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This paper investigates the hydromagnetic boundary layer flow and heat transfer of a non-Newtonian Casson fluid in the
neighborhood of a stagnation point over a stretching surface in the presence of velocity and thermal slips at the boundary.
The governing partial differential equations are transformed into nonlinear ordinary differential equations using similarity
transformations.The analytic solutions are developed by a homotopy analysis method (HAM).The results pertaining to the present
study indicate that the flow and temperature fields are significantly influenced by Casson parameter (𝛽), the magnetic parameter
𝑀, the velocity slip parameter 𝛿, and the thermal slip parameter 𝛾. An increase in the velocity slip parameter 𝛿 causes decrease in
the flow velocity, while an increase in the value of the thermal slip parameter 𝛾 causes increase in the temperature of the fluid. It is
also observed that the velocity at a point decreases with increase in 𝛽.

1. Introduction

The problems of flow and heat transfer in the boundary layer
adjacent to a continuous moving surface have received great
attention during the last decades owing to the abundance
of practical applications in chemical and manufacturing
processes, such as polymer extrusion, continuous casting of
metals, glass fibre production, hot rolling of paper, and wire
drawing. Sakiadis [1] was the first, among others, to investi-
gate the flowbehavior on continuous solid surface.Thereafter,
numerous investigations were made on the flow and heat
transfer over a stretching surface in different directions [2–
8].

All the previous researchers restricted their analyses to
flow and heat transfer for the Newtonian fluid. In recent
years, it has been observed that a number of industrial fluids
such as molten plastics, polymeric liquids, blood, food stuff,
and slurries exhibit non-Newtonian fluid behavior. Different
types of non-Newtonian fluids are viscoelastic fluid, couple
stress fluid, micropolar fluid, power-law fluid, Casson fluid,
and many others. Rajagopal et al. [9] and Siddappa and Abel
[10] studied the flow of a viscoelastic fluid over a linear
stretching sheet. Troy et al. [11], Lawrence and Rao [12],

and McLeod and Rajagopal [13] discussed the problem of
uniqueness/nonuniqueness of the flow of a non-Newtonian
viscoelastic fluid over a stretching sheet. Rajagopal et al.
[9] analyzed the solutions for the flow of viscoelastic fluid
over a stretching sheet. This study was further generalized to
investigate the flow of short memory fluid of type Walter’s
liquid B by several authors, such as Andersson [14], Rollins
and Vajravelu [15], and Abel and Veena [16].

Although different models are proposed to explain the
behavior of non-Newtonian fluids, the most important non-
Newtonian fluid possessing a yield value is the Casson fluid.
This fluid has significant applications in polymer processing
industries and biomechanics. We can define a casson fluid
as a shear thinning fluid which is assumed to have an
infinite viscosity at zero rate of shear. Casson’s constitutive
equations are found to describe accurately the flow curves
of suspensions of pigments in lithographic varnishes used
for preparation of printing inks and silicon suspensions
[17]. Various experiments performed on blood with varying
haematocrits, anticoagulants, temperatures, and so forth
strongly suggest the behavior of blood as a casson fluid
[18–20]. In particular, casson fluid model describes the flow
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characteristics of bloodmore accurately at low shear rates and
when it flows through small vessels [21].

