the case 𝜏𝜏 𝜏 𝜏𝜏𝜏𝜏. An explicit
formula for the cardinality of 𝑆𝑆𝑛𝑛(1234) has been computed
by I. Gessel (see [2, 4]).

We present a bijection between 𝑆𝑆𝑛𝑛(1234) and a set of pairs
of Dyck paths of semilength 𝑛𝑛. More speci�cally, we de�ne
a map 𝜈𝜈 from 𝑆𝑆𝑛𝑛 to the set of pairs of Dyck paths, prove
that every element in the image of 𝜈𝜈 corresponds to a single
element in 𝑆𝑆𝑛𝑛(1234), and characterize the set of all pairs that
belong to the image of the map 𝜈𝜈.

2. Dyck Paths

ADyck path of semilength 𝑛𝑛 is a lattice path starting at (0, 0),
ending at (2𝑛𝑛𝑛𝑛𝑛 , and never going below the𝑥𝑥-axis, consisting
of up steps 𝑈𝑈 𝑈𝑈𝑈𝑈𝑈𝑈   and down steps 𝐷𝐷 𝐷𝐷𝐷𝐷  𝐷𝐷𝐷. A return
of a Dyck path is a down step ending on the 𝑥𝑥-axis. A Dyck
path is irreducible if it has only one return. An irreducible
component of a Dyck path 𝑃𝑃 is a maximal irreducible Dyck
subpath of 𝑃𝑃.

A Dyck path 𝑃𝑃 is speci�ed by the lengths 𝑎𝑎1,… , 𝑎𝑎𝑘𝑘 of its
ascents (viz., maximal sequences of consecutive up steps) and
by the lengths 𝑑𝑑1,… , 𝑑𝑑𝑘𝑘 of its descents (maximal sequences
of consecutive down steps), read from le to right. Set 𝐴𝐴𝑖𝑖 =
∑𝑖𝑖
𝑗𝑗𝑗𝑗 𝑎𝑎𝑗𝑗 and 𝐵𝐵𝑖𝑖 = ∑

𝑖𝑖
𝑗𝑗𝑗𝑗 𝑑𝑑𝑗𝑗. If 𝑛𝑛 is the semilength of 𝑃𝑃, we have

of course 𝐴𝐴𝑘𝑘 = 𝐵𝐵𝑘𝑘 = 𝑛𝑛, hence the Dyck path 𝑃𝑃 is uniquely
determined by the two sequences 𝐴𝐴 𝐴 𝐴𝐴1,… ,𝐴𝐴𝑘𝑘𝑘𝑘 and 𝐵𝐵 𝐵
𝐵𝐵1,… , 𝐵𝐵𝑘𝑘𝑘𝑘. e pair (𝐴𝐴𝐴𝐴𝐴𝐴  is called the ascent-descent code
of the Dyck path 𝑃𝑃.

Obviously, a pair (𝐴𝐴𝐴𝐴𝐴𝐴 , where𝐴𝐴 𝐴 𝐴𝐴1,… ,𝐴𝐴𝑘𝑘𝑘𝑘 and 𝐵𝐵 𝐵
𝐵𝐵1,… , 𝐵𝐵𝑘𝑘𝑘𝑘, is the ascent-descent code of some Dyck path of
semilength 𝑛𝑛 if and only if

(i) 0 < 𝑘𝑘 𝑘 𝑘𝑘;

(ii) 1≤  𝐴𝐴1 < 𝐴𝐴2 < ⋯ < 𝐴𝐴𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛 𝑛𝑛 ;

(iii) 1≤  𝐵𝐵1 < 𝐵𝐵2 < ⋯ < 𝐵𝐵𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛 𝑛𝑛 ;

(iv) 𝐴𝐴𝑖𝑖 ≥ 𝐵𝐵𝑖𝑖 for every 1≤  𝑖𝑖 𝑖𝑖𝑖𝑖𝑖   .
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F 1

( )

F 2: e map 𝐿𝐿.

It is easy to check that the returns of a Dyck path are in one-
to-one correspondence with the indices 1 ≤ 𝑖𝑖 𝑖 𝑖𝑖 such that
𝐴𝐴𝑖𝑖 = 𝐵𝐵𝑖𝑖. Hence, a Dyck path is irreducible whenever we have
𝐴𝐴𝑖𝑖 > 𝐵𝐵𝑖𝑖 for every 1 ≤ 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖.

For example, the ascent-descent code of the Dyck path 𝑃𝑃
in Figure 1 is (𝐴𝐴𝐴 𝐴𝐴𝐴, where 𝐴𝐴 𝐴 𝐴𝐴 𝐴 and 𝐵𝐵 𝐵 𝐵𝐵𝐵 . Note that
𝐴𝐴1 > 𝐵𝐵1 and 𝐴𝐴2 > 𝐵𝐵2. In fact, 𝑃𝑃 is irreducible.

We describe an involution 𝐿𝐿 due to Kreweras (a descrip-
tion of this bijection, originally de�ned in [5], can be found in
[6]) and discussed by Lalanne (see [7, 8]) on the set of Dyck
paths. Given a Dyck path𝑃𝑃, the path 𝐿𝐿𝐿𝐿𝐿𝐿 can be constructed
as follows:

(i) if 𝑃𝑃 is the empty path 𝜖𝜖, then 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  ;
(ii) if 𝑃𝑃 is nonempty:

(a) �ip the Dyck path 𝑃𝑃 around the 𝑥𝑥-axis, obtain-
ing a path 𝐸𝐸;

(b) draw northwest (resp. northeast) lines starting
from themidpoint of each double descent (resp.
ascent);

(c) mark the intersection between the 𝑖𝑖th northwest
and 𝑖𝑖th northeast line, for every 𝑖𝑖;

(d) 𝐿𝐿𝐿𝐿𝐿𝐿 is the unique Dyck path that has valleys at
the marked points (see Figure 2).

