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We derive the first-order approximate symmetries for the Harry Dym equation by the method of approximate transformation
groups proposed by Baikov et al. (1989, 1996). Moreover, we investigate the structure of the Lie algebra of symmetries of the
perturbed Harry Dym equation. We compute the one-dimensional optimal system of subalgebras as well as point out some
approximately differential invariants with respect to the generators of Lie algebra and optimal system.

1. Introduction

The following nonlinear partial differential equation

𝑢
𝑡
= −

1

2

𝑢
3
𝑢
𝑥𝑥𝑥

(1)

is known as the Harry Dym equation [1]. This equation was
obtained by Harry Dym and Martin Kruskal as an evolution
equation solvable by a spectral problem based on the string
equation instead of Schrödinger equation. This result was
reported in [2] and rediscovered independently in [3, 4].
The Harry Dym equation shares many of the properties
typical of the soliton equations. It is a completely integrable
equation [5, 6], which can be solved by inverse scattering
transformation [7–9]. It has a bi-Hamiltonian structure and
an infinite number of conservation laws and infinitely many
symmetries [10, 11].

In this paper, we analyze the perturbed Harry Dym
equation

𝑢
𝑡
+

1

2

𝑢
3
𝑢
𝑥𝑥𝑥

+ 𝜀𝑢
𝑥
= 0, (2)

where 𝜀 is a small parameter, with a method which was first
introduced by Baikov et al. [12, 13]. This method which is
known as “approximate symmetry” is a combination of Lie
group theory and perturbations. There is a second method
which is also known as “approximate symmetry” due to

Fushchich and Shtelen [14] and later followed by Euler et al.
[15, 16]. For a comparison of these two methods, we refer the
interested reader to [17, 18]. Our paper is organized as follows.
In Section 2, we present some definitions and theorems
in the theory of approximate symmetry. In Section 3, we
obtain the approximate symmetry of the perturbed Harry
Dym equation. In Section 4, we discuss the structure of its
Lie algebra. In Section 5, we construct the one-dimensional
optimal system of subalgebras. In Section 6, we compute
some approximately differential invariants with respect to the
generators of Lie algebra and optimal system. In Section 7, we
summarize our results.

2. Notations and Definitions

In this section, we will provide the background definitions
and results in approximate symmetry that will be used along
this paper. Much of it is stated as in [19]. If a function 𝑓(𝑥, 𝜀)

satisfies the condition

lim
𝑓 (𝑥, 𝜀)

𝜀
𝑝

= 0, (3)

it is written 𝑓(𝑥, 𝜀) = 𝑜(𝜀
𝑝
) and 𝑓 is said to be of order less

than 𝜀
𝑝. If

𝑓 (𝑥, 𝜀) − 𝑔 (𝑥, 𝜀) = 𝑜 (𝜀
𝑝
) , (4)
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the functions𝑓 and𝑔 are said to be approximately equal (with
an error 𝑜(𝜀𝑝)) and written as

𝑓 (𝑥, 𝜀) = 𝑔 (𝑥, 𝜀) + 𝑜 (𝜀
𝑝
) (5)

or, briefly,𝑓 ≈ 𝑔when there is no ambiguity.The approximate
equality defines an equivalence relation, and we join func-
tions into equivalence classes by letting 𝑓(𝑥, 𝜀) and 𝑔(𝑥, 𝜀)

be members of the same class if and only if 𝑓 ≈ 𝑔. Given a
function 𝑓(𝑥, 𝜀), let

𝑓
𝑜
(𝑥) + 𝜀𝑓

𝑙
(𝑥) + ⋅ ⋅ ⋅ + 𝜀

𝑝
𝑓
𝑝
(𝑥) (6)

be the approximating polynomial of degree 𝑝 in 𝜀 obtained
via the Taylor series expansion of 𝑓(𝑥, 𝜀) in powers of 𝜀 about
𝜀 = 0. Then any function 𝑔 ≈ 𝑓 (in particular, the function 𝑓

itself) has the form

𝑔 (𝑥, 𝜀) = 𝑓
𝑜
(𝑥) + 𝜀𝑓

𝑙
(𝑥) + ⋅ ⋅ ⋅ + 𝜀

𝑝
𝑓
𝑝
(𝑥) + 𝑜 (𝜀

𝑝
) . (7)