Fluid flow in microelectromechanical systems (MEMS)
has become an interesting topic because inmicroscale dimen-
sions, the fluid flow behavior deviates significantly from the
traditional no-slip flow. Under the microscale dimensions,
the fluid motion still obeys the Navier-Stokes equations but
under slip velocity boundary conditions. For large scale
problems with low density, the fluid can be modeled as
a rarefied gas, and rarefied gas flows with slip boundary
conditions are often countered in the microscale devices.The
nonadherence of the fluid to a solid boundary, known as
velocity slip, is a phenomenon observed in certain circum-
stances. Partial slips occur for fluids with particulate such as
emulsions, suspensions, foams, and polymer solutions. Fluids
exhibiting slip are important in technological applications
such as in the polishing of artificial heart valves and internal
cavities. With a slip at the wall boundary, the flow behavior
and the shear stress in the fluid are quite different from
those in the no-slip flows. The slip flows in different flow
configurations were studied in recent years (see [22–27]).The
MHD flow under slip conditions over a permeable shrinking
surface was solved analytically by Fang et al. [28], and
they reported that the velocity slip at the shrinking surface
greatly affects the velocity distribution and drag forces on the
wall. Bhattacharyya et al. [29] studied the effects of partial
slip on the boundary layer stagnation-point flow and heat
transfer towards a shrinking surface. The slip effect on MHD
boundary layer flow over a flat plate was also considered by
Bhattacharyya et al. [30]. Ariel et al. [31] considered the flow
of a viscoelastic fluid over a stretching sheet with partial slip,
and Ariel [32] also studied the slip effect on stagnation-point
flow of an elasticoviscous fluid over a wall. Fang et al. [33]
obtained the exact analytic solution of MHD flow under slip
condition over a permeable stretching sheet.

However, in the literature, articles are not available on
the MHD boundary layer stagnation-point flow of a casson
fluid over a stretching sheet. The present paper aims to
study the slip effect on MHD boundary layer flow and heat
transfer of a casson fluid over a stretching sheet using the
homotopy analysis method (HAM) which is successively
applied to various interesting problems [34–41]. The self-
similar equations are solved analytically by HAM for a range
of values of the physical parameters. The results obtained
are then compared with those from the available literature
for some particular values of the physical parameters, and
it is found that they are in a good agreement. The results
pertaining to the present study indicate that the flow and the
temperature fields are greatly influenced by the velocity and
thermal slip parameters.

2. Flow Analysis

Consider the steadymagnetohydrodynamic (MHD) flow of a
non-Newtonian Casson fluid near the stagnation point over
a stretching surface coinciding with the plane 𝑦 = 0, the
flow being confined to 𝑦 > 0. Two equal and opposite forces
are applied along the 𝑥-axis so that the surface is stretched
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Figure 1: A physical model and the coordinate system.

keeping the origin fixed. A uniformmagnetic field of strength
𝐵
0
is applied in a direction normal to the surface. It is assumed

that the velocity distribution far from the surface is given by
𝑢 → 𝑈(𝑥) = 𝑎𝑥, where 𝑎(>0) is a constant. The stretching
surface has a uniform temperature𝑇

𝑤
and the temperature far

away from the surface is 𝑇
∞
. The flow configuration is shown

in Figure 1.
The rheological equation of state for an isotropic and

incompressible flow of a Casson fluid can be written as, see
Nakamura and Sawada [42],
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is the rate-of-strain tensor, 𝑘
𝑐
is the Casson’s coefficient of

viscosity, 𝜋 is the product of the component of deformation
rate with itself, 𝜋

𝑐
is the critical value of the product of the

component of the rate-of-strain tensor with itself, 𝜏
0
is the

yield stress of the fluid, and 𝑢
𝑖
are the velocity components.

The MHD equations for this problem in the boundary
layer near the stretching surface are
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where 𝑢 and V are the velocity components along the 𝑥 and
𝑦 directions, respectively, 𝜌 is the density of the fluid, 𝜎 is
the electrical conductivity, 𝐵

0
is the uniform magnetic field

along 𝑦-axis, 𝜅 is the thermal diffusivity, 𝑐
𝑝
is the specific

heat at constant pressure, ] is the kinematic viscosity, and
𝛽(= 𝑘
𝑐
√2𝜋
𝑐
/𝜏
0
) is the Casson parameter. In writing (4), we

have neglected the inducedmagnetic field since the magnetic
Reynolds number𝑅

𝑀
for the flow is assumed to be very small.

This assumption is justified for flow of electrically conducting
fluids such as liquid metals, for example, mercury, liquid
sodium, and so forth (Shercliff [43]).

The slip boundary conditions for the problem are

𝑢 = 𝑐𝑥 + 𝐿
𝜕𝑢

𝜕𝑦
, V = 0, 𝑇 = 𝑇

𝑤
+ 𝑆
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at 𝑦 = 0,

𝑢 󳨀→ 𝑈 (𝑥) = 𝑎𝑥, 𝑇 󳨀→ 𝑇
∞

as 𝑦 󳨀→ ∞,

(6)

where 𝐿 is the velocity slip factor, 𝑆 is the thermal slip factor,
and 𝑎(>0), 𝑐(>0) are constants. For 𝐿 = 0 and 𝑆 = 0, no-slip
condition can be recovered.