We de�ne a further involution 𝐿𝐿′ on the set of Dyck paths,
which is a variation of the involution 𝐿𝐿, as follows:

(i) if 𝑃𝑃 is the empty path 𝜖𝜖, then 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  ;

(a) consider a Dyck path 𝑃𝑃 and �ip it with respect
to a vertical line;

(b) decompose the obtained path into its irreducible
components𝑈𝑈 𝑈𝑈𝑖𝑖 𝐷𝐷;

(c) replace every component 𝑈𝑈 𝑈𝑈𝑖𝑖 𝐷𝐷 with 𝑈𝑈 𝑈𝑈𝑈𝑈𝑈𝑖𝑖)
𝐷𝐷 in order to get 𝐿𝐿′(𝑃𝑃𝑃 (see Figure 3).

We point out that the map 𝐿𝐿′ appears in a slightly modi�ed
version in the paper [6].

We now give a description of the map 𝐿𝐿′ in terms of
ascent-descent code. Obviously, it is sufficient to consider the
case of an irreducible Dyck path 𝑃𝑃.

Let (𝐴𝐴𝐴 𝐴𝐴𝐴 be the ascent-descent code of an irreducible
path 𝑃𝑃 of semilength 𝑛𝑛, with 𝐴𝐴 𝐴 𝐴𝐴1,… ,𝐴𝐴ℎ and 𝐵𝐵 𝐵
𝐵𝐵1,… , 𝐵𝐵ℎ. Straightforward arguments show that the ascent-
descent code (𝐴𝐴′, 𝐵𝐵′) of 𝐿𝐿′(𝑃𝑃𝑃 can be described as follows:

(i) set 𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖 − 1 and set 󵰂󵰂𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴  𝐴 𝐴 𝐴𝐴𝐴1,… ,𝐴𝐴ℎ}
= {󵰂󵰂𝐴𝐴1,… , 󵰂󵰂𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛}, where the 󵰂󵰂𝐴𝐴𝑖𝑖’s are written in
decreasing order. en, 𝐴𝐴′

𝑖𝑖 = 𝑛𝑛 𝑛 󵰂󵰂𝐴𝐴𝑖𝑖;
(ii) consider the set [𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛   1,… , 𝐵𝐵ℎ} = { 󵰁󵰁𝐵𝐵1,… ,

󵰁󵰁𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛}, where the 󵰁󵰁𝐵𝐵𝑖𝑖’s are written in decreasing order.
en, 𝐵𝐵′𝑖𝑖 = 𝑛𝑛 𝑛𝑛𝑛   󵰁󵰁𝐵𝐵𝑖𝑖.

Finally, we introduce an order relation ≤ on the set of Dyck
paths of the same semilength. is order relation will be
de�ned in three steps:

(i) consider two irreducible Dyck paths 𝑃𝑃 and 𝑄𝑄 of
semilength 𝑛𝑛. Let (𝐴𝐴𝐴 𝐴𝐴𝐴 be the ascent-descent code
of 𝑃𝑃, with 𝐴𝐴 𝐴 𝐴𝐴1,… ,𝐴𝐴𝑘𝑘 and 𝐵𝐵 𝐵 𝐵𝐵1,… , 𝐵𝐵𝑘𝑘. We
say that𝑄𝑄 covers 𝑃𝑃 in the relation ≤ if the ascent code
of 𝑄𝑄 is obtained by removing an integer 𝐴𝐴𝑖𝑖 from 𝐴𝐴
and the descent code of𝑄𝑄 is obtained by removing an
integer 𝐵𝐵𝑗𝑗 from 𝐵𝐵, with 𝑗𝑗 𝑗 𝑗𝑗.
Roughly speaking, 𝑄𝑄 covers 𝑃𝑃 if it can be obtained
from 𝑃𝑃 by “closing” the rectangles corresponding to
an arbitrary collection of consecutive valleys of 𝑃𝑃 (see
Figure 4);

(ii) the desired order relation ≤ on the set of irreducible
Dyck paths is the transitive closure of the above
covering relation;

(iii) the relation ≤ is extended to the set of all Dyck path
of a given semilength as follows: if 𝑃𝑃 and 𝑄𝑄 are two
arbitrary Dyck paths and 𝑃𝑃 𝑃 𝑃𝑃1 𝑃𝑃2 ⋯ 𝑃𝑃𝑟𝑟 and
𝑄𝑄 𝑄 𝑄𝑄1 𝑄𝑄2 ⋯ 𝑄𝑄𝑠𝑠 are their respective decompo-
sitions into irreducible parts, then 𝑃𝑃 𝑃𝑃𝑃  whenever
𝑟𝑟 𝑟𝑟𝑟  and 𝑃𝑃𝑖𝑖 ≤ 𝑄𝑄𝑖𝑖 for every 𝑖𝑖.

We point out that the described order relation is a subset of
the inclusion order relation de�ned in [9]. In the following
sections, we will show that the de�ned relation is more suited
for our studies.