The continuity equation can be satisfied by introducing a
stream function 𝜓 such that

𝑢 =
𝜕𝜓

𝜕𝑦
, V = −

𝜕𝜓

𝜕𝑥
. (7)

The momentum and energy equations can be transformed
into the corresponding nonlinear ordinary differential equa-
tions by the following transformations:
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where 𝜂 is the independent similarity variable andwhere𝑇
𝑤
−

𝑇
∞

= 𝑏𝑥2, 𝑏 is a positive constant. Using these relations, we
get the transformed nonlinear ordinary differential equations
from (4) and (5) as
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where 𝛼(=𝑎/𝑐) is the dimensionless velocity ratio parameter,
𝑀(= 𝜎𝐵2

0
/𝜌𝑐) is the magnetic parameter, Pr = (]/𝜅) is the

Prandtl number, 𝐸
𝑐
(= 𝑐2/𝑏𝑐

𝑝
) is the Eckert number, and a

prime denotes differentiation with respect to the similarity
variable 𝜂. The transformed boundary conditions for 𝐹(𝜂)
and 𝜃(𝜂) are

𝐹 (0) = 0, 𝐹󸀠 (0) = 1 + 𝛿𝐹󸀠󸀠 (0) , 𝜃 (0) = 1 + 𝛾𝜃󸀠 (0) ,

𝐹󸀠 (∞) = 𝛼, 𝜃 (∞) = 0,

(11)

where 𝛿 = (𝑐/])1/2𝐿 is the dimensionless velocity slip
parameters 𝛾 = (𝑐/])1/2𝑆 is the dimensionless thermal slip

parameter. It is to be noted that when the non-Newtonian
(Casson) parameter 𝛽 → ∞, the Casson flow problem
reduces to viscous flow problem.

The physical quantities of interest are the skin friction
coefficient 𝐶

𝐹
and the local Nusselt number Nu

𝑥
, which are

defined as
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where 𝜏
𝑤
is the shear stress along the stretching surface and

𝑞
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is the heat flux from the stretching surface, which are given
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Hence using (8) we get
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where Re
𝑥
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𝑤
(𝑥)𝑥/] is the local Reynolds number.

3. Analytical Solutions for 𝐹(𝜂) and 𝜃(𝜂)

For the explicit analytical solution of (9)–(11) by Homotopy
Analysis Method (HAM), the velocity 𝐹(𝜂) and the temper-
ature 𝜃(𝜂) distributions can be expressed by the set of base
functions

{𝜂𝑚 exp (−𝑛𝜂) : 𝑚 ≥ 0, 𝑛 ≥ 0 are integers} (15)

in the form:
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where 𝑎𝑚
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are coefficients. Then from (16) and the
boundary conditions (11), it is straightforward to choose

𝐹
0
(𝜂) = 𝛼𝜂 + (

1 − 𝛼

1 + 𝛿
) [1 − exp (−𝜂)] ,

𝜃
0
(𝜂) =

exp (−𝜂)
1 + 𝛾

,

(17)

as our initial approximations for 𝐹(𝜂) and 𝜃(𝜂), respectively.
We choose the auxiliary linear operators as
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with the properties
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where 𝐶
𝑖
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𝐹
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𝜃
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When 𝑞 = 0, we have from (20) that

𝐹 (𝜂, 0) = 𝐹
0
(𝜂) , 𝜃 (𝜂, 0) = 𝜃

0
(𝜂) . (24)

When 𝑞 = 1, the zeroth order deformation equations (20)–
(22) are equivalent to the original equations (9)–(11) so that
we have

𝐹 (𝜂, 1) = 𝐹 (𝜂) , 𝜃 (𝜂, 1) = 𝜃 (𝜂) . (25)