3. LTRMinima and RTLMaxima of
a Permutation

Some of the well-known bijections between 𝑆𝑆𝑛𝑛(𝜏𝜏𝜏, 𝜏𝜏 𝜏 𝜏𝜏3, and
the set of Dyck paths of semilength 𝑛𝑛 (see [10–12]), are based
on the two notions of le-to-right minimum and right-to-le
maximum of a permutation 𝜎𝜎 𝜎𝜎𝜎 1 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛:

(i) the value 𝑥𝑥𝑖𝑖 is a le-to-rightminimum (LTRminimum
for short) at position 𝑖𝑖 if 𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑗𝑗 for every 𝑗𝑗 𝑗𝑗𝑗 ;
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(ii) the value 𝑥𝑥𝑖𝑖 is a right-to-le maximum (RTL maxi-
mum) at position 𝑖𝑖 if 𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑗𝑗 for every 𝑗𝑗 𝑗𝑗𝑗 .

For example, the permutation

𝜎𝜎 𝜎 5 3 4 8 2 1 6 7 (1)

has the LTR minima 5, 3, 2, and 1 (at positions 1, 2, 5, and 6)
and RTL maxima 7 and 8 (at positions 8 and 4).

We denote by 𝑣𝑣min(𝜎𝜎𝜎 and 𝑝𝑝min(𝜎𝜎𝜎 the sets of values and
positions of the LTR minima of 𝜎𝜎, respectively. Analogously,
𝑣𝑣max(𝜎𝜎𝜎 and 𝑝𝑝max(𝜎𝜎𝜎 denote the sets of values and positions
of the RTL maxima of 𝜎𝜎.

Recall that the reverse-complement of a permutation 𝜎𝜎 𝜎
𝑆𝑆𝑛𝑛 is the permutation de�ned by

𝜎𝜎rc (𝑖𝑖) = 𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛 (𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛) . (2)

For example, consider the permutation

𝜎𝜎 𝜎 2 4 7 3 1 8 9 5 6. (3)

en

𝜎𝜎rc = 4 5 1 2 9 7 3 6 8. (4)

Note that the sets 𝑆𝑆𝑛𝑛(123) and 𝑆𝑆𝑛𝑛(1234) are closed under
reverse-complement, namely, 𝜎𝜎 𝜎 𝜎𝜎𝑛𝑛(123) (resp., 𝜎𝜎 𝜎
𝑆𝑆𝑛𝑛(1234)) if and only if 𝜎𝜎rc ∈ 𝑆𝑆𝑛𝑛(123) (resp. 𝜎𝜎

rc ∈ 𝑆𝑆𝑛𝑛(1234)).
e �rst assertion in the next theorem goes back to the

seminal paper [12], while the second one is an immediate
consequence of the straightforward fact that 𝑥𝑥 is a LTR
minimum of a permutation 𝜎𝜎 at position 𝑖𝑖 if and only if 𝑛𝑛 𝑛
1 − 𝑥𝑥 is RTL maximum of 𝜎𝜎rc at position 𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛.

eorem 1. A permutation 𝜎𝜎 𝜎 𝜎𝜎𝑛𝑛(123) is completely determ-
ined by the two sets 𝑣𝑣min(𝜎𝜎𝜎 and 𝑝𝑝min(𝜎𝜎𝜎 of values and
positions of its le-to-right minima. A permutation in 𝑆𝑆𝑛𝑛(123)
is completely determined, as well, by the two sets 𝑣𝑣max(𝜎𝜎𝜎 and
𝑝𝑝max(𝜎𝜎𝜎 of values and positions of its right-to-le maxima.

Also 1234-avoiding permutations can be characterized in
terms of LTR minima and RTL maxima.

is characterization can be found in [2] and is based on
an equivalence relation on 𝑆𝑆𝑛𝑛 de�ned as follows: 𝜎𝜎 𝜎 𝜎𝜎′ ⇔ 𝜎𝜎
and 𝜎𝜎′ share the values and the positions of LTR minima and
RTL maxima.

For example,

1 2 3 4 ≡ 1 3 2 4. (5)

Straightforward arguments lead to the following result stated
in [2].

eorem 2. Every equivalence class of the relation ≡ contains
exactly one 1234-avoiding permutation. In this permutation,
the values that are neither LTR minima nor RTL maxima
appear in decreasing order.

1 =

2 3

( )

F 3: e map 𝐿𝐿′.

4. TheMaps 𝜆𝜆 and 𝜇𝜇

We de�ne two maps 𝜆𝜆 and 𝜇𝜇 between 𝑆𝑆𝑛𝑛 and the set 𝒟𝒟𝑛𝑛 of
Dyck paths of semilength 𝑛𝑛. Given a permutation 𝜎𝜎 𝜎 𝜎𝜎𝑛𝑛, the
path 𝜆𝜆𝜆𝜆𝜆𝜆 is contructed as follows:

(i) decompose 𝜎𝜎 as 𝜎𝜎 𝜎 𝜎𝜎1 𝑤𝑤1 𝑚𝑚2 𝑤𝑤2 ⋯ 𝑚𝑚𝑘𝑘 𝑤𝑤𝑘𝑘,
where 𝑚𝑚1,𝑚𝑚2,… ,𝑚𝑚𝑘𝑘 are the le-to-right minima in
𝜎𝜎 and 𝑤𝑤1, 𝑤𝑤2,… ,𝑤𝑤𝑘𝑘 are (possibly empty) words;

(ii) set𝑚𝑚0 = 𝑛𝑛 𝑛 𝑛;
(iii) read the permutation from le to right and translate

any LTR minimum𝑚𝑚𝑖𝑖 (𝑖𝑖 𝑖𝑖 ) into𝑚𝑚𝑖𝑖𝑖𝑖 −𝑚𝑚 𝑖𝑖 up steps
and any subword 𝑤𝑤𝑖𝑖 into 𝑙𝑙𝑖𝑖 + 1 down steps, where 𝑙𝑙𝑖𝑖
denotes the number of elements in 𝑤𝑤𝑖𝑖.

e statement of eorem 1 implies that the map 𝜆𝜆 is a
bijection when restricted to 𝑆𝑆𝑛𝑛(123).