So as the embedding parameter 𝑞 increases from 0 to 1,
𝐹(𝜂, 𝑞) and 𝜃(𝜂, 𝑞) vary from their initial approximations
𝐹
0
(𝜂) and 𝜃

0
(𝜂) to their exact solutions 𝐹(𝜂) and 𝜃(𝜂),

respectively. Expanding 𝐹(𝜂, 𝑞) and 𝜃(𝜂, 𝑞) in Taylor series
with respect to the embedding parameter 𝑞, we can write
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Note that the zero order deformation equations (20) contain
nonzero auxiliary parameters ℎ

𝐹
and ℎ

𝜃
, respectively. Thus

𝐹(𝜂, 𝑞) and 𝜃(𝜂, 𝑞) are dependent upon these parameters.
Assume that ℎ

𝐹
and ℎ

𝜃
are so chosen that the series (26) and

(27) are convergent at 𝑞 = 1. Hence we have from (25)–(27),
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Differentiating the zeroth-order deformation equations (20)–
(22) 𝑚 times with respect to 𝑞 and then dividing by 𝑚! and
finally setting 𝑞 = 0, we have the 𝑚th order deformation
equations as

𝐿
𝐹
[𝐹
𝑚
(𝜂) − 𝜒

𝑚
𝐹
𝑚−1

(𝜂)] = ℎ
𝐹
𝑅𝐹
𝑚
(𝜂) , (30)

𝐿
𝜃
[𝜃
𝑚
(𝜂) − 𝜒

𝑚
𝜃
𝑚−1

(𝜂)] = ℎ
𝜃
𝑅𝜃
𝑚
(𝜂) , (31)

𝐹
𝑚
(0) = 𝐹󸀠

𝑚
(0) − 𝛿𝐹󸀠󸀠

𝑚
(0) = 𝐹󸀠

𝑚
(∞) = 0,

𝜃
𝑚
(0) − 𝛾𝜃󸀠

𝑚
(0) = 𝜃

𝑚
(∞) = 0,

(32)
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where

𝑅𝐹
𝑚
(𝜂) = (1 +

1

𝛽
)𝐹󸀠󸀠󸀠 +

𝑚−1

∑
𝑘=0

[𝐹
𝑚−1−𝑘

𝐹󸀠󸀠
𝑘
− 𝐹󸀠
𝑚−1−𝑘

𝐹󸀠
𝑘
]

−𝑀𝐹󸀠
𝑚−1

+ (𝑀𝛼 + 𝛼2) (1 − 𝜒
𝑚
) ,

𝑅𝜃
𝑚
(𝜂) =

1

Pr
𝜃󸀠󸀠
𝑚−1

+
𝑚−1

∑
𝑘=0

𝐹
𝑚−1−𝑘

𝜃󸀠
𝑘

− 2
𝑚−1

∑
𝑘=0

𝐹󸀠
𝑚−1−𝑘

𝜃
𝑘
+ (1 +

1

𝛽
)𝐸
𝑐

𝑚−1

∑
𝑘=0

𝐹󸀠󸀠
𝑚−1−𝑘

𝐹󸀠󸀠
𝑘

+ (1 − 𝜒
𝑚
)𝑀𝐸
𝑐
𝛼2 − 2𝑀𝐸

𝑐
𝛼𝐹󸀠
𝑚−1

+𝑀𝐸
𝑐

𝑚−1

∑
𝑘=0

𝐹󸀠
𝑚−1−𝑘

𝐹󸀠
𝑘
,

𝜒
𝑚
= {

0 𝑚 ≤ 1

1 𝑚 ≥ 2.

(33)

The general solutions of (30)–(32) are

𝐹
𝑚
(𝜂) = 𝐹∗

𝑚
(𝜂) + 𝐶

1
+ 𝐶
2
𝜂 + 𝐶
3
exp (−𝜂) ,

𝜃
𝑚
(𝜂) = 𝜃∗

𝑚
(𝜂) + 𝐶

4
exp (𝜂) + 𝐶

5
exp (−𝜂) ,

(34)

where 𝐹∗
𝑚
(𝜂) and 𝜃∗

𝑚
(𝜂) denote the special solutions of (30)

and (31) and the integral constants 𝐶
𝑖
(𝑖 = 1, 2, 3, 4, 5) are

determined by the following boundary conditions:

𝐶
2
= 𝐶
4
= 0, 𝐶

3
=

1

1 + 𝛿
[
𝜕𝐹∗
𝑚
(𝜂)

𝜕𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0
− 𝛿

𝜕2𝐹∗
𝑚
(𝜂)

𝜕𝜂2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0
] ,

𝐶
1
= −𝐶
3
− 𝐹∗
𝑚
(0) , 𝐶

5
=

1

1 + 𝛾
[𝛾

𝜕𝜃∗
𝑚
(𝜂)

𝜕𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0
− 𝜃∗
𝑚
(0)] .

(35)

The linear 𝑚th order deformation equations (30) and (31)
can be solved one after the other by using the symbolic
computation software MATHEMATICA.

4. Convergence of the HAM Solution

Equation (29) gives the analytical solution of the problem
in series form. As pointed out by Liao [35], the convergence
region and rate of convergence of the solution series given by
HAM depend upon auxiliary parameters ℎ

𝐹
and ℎ

𝜃
. Hence

these auxiliary parameters provide us with a convenient
way to adjust and control the convergence region and rate
of the solution series. To select appropriate values of these
parameters, we display the so called ℎ

𝐹
and ℎ

𝜃
curves at

20th order approximations. Figure 2 reveals that there exists
horizontal line segment for (ℎ

𝐹
, 𝐹󸀠󸀠(0)) curves in −0.8 ≤ ℎ

𝐹
≤

−0.3 and for (ℎ
𝜃
, 𝜃󸀠󸀠(0)) curve in −0.85 ≤ ℎ

𝜃
≤ 0.25. The

obtained series solutions given by (29) converge in the whole
region of 𝜂 when ℎ

𝐹
= ℎ
𝜃
= −0.3. Here we have employed

the homotopy-Pade approximation (see Mahapatra et al.

−0.4

−0.6

−0.8

−1.0

−1.2

−1.4

F
󳰀󳰀

(0
),
𝜃
󳰀 (0

)

20th order approximation of F󳰀󳰀(0)
20th order approximation of 𝜃󳰀(0)

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
h

Figure 2: ℎ curve for 𝐹󸀠󸀠(0) and 𝜃󸀠(0).

Table 1: Convergence solution for different order of approximations
when 𝛽 = 1.0, 𝛼 = 0.5, 𝑀 = 1.0, 𝛿 = 0.5, Pr = 0.7, 𝛾 = 0.3, and
𝐸
𝑐
= 0.1.

Order of approximations −𝐹󸀠󸀠(0) −𝜃󸀠(0)

1 0.302781 0.405632
5 0.342341 0.437431
10 0.362178 0.457285
20 0.362489 0.457285
30 0.362489 0.457285
40 0.362489 0.457285

[40]) instead of traditional-Pade approximation for the rapid
convergence of the series solutions. Table 1 is made to show
the convergence of the solutions for 𝐹󸀠󸀠(0) and −𝜃󸀠(0) using
homotopy-Pade approximation.

5. Results and Discussion

Equations (9) and (10) subject to the boundary conditions
(11) are solved analytically for some values of the governing
parameters 𝛽, 𝛼, 𝑀, Pr, 𝐸

𝑐
, 𝛿, and 𝛾. In order to verify

the accuracy of the present method, we have compared our
results with those ofMahapatra andGupta [4] and Ishak et al.
[6] for the skin friction coefficient 𝐹󸀠󸀠(0) for different values
of 𝛼 (in the case of 𝛽 → ∞, 𝑀 = 0 and 𝛿 = 0) in Table 2.
The comparison shows good agreement for each value of 𝛼.
Therefore, the present results obtained are accurate enough.

This section describes the influence of some important
physical parameters on the velocity and thermal profiles.
For this purpose, Figures 3–11 are displayed. Attention is
focussed on variations of the velocity slip parameter 𝛿, the
magnetic parameter 𝑀, the thermal slip parameter 𝛾, the
casson parameter 𝛽, the velocity ratio parameter 𝛼, and
the Prandtl number Pr on the velocity and the temperature
distributions.