Note that the ascent-descent code (𝐴𝐴𝐴 𝐴𝐴𝐴 of the path 𝜆𝜆𝜆𝜆𝜆𝜆
is obtained as follows:

(i) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴     1, 𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛2,… , 𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛𝑘𝑘𝑘𝑘;
(ii) 𝐵𝐵𝐵𝐵𝐵  2 − 1, 𝑝𝑝3 − 1,… , 𝑝𝑝𝑘𝑘 − 1, where 𝑝𝑝𝑖𝑖 is the position

of𝑚𝑚𝑖𝑖.

We de�ne a further map 𝜇𝜇 𝜇 𝜇𝜇𝑛𝑛 → 𝒟𝒟𝑛𝑛:

(i) decompose 𝜎𝜎 as 𝜎𝜎 𝜎 𝜎𝜎ℎ 𝑀𝑀ℎ 𝑢𝑢ℎ−1 𝑀𝑀ℎ−1 ⋯ 𝑢𝑢1
𝑀𝑀1, where𝑀𝑀1,𝑀𝑀2,… ,𝑀𝑀ℎ are the right-to-lemax-
ima in𝜎𝜎 and𝑢𝑢1, 𝑢𝑢2,… , 𝑢𝑢𝑘𝑘 are (possibly empty)words;

(ii) set𝑀𝑀0 = 0;
(iii) associate with𝑀𝑀𝑖𝑖 (𝑖𝑖 𝑖𝑖 ) the steps𝑈𝑈

𝑚𝑚𝑖𝑖−𝑚𝑚𝑖𝑖𝑖𝑖𝐷𝐷;
(iv) associate with each entry in 𝑢𝑢𝑖𝑖 a𝐷𝐷 step.

Also in this case, the map 𝜇𝜇 is a bijection when restricted to
𝑆𝑆𝑛𝑛(123).

e ascent-descent code (𝐴𝐴∗, 𝐵𝐵∗) of the path 𝜇𝜇𝜇𝜇𝜇𝜇 is
obtained as follows:

(i) 𝐴𝐴∗ = 𝑀𝑀1,𝑀𝑀2,… ,𝑀𝑀ℎ−1;
(ii) 𝐵𝐵∗ = 𝑛𝑛𝑛𝑛𝑛2, 𝑛𝑛𝑛𝑛𝑛3,… , 𝑛𝑛𝑛𝑛𝑛ℎ, where𝑃𝑃𝑖𝑖 is the position

of𝑀𝑀𝑖𝑖.

In Figure 5 the two paths 𝜆𝜆𝜆𝜆𝜆𝜆 and 𝜇𝜇𝜇𝜇𝜇𝜇 corresponding to 𝜎𝜎 𝜎
6 2 3 1 7 5 4 are shown.

We can now de�ne a map 𝜈𝜈 𝜈𝜈𝜈 𝑛𝑛 → 𝒟𝒟𝑛𝑛 × 𝒟𝒟𝑛𝑛, setting

𝜈𝜈 (𝜎𝜎) = 󶀡󶀡𝜆𝜆 (𝜎𝜎) , 𝜇𝜇 (𝜎𝜎)󶀱󶀱 . (6)
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F 4: e dotted Dyck path covers the solid one.

( ) ( )

F 5:e Dyck paths corresponding to 𝜎𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎.

e statement ofeorem2 implies that themap 𝜈𝜈 is injective
when restricted to 𝑆𝑆𝑛𝑛(1234).

Note that the map 𝜈𝜈 behaves properly with respect to the
reverse-complement and the inversion operators.

Proposition 3. Let 𝜎𝜎 be a permutation in 𝑆𝑆𝑛𝑛. One has:

(i) 𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈  𝜈𝜈𝜈 𝜈𝜈𝜈 𝜈 𝜈𝜈𝜈𝜈𝜈rc) = (𝑅𝑅𝑅𝑅𝑅𝑅 , hence, the permuta-
tion 𝜎𝜎 is rc-invariant if and only if 𝐿𝐿𝐿𝐿𝐿  .

(ii) 𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈  𝜈𝜈𝜈 𝜈𝜈𝜈 𝜈 𝜈𝜈𝜈𝜈𝜈−1) = (rev(𝐿𝐿𝐿𝐿 rev(𝑅𝑅𝑅), where
rev(𝑃𝑃𝑃 is the path obtained by �ipping 𝑃𝑃 with respect
to a vertical line. Hence, the permutation 𝜎𝜎 is an
involution if and only if both 𝐿𝐿 and 𝑅𝑅 are symmetric
with respect to a vertical line.

For example, consider 𝜎𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎. e two
paths associated with 𝜎𝜎 are shown in Figure 5. e permuta-
tion 𝜎𝜎rc =4317562        is associated with the two paths
in Figure 6, while the permutation 𝜎𝜎−1 =4237615      
corresponds to the two paths in Figure 7.

Moreover, the map 𝜈𝜈 has the following further property
that will be crucial in the proof of our main result.

Recall that a permutation 𝜎𝜎 𝜎 𝜎𝜎𝑛𝑛 is said to be right-
connected if it does not have a suffix 𝜎𝜎′ of length 𝑘𝑘 𝑘 𝑘𝑘, that
is a permutation of the symbols 1,2, … , 𝑘𝑘.