Figure 3 shows the influence of 𝛿 on the velocity compo-
nent 𝐹󸀠. It is observed that 𝐹󸀠 is a decreasing function of the
slip parameter 𝛿. Physically this is explained as follows: when
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Figure 3: Influence of the velocity slip parameter 𝛿 on 𝐹󸀠.
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Figure 4: Influence of the magnetic parameter𝑀 on 𝐹󸀠.
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Figure 5: Influence of the Casson parameter 𝛽 on 𝐹󸀠.
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Figure 6: Influence of the velocity ratio parameter 𝛼 on 𝐹󸀠.
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Figure 7: Influence of the thermal slip parameter 𝛾 on 𝜃(𝜂).
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Table 2: Comparison of the values of 𝐹󸀠󸀠(0) (with 𝛽 → ∞) for
different values of 𝛼(=𝑎/𝑐) with𝑀 = 0 and 𝛿 = 0.

𝛼 Present study Mahapatra and Gupta [4] Ishak et al. [6]
0.01 −0.998024 — −0.9980

0.10 −0.969386 −0.9694 −0.9694

0.20 −0.918107 −0.9181 −0.9181

0.50 −0.667264 −0.6673 −0.6673

1.0 0 0 0

2.0 2.017507 2.0175 2.0175

1.0

0.8

0.6

0.4

0.2

0.0

𝜃
(𝜂
)

0 2 4 6 8 10
𝜂

𝛼 = 0.0

𝛼 = 0.3
𝛼 = 0.5
𝛼 = 1.0

𝛽 = 1.0, 𝛿 = 0.5, 𝛾 = 0.2, M = 0.5, = 0.7, Ec = 1.0Pr

Figure 9: Influence of the velocity ratio parameter 𝛼 on 𝜃(𝜂).

slip occurs (for nonzero value of 𝛿), the fluid velocity near
the sheet is no longer equal to the sheet stretching velocity;
that is, a velocity slip exists. With the increase in 𝛿, such
a slip velocity increases. Furthermore, increasing the value
of 𝛿 will decrease the flow velocity because under the slip
condition, the pulling of the stretching sheet can be only
partly transmitted to the fluid. The boundary layer thickness
also decreases as the slip parameter 𝛿 increases. The effect of
the magnetic field parameter𝑀 on velocity 𝐹󸀠 is depicted in
Figure 4. From this figure, it is observed that the transverse
magnetic field contributes to the reduction in the velocity
profile and boundary later thickness. This is evident from
the fact that applied transverse magnetic field produces a
body force, to be precise, the Lorentz force, which opposes
the motion. The resistance offered to the flow is responsible
in decreasing the fluid velocity. The influence of the Casson
parameter 𝛽 on the velocity profile is displayed in Figure 5.
The figure reveals that as 𝛽 increases, the velocity and the
boundary layer thickness decrease. Hence, it is quite obvious
that the magnitude of the velocity is greater in casson fluid
when compared with the viscous fluid. The effect of the
velocity ratio parameter 𝛼 on the velocity field 𝐹󸀠 is shown
in Figure 6. The figure indicates that fluid velocity increases
with the increase of 𝛼.

To see the variations of 𝛾, 𝑀, 𝛼, Pr (Prandtl number),
and 𝐸

𝑐
(Eckert number) on the temperature profile 𝜃, Figures

7–11 are plotted. The effect of the thermal slip parameter 𝛾
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)
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Figure 10: Influence of the Prandtl number Pr on 𝜃(𝜂).
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Figure 11: Influence of the Eckert number 𝐸
𝑐
on 𝜃(𝜂).

on temperature distribution is displayed in Figure 7. As the
thermal slip increases, less heat is transferred from the sheet
to the fluid and consequently the temperature decreases.
Figure 8 depicts the effect of 𝑀 on temperature 𝜃. It is
observed that temperature and the thermal boundary layer
thickness increase with increasing 𝑀. Figure 9 exhibits the
temperature profile 𝜃 for different values of the velocity ratio
parameter 𝛼. The figure shows that the temperature and the
thermal boundary layer thickness decrease with an increase
in 𝛼. Hence, stronger free stream velocity causes a reduction
in the temperature and the thermal boundary layer thickness.