For example, the permutation

𝜏𝜏 𝜏 6127534       8 (7)

is right-connected, while

𝜎𝜎 𝜎 8 6457213       (8)

is not right-connected.
�ccording to this de�nition, we can split every permuta-

tion into right-connected components:

𝜎𝜎 𝜎 𝟖𝟖 𝟖𝟖𝟖𝟖    𝟖𝟖 𝟖𝟖 𝟖𝟖𝟖 (9)

( rc) ( rc)

F 6: e Dyck paths corresponding to 𝜎𝜎rc =
4317562      .

( −1) ( −1)

F 7: e Dyck paths corresponding to 𝜎𝜎−1 =
4237615      .

Note that, if a permutation 𝜎𝜎 is not right-connected, 𝜎𝜎 is the
juxtaposition of a permutation 𝜎𝜎′′ of the set {𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡  𝑡 and
the permutation 𝜎𝜎′ of the set {1,… , 𝑡𝑡𝑡.

Proposition 4. Let 𝜎𝜎 be a non right-connected permutation
in 𝑆𝑆𝑛𝑛, with 𝜎𝜎 𝜎 𝜎𝜎1𝜎𝜎2, where 𝜎𝜎1 is a permutation of the set {𝑡𝑡 𝑡
1,… , 𝑛𝑛𝑛 and𝜎𝜎2 is a permutation of set of the set {1,… , 𝑡𝑡𝑡.en

𝜆𝜆 (𝜎𝜎) = 𝑃𝑃1𝑃𝑃2, 𝜇𝜇 (𝜎𝜎) = 𝑄𝑄1𝑄𝑄2, (10)

with 𝑃𝑃𝑖𝑖 = 𝜆𝜆𝜆𝜆𝜆𝑖𝑖) and𝑄𝑄𝑖𝑖 = 𝜇𝜇𝜇𝜇𝜇𝑖𝑖), 𝑖𝑖 𝑖𝑖𝑖𝑖  .

e order relation on Dyck paths de�ned in Section 2
can be exploited to de�ne two order relations on the set 𝑆𝑆𝑛𝑛
as follows:

(i) 𝜎𝜎𝜎𝜆𝜆𝜏𝜏 if and only if 𝜆𝜆𝜆𝜆𝜆𝜆𝜆  𝜆𝜆𝜆𝜆𝜆𝜆;
(ii) 𝜎𝜎𝜎𝜇𝜇𝜏𝜏 if and only if 𝜇𝜇𝜇𝜇𝜇𝜇𝜇  𝜇𝜇𝜇𝜇𝜇𝜇.

ese order relations can be intrinsically described as follows.

Proposition 5. Let 𝜎𝜎𝜎𝜎𝜎  𝜎 𝜎𝜎𝑛𝑛. One has 𝜎𝜎 𝜎𝜆𝜆 𝜏𝜏 whenever:

(i) 𝑣𝑣min(𝜏𝜏𝜏 𝜏 𝜏𝜏min(𝜎𝜎𝜎;
(ii) 𝑝𝑝min(𝜏𝜏𝜏 𝜏 𝜏𝜏min(𝜎𝜎𝜎;
(iii) setting:

𝑣𝑣min(𝜎𝜎𝜎 𝜎 𝜎𝜎𝜎1,… ,𝑚𝑚ℎ} (written in decreasing order),
𝑣𝑣min(𝜎𝜎𝜎 𝜎 𝜎𝜎min(𝜏𝜏𝜏𝜏𝜏𝜏𝜏  𝑖𝑖1 ,𝑚𝑚 𝑖𝑖2 ,… ,𝑚𝑚𝑖𝑖𝑟𝑟 } (in decreasing
order),
𝑝𝑝min(𝜎𝜎𝜎 𝜎 𝜎𝜎min(𝜏𝜏𝜏𝜏𝜏𝜏𝜏  𝑗𝑗1 , 𝑝𝑝𝑗𝑗2 ,… , 𝑝𝑝𝑗𝑗𝑟𝑟 } (in increasing
order),
then 𝑖𝑖𝑘𝑘 < 𝑗𝑗𝑘𝑘 for every 𝑘𝑘.

Similarly, 𝜎𝜎 𝜎𝜇𝜇 𝜏𝜏 whenever:

(i) 𝑣𝑣max(𝜏𝜏𝜏 𝜏 𝜏𝜏max(𝜎𝜎𝜎;
(ii) 𝑝𝑝max(𝜏𝜏𝜏 𝜏 𝜏𝜏max(𝜎𝜎𝜎;
(iii) setting:

𝑣𝑣max(𝜎𝜎𝜎 𝜎 𝜎𝜎𝜎1,… ,𝑀𝑀𝑡𝑡} (written in increasing order),
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𝑣𝑣max(𝜎𝜎𝜎 𝜎 𝜎𝜎max(𝜏𝜏𝜏 𝜏 𝜏𝜏𝜏𝑖𝑖1 ,𝑀𝑀𝑖𝑖2 ,… ,𝑀𝑀𝑖𝑖𝑞𝑞} (in increasing
order),
𝑝𝑝max(𝜎𝜎𝜎 𝜎 𝜎𝜎max(𝜏𝜏𝜏 𝜏 𝜏𝜏𝜏𝑗𝑗1 , 𝑃𝑃𝑗𝑗2 ,… , 𝑃𝑃𝑗𝑗𝑞𝑞} (in decreasing
order),
then 𝑖𝑖𝑘𝑘 < 𝑗𝑗𝑘𝑘 for every 𝑘𝑘.

For example, consider the permutation

𝜎𝜎 𝜎 6 8 7 3 2 5 9 1 4. (11)

We have 𝑣𝑣min(𝜎𝜎𝜎 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎    ,𝑝𝑝min(𝜎𝜎𝜎 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎    , 𝑣𝑣max(𝜎𝜎𝜎 𝜎
{4, 9}, and 𝑝𝑝max(𝜎𝜎𝜎 𝜎𝜎𝜎𝜎𝜎𝜎  . e permutation

𝜏𝜏 𝜏 3 4 9 2 6 8 7 1 5 (12)

is such that 𝑣𝑣min(𝜏𝜏𝜏 𝜏 𝜏𝜏𝜏𝜏𝜏𝜏𝜏   and 𝑝𝑝min(𝜏𝜏𝜏 𝜏 𝜏𝜏𝜏𝜏𝜏𝜏𝜏  , hence,
𝜎𝜎𝜎𝜆𝜆𝜏𝜏.Moreover, the permutation

𝜌𝜌 𝜌 2 7 1 3 4 6 5 8 9 (13)

is such that 𝑣𝑣max(𝜌𝜌𝜌𝜌𝜌𝜌𝜌   and 𝑝𝑝max(𝜌𝜌𝜌𝜌𝜌𝜌𝜌  , hence, 𝜎𝜎𝜎𝜇𝜇𝜌𝜌.

5. Main Results

We say that a pair of Dyck paths (𝑃𝑃𝑃𝑃𝑃𝑃 is admissible if there
exists a permutation 𝛼𝛼 such that 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄  .
Needless to say, the set of admissible pairs is in bijection with
the set of 1234-avoiding permutations.

In the case when the two paths 𝑃𝑃 and 𝑄𝑄 are irreducible,
if the pair (𝑃𝑃𝑃𝑃𝑃𝑃 is admissible, then the peaks of the two
paths have different 𝑥𝑥 and 𝑦𝑦 coordinates.We observe that this
is not a sufficient condition. For example, consider the pair
𝑃𝑃𝑃  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄  . e
unique permutation 𝜎𝜎 𝜎𝜎𝜎𝜎𝜎𝜎      having LTR-minima
and RTL-maxima at the positions prescribed by 𝑃𝑃 and𝑄𝑄 has
an extra LTR-minimum at position 2. Hence, (𝑃𝑃𝑃𝑃𝑃𝑃 is not
admissible.

We want to show that the operator 𝐿𝐿′ on Dyck paths
allows us to characterize the set of admissible pairs. We begin
with a preliminary result concerning the pairs of Dyck paths
corresponding to 123-avoiding permutations:

eorem 6. For every 𝜎𝜎 𝜎 𝜎𝜎𝑛𝑛(123), one has:

𝜇𝜇 (𝜎𝜎) = 𝐿𝐿′ (𝜆𝜆 (𝜎𝜎)) . (14)

Proof. Proposition 4, together with the de�nition of the map
𝐿𝐿′, allows us to restrict our attention to the right-connected
case.

Recall (see [12]) that a permutation 𝜎𝜎 avoids 123 if and
only if the set 𝑣𝑣min(𝜎𝜎𝜎 𝜎 𝜎𝜎max(𝜎𝜎𝜎 𝜎 𝜎𝜎𝜎𝜎. It is simple to check
that, if 𝜎𝜎 is right-connected, the sets of LTRminima and RTL
maxima are disjoint.

Consider now a permutation 𝜎𝜎 with LTR minima
𝑚𝑚1,… ,𝑚𝑚𝑘𝑘𝑘𝑘, 𝑚𝑚𝑘𝑘 = 1 and RTL maxima𝑀𝑀1,… ,𝑀𝑀ℎ−1,𝑀𝑀ℎ =
𝑛𝑛. Denote by (𝐴𝐴𝐴 𝐴𝐴𝐴 the ascent-descent code of the path 𝑃𝑃𝑃
𝜆𝜆𝜆𝜆𝜆𝜆 and by (𝐴𝐴∗, 𝐵𝐵∗) the ascent-descent code of the path𝜇𝜇𝜇𝜇𝜇𝜇.

As noted before, the ascent code 𝐴𝐴′ of 𝐿𝐿′(𝑃𝑃𝑃 is obtained
by computing the integers 𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖 − 1 and then considering
the set 󵰂󵰂𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴     𝐴𝐴1,… ,𝐴𝐴𝑘𝑘𝑘𝑘}, which can be written as

󵰂󵰂𝐴𝐴 𝐴 {𝑛𝑛 𝑛 (𝑛𝑛 𝑛𝑛 ) , 𝑛𝑛 𝑛 (𝑛𝑛 𝑛𝑛 ) ,… , 𝑛𝑛 𝑛𝑛 }

⧵ 󶁁󶁁𝑛𝑛 𝑛𝑛𝑛 1,… , 𝑛𝑛 𝑛𝑛𝑛 𝑘𝑘𝑘𝑘󶁑󶁑 .
(15)

Since {𝑚𝑚1,… ,𝑚𝑚𝑘𝑘𝑘𝑘} ∪{𝑀𝑀 1,… ,𝑀𝑀ℎ−1} ={ 2, 3,… , 𝑛𝑛 𝑛𝑛𝑛 , we
have

󵰂󵰂𝐴𝐴 𝐴 󶁁󶁁𝑛𝑛 𝑛𝑛𝑛1,… , 𝑛𝑛 𝑛𝑛𝑛ℎ−1󶁑󶁑 . (16)

Hence, 𝐴𝐴′ = 𝐴𝐴∗.
Similarly, the descent code 𝐵𝐵′ of 𝐿𝐿′(𝑃𝑃𝑃 is obtained by

considering the set
󵰁󵰁𝐵𝐵𝐵  [𝑛𝑛 𝑛𝑛 ] ⧵ 󶁁󶁁𝐵𝐵1,… , 𝐵𝐵𝑘𝑘𝑘𝑘󶁑󶁑 = [𝑛𝑛 𝑛𝑛 ] ⧵ 󶁁󶁁𝑝𝑝2 − 1,… , 𝑝𝑝𝑘𝑘 − 1󶁑󶁑 .