Figure 10 demonstrates the effect of the Prandtl number
Pr on the temperature profile 𝜃. The temperature and the
thermal boundary layer thickness decrease with the increase
of Pr. Physically this is explained as follows. An increase
in the Prandtl number means an increase of fluid viscosity,
which causes a decrease in the temperature distribution. An
enhancement in the Eckert number 𝐸

𝑐
results in an increase

in temperature 𝜃, and this observation can easily be visualized
in Figure 11.
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Table 3: Values of 𝐹󸀠󸀠(0) for different values of 𝛽, 𝑀, and 𝛼 with
𝛿 = 0.5.

𝛽 𝑀
𝛼 →

0.01 0.2 0.5 1.5 2.0

0.5
0.1 −0.426217 −0.386951 −0.275757 0.353516 0.762695

0.5 −0.486374 −0.427637 −0.296141 0.365707 0.782862

1.0 −0.546294 −0.469744 −0.317999 0.379546 0.806099

1.0
0.1 −0.491127 −0.445542 −0.316722 0.401925 0.863115

0.5 −0.558715 −0.490648 −0.338915 0.414637 0.883828

1.0 −0.625100 −0.536776 −0.362489 0.428997 0.907599

Table 4: Values of −𝜃󸀠(0) for different values of 𝛽, 𝑀, and Pr with
𝛿 = 0.5, 𝛾 = 0.3, 𝛼 = 0.2, and 𝐸

𝑐
= 0.1.

𝛽 𝑀
Pr →

0.1 0.5 0.71 2.0 5.0

0.5
0.1 0.147355 0.355671 0.423755 0.675504 0.956279

0.5 0.141579 0.340118 0.404804 0.646344 0.912599

1.0 0.136239 0.324898 0.386483 0.616944 0.868322

1.0
0.1 0.140813 0.341966 0.409257 0.662231 0.948732

0.5 0.135781 0.327236 0.391145 0.634582 0.908910

1.0 0.131151 0.312713 0.374024 0.607155 0.869149

Tables 3 and 4 show the variation of the reduced skin
friction coefficient 𝐹󸀠󸀠(0) and the coefficient of the reduced
Nusselt number −𝜃󸀠(0) for different values of the physical
parameters 𝛽, 𝑀, 𝛼, and Pr considering other parameters
fixed. FromTable 3, it is observed that |𝐹󸀠󸀠(0)| is an increasing
function of the dimensionless parameters 𝛽 and 𝑀. Also
|𝐹󸀠󸀠(0)| decreases with the increase of 𝛼 as long as 𝛼 < 1 and
increases with the increase of 𝛼 for 𝛼 > 1. Table 4 reveals that
−𝜃󸀠(0) is a decreasing function of𝛽 and𝑀while an increasing
function of Pr.

6. Conclusion

The present work considers the hydromagnetic steady flow
and heat transfer of a non-Newtonian casson fluid in the
neighborhood of a stagnation point over a stretching surface
with partial slip at the boundary.The governing equations are
formulated and transformed into a set of ordinary differential
equations by similarity transformation. The resulting equa-
tions are solved analytically using homotopy analysismethod.
The main points of this study are as follows.

(i) The velocity 𝐹󸀠 decreases with increasing values of 𝛿,
𝑀, and 𝛽.

(ii) The temperature 𝜃 decreases with increasing values of
𝛾,𝛼, and Pr, and increases with increasing values of𝑀
and 𝐸

𝑐
.

(iii) Themagnitude of velocity is greater in case of Casson
fluid when compared with the viscous fluid.

(iv) Increase of the velocity slip parameter 𝛿 causes
decrease in the flow velocity, and the same qualitative

result holds for the thermal slip parameter 𝛾 on the
temperature.

(v) The present results in limiting cases (𝛽 → ∞, 𝑀 =
0, 𝛿 = 0) are found in excellent agreement with those
of Mahapatra and Gupta [4] and Ishak et al. [6].
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