(17)

Since {𝑝𝑝1,… , 𝑝𝑝𝑘𝑘𝑘𝑘}∪{𝑃𝑃1,… , 𝑃𝑃ℎ−1} ={ 2, 3,… , 𝑛𝑛𝑛𝑛𝑛, we have
󵰁󵰁𝐵𝐵𝐵  󶁁󶁁𝑃𝑃2 − 1,… , 𝑃𝑃ℎ−1 − 1󶁑󶁑 . (18)

Hence, 𝐵𝐵′ =𝐵𝐵 ∗.

For example, the 123-avoiding permutation 𝜎𝜎 𝜎
8 5 9 7 6 2 4 3 1 corresponds to the pair of Dyck paths
(𝑃𝑃𝑃𝑃𝑃 ′(𝑃𝑃𝑃𝑃 in Figure 3.

We are now in position to state our main result.

eorem 7. A pair (𝑃𝑃𝑃𝑃𝑃𝑃 is admissible if and only if 𝑃𝑃 𝑃
𝐿𝐿′(𝑄𝑄𝑄 and𝑄𝑄𝑄𝑄𝑄  ′(𝑃𝑃𝑃.

Proof. Consider a permutation 𝜎𝜎 𝜎 𝜎𝜎𝑛𝑛(1234) and let 𝜎𝜎
′ be the

unique permutation in 𝑆𝑆𝑛𝑛(123)with the same LTRminima as
𝜎𝜎, at the same positions. Obviously, 𝜎𝜎′ ≤𝜇𝜇 𝜎𝜎, since in 𝜎𝜎

′ every
element that is not a LTR minimum is a RTL maximum (see
Proposition 5). Recalling that 𝜇𝜇𝜇𝜇𝜇′)=  𝐿𝐿′(𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆  ′(𝑃𝑃𝑃, we
get the �rst inequality. e other inequality follows from the
fact that the pair (𝑃𝑃𝑃𝑃𝑃𝑃 is admissible whenever the pair (𝑄𝑄𝑄𝑄𝑄𝑄
is admissible.

Consider now a pair of Dyck paths (𝑃𝑃𝑃𝑃𝑃𝑃 such that 𝑃𝑃 𝑃
𝐿𝐿′(𝑄𝑄𝑄 and𝑄𝑄𝑄𝑄𝑄  ′(𝑃𝑃𝑃. Proposition 4 allows us to restrict to the
case 𝑃𝑃𝑃𝑃𝑃 irreducible. Denote by 𝜎𝜎 and 𝜏𝜏 the permutations
in 𝑆𝑆𝑛𝑛(123) corresponding via 𝜈𝜈 to the pairs (𝑃𝑃𝑃𝑃𝑃 ′(𝑃𝑃𝑃𝑃 and
(𝐿𝐿′(𝑄𝑄𝑄𝑄𝑄𝑄𝑄, respectively. Since 𝑃𝑃 𝑃 𝑃𝑃′(𝑄𝑄𝑄 and 𝑄𝑄𝑄𝑄𝑄  ′(𝑃𝑃𝑃, we
have 𝜏𝜏 𝜏𝜆𝜆 𝜎𝜎 and 𝜎𝜎 𝜎𝜇𝜇 𝜏𝜏.

We de�ne a permutation 𝛼𝛼 𝛼𝛼𝛼 𝑛𝑛 as follows:
(i) 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼   if 𝑥𝑥 𝑥𝑥𝑥 min(𝜎𝜎𝜎;
(ii) 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼   if 𝑥𝑥 𝑥𝑥𝑥 max(𝜏𝜏𝜏;
(iii) if 𝑥𝑥 𝑥 𝑥𝑥min(𝜎𝜎𝜎 𝜎 𝜎𝜎max(𝜏𝜏𝜏, we have 𝑥𝑥 𝑥𝑥𝑥 max(𝜎𝜎𝜎 𝜎

𝑝𝑝max(𝜏𝜏𝜏 𝜏 𝜏𝜏min(𝜏𝜏𝜏𝜏𝜏𝜏  min(𝜎𝜎𝜎 𝜎𝜎𝜎𝜎 𝑗𝑗1 ,… , 𝑝𝑝𝑗𝑗𝑟𝑟 }, written
in increasing order. Set

𝛼𝛼 󶀣󶀣𝑝𝑝𝑗𝑗𝑘𝑘󶀳󶀳 = 𝑚𝑚𝑖𝑖𝑘𝑘 , (19)

where 𝑚𝑚𝑖𝑖1 , 𝑚𝑚𝑖𝑖2 ,… ,𝑚𝑚𝑖𝑖𝑟𝑟 are the elements in 𝑣𝑣min(𝜏𝜏𝜏𝜏
𝑣𝑣min(𝜎𝜎𝜎 𝜎𝜎𝜎 max(𝜎𝜎𝜎 𝜎 𝜎𝜎max(𝜏𝜏𝜏, written in decreasing
order.
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e permutation 𝛼𝛼 is obtained as the concatenation of three
decreasing sequences.Hence,𝛼𝛼 avoids 1234.Wehave to prove
that 𝑣𝑣min(𝛼𝛼𝛼 𝛼 𝛼𝛼min(𝜎𝜎𝜎 and 𝑣𝑣max(𝛼𝛼𝛼 𝛼 𝛼𝛼max(𝜏𝜏𝜏.

It is immediate that 𝑣𝑣min(𝜎𝜎𝜎 𝜎 𝜎𝜎min(𝛼𝛼𝛼. In order to prove
that 𝑣𝑣min(𝜎𝜎𝜎𝜎𝜎𝜎  min(𝛼𝛼𝛼 it remains to show that the values
𝑚𝑚𝑖𝑖1 , 𝑚𝑚𝑖𝑖2 ,… ,𝑚𝑚𝑖𝑖𝑟𝑟 are not LTR minima of 𝛼𝛼.

In fact, for every 𝑘𝑘, consider 𝛼𝛼𝛼𝛼𝛼𝑗𝑗𝑘𝑘)=  𝑚𝑚𝑖𝑖𝑘𝑘 = 𝜏𝜏𝜏𝜏𝜏𝑖𝑖𝑘𝑘 ).
Consider the sets𝐴𝐴 𝐴 𝐴𝐴𝐴1, 𝑝𝑝2,… , 𝑝𝑝𝑖𝑖𝑘𝑘 },𝐵𝐵 𝐵𝐵𝐵𝐵 1,𝑚𝑚2,… ,𝑚𝑚𝑖𝑖𝑘𝑘},
and their subsets 𝐴𝐴′ ={𝑝𝑝 𝑖𝑖1 , 𝑝𝑝𝑖𝑖2 ,… , 𝑝𝑝𝑖𝑖𝑘𝑘 } and 𝐵𝐵

′ ={ 𝑚𝑚𝑖𝑖1 , 𝑚𝑚𝑖𝑖2 ,
… ,𝑚𝑚𝑖𝑖𝑘𝑘}. e 𝑘𝑘 elements in 𝐵𝐵′ do not belong to 𝑣𝑣min(𝜎𝜎𝜎 (and
hence, the 𝑖𝑖𝑘𝑘 − 𝑘𝑘 elements in 𝐵𝐵 𝐵 𝐵𝐵′ are the largest elements in
𝑣𝑣min(𝜎𝜎𝜎). Proposition 5 ensures that each of them occupies in
𝛼𝛼 a position that is strictly greater than the position occupied
in 𝜏𝜏.is implies that𝑝𝑝𝑗𝑗𝑘𝑘 < 𝑝𝑝𝑖𝑖𝑘𝑘 and that atmost 𝑘𝑘𝑘𝑘 elements
in 𝐵𝐵′ occupy in 𝜏𝜏 a position that belongs to𝐴𝐴. Hence, in 𝛼𝛼, at
least 𝑖𝑖𝑘𝑘−𝑘𝑘𝑘𝑘 positions in𝐴𝐴 are occupied by entries belonging
to 𝑣𝑣min(𝜎𝜎𝜎. is implies that there is in 𝛼𝛼 a position preceding
𝑝𝑝𝑗𝑗𝑘𝑘 occupied by a value less than𝑚𝑚𝑖𝑖𝑘𝑘 . Hence,𝑚𝑚𝑖𝑖𝑘𝑘 is not a LTR
minimum of 𝛼𝛼.

Analogous arguments can be used to prove that 𝑣𝑣max(𝛼𝛼𝛼 𝛼
𝑣𝑣max(𝜏𝜏𝜏. Hence, 𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈  𝜈𝜈𝜈𝜈𝜈𝜈, as desired.

For example, consider the pair of Dyck paths in Figure 8.
It can be checked that 𝑃𝑃 𝑃 𝑃𝑃′(𝑄𝑄𝑄 and 𝑄𝑄𝑄𝑄𝑄  ′(𝑃𝑃𝑃. e

permutations 𝜎𝜎 𝜎𝜎𝜎 −1((𝑃𝑃𝑃 𝑃𝑃′(𝑃𝑃𝑃𝑃𝑃 and 𝜏𝜏 𝜏𝜏𝜏 −1((𝐿𝐿′(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄
are as follows:

𝜎𝜎 𝜎 4 9 8 2 7 1 6 5 3,

𝜏𝜏 𝜏 7 5 9 4 3 2 8 1 6.
(20)

We have 𝑣𝑣min(𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎    , 𝑝𝑝min(𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎    , 𝑣𝑣min(𝜏𝜏𝜏𝜏𝜏𝜏𝜏 
5, 4, 3, 2, 1}, 𝑝𝑝min(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏       , 𝑣𝑣max(𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎    
8, 9}, 𝑝𝑝max(𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎       , 𝑣𝑣max(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏    , and
𝑝𝑝max(𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏    .

e permutation 𝛼𝛼 𝛼 𝛼𝛼−1((𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is

𝛼𝛼 𝛼 4 7 9 2 5 1 8 3 6. (21)

As expected, 𝑣𝑣min(𝛼𝛼𝛼 𝛼 𝛼𝛼min(𝜎𝜎𝜎, 𝑝𝑝min(𝛼𝛼𝛼 𝛼 𝛼𝛼min(𝜎𝜎𝜎,
𝑣𝑣max(𝛼𝛼𝛼 𝛼 𝛼𝛼max(𝜏𝜏𝜏, and 𝑝𝑝max(𝛼𝛼𝛼 𝛼 𝛼𝛼max(𝜏𝜏𝜏.
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