Consequently the expression (6) is called a canonical rep-
resentative of the equivalence class of functions containing
𝑓. Thus, the equivalence class of functions 𝑔(𝑥, 𝜀)𝑓(𝑥, 𝜀)

is determined by the ordered set of 𝑝 + 1 functions
𝑓
0
(𝑥), 𝑓
𝑙
(𝑥), . . . , 𝑓

𝑝
(𝑥). In the theory of approximate transfor-

mation groups, one considers ordered sets of smooth vector-
functions depending on 𝑥’s and a group parameter 𝑎:

𝑓
0
(𝑥, 𝑎) , 𝑓

𝑙
(𝑥, 𝑎) , . . . , 𝑓

𝑝
(𝑥, 𝑎) , (8)

with coordinates

𝑓
𝑖

0
(𝑥, 𝑎) , 𝑓

𝑖

1
(𝑥, 𝑎) , . . . , 𝑓

𝑖

𝑝
(𝑥, 𝑎) , 𝑖 = 1, . . . , 𝑛. (9)

Let us define the one-parameter family 𝐺 of approximate
transformations

𝑥
𝑖
≈ 𝑓
𝑖

0
(𝑥, 𝑎) + 𝜀𝑓

𝑖

1
(𝑥, 𝑎) + ⋅ ⋅ ⋅ + 𝜀

𝑝
𝑓
𝑖

𝑝
(𝑥, 𝑎) , 𝑖 = 1, . . . , 𝑛,

(10)

of points 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ R𝑛 into points 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) ∈

R𝑛 as the class of invertible transformations

𝑥 = 𝑓 (𝑥, 𝑎, 𝜖) , (11)

with vector-functions 𝑓 = (𝑓
1
, . . . , 𝑓

𝑛
) such that

𝑓
𝑖
(𝑥, 𝑎, 𝜖) ≈ 𝑓

𝑖

0
(𝑥, 𝑎) + 𝜖𝑓

𝑖

1
(𝑥, 𝑎)

+ ⋅ ⋅ ⋅ + 𝜀
𝑝
𝑓
𝑖

𝑝
(𝑥, 𝑎) , 𝑖 = 1, . . . , 𝑛.

(12)

Here 𝑎 is a real parameter, and the following condition is
imposed:

𝑓 (𝑥, 0, 𝜖) ≈ 𝑥. (13)

Definition 1. The set of transformations (10) is called a one-
parameter approximate transformation group if

𝑓 (𝑓 (𝑥, 𝑎, 𝜀) , 𝑏, 𝜖) ≈ 𝑓 (𝑥, 𝑎 + 𝑏, 𝜀) (14)

for all transformations (11).

Definition 2. Let𝐺 be a one-parameter approximate transfor-
mation group:

𝑧
𝑖
≈ 𝑓 (𝑧, 𝑎, 𝜀) ≡ 𝑓

𝑖

0
(𝑧, 𝑎) + 𝜀𝑓

𝑖

1
(𝑧, 𝑎) , 𝑖 = 1, . . . , 𝑁.

(15)

An approximate equation

𝐹 (𝑧, 𝜀) ≡ 𝐹
0
(𝑧) + 𝜀𝐹

1
(𝑧) ≈ 0 (16)

is said to be approximately invariant with respect to 𝐺 or
admits 𝐺 if

𝐹 (𝑧, 𝜀) ≈ 𝐹 (𝑓 (𝑧, 𝑎, 𝜀) , 𝜀) = 𝑜 (𝜀) (17)

whenever 𝑧 = (𝑧
𝑙
, . . . , 𝑧

𝑁
) satisfies (16). If 𝑧 = (𝑥, 𝑢, 𝑢

(1)
, . . .,

𝑢
(𝑘)
) then (16) becomes an approximate differential equation

of order 𝑘, and 𝐺 is an approximate symmetry group of the
differential equation.

Theorem 3. Equation (16) is approximately invariant under
the approximate transformation group (15) with the generator

𝑋 = 𝑋
0
+ 𝜀𝑋
1
≡ 𝜉
𝑖

0
(𝑧)

𝜕

𝜕𝑧
𝑖
+ 𝜀𝜉
𝑖

1

𝜕

𝜕𝑧
𝑖
, (18)

if and only if

[𝑋
(𝑘)
𝐹(𝑧, 𝜀)]

𝐹≈0
= 𝑜 (𝜀) , (19)

or

[𝑋
(𝑘)

0
𝐹
0
(𝑧) + 𝜀 (𝑋

(𝑘)

1
𝐹
0
(𝑧) + 𝑋

(𝑘)

0
𝐹
1
(𝑧))]
(2.5)

= 𝑜 (𝜀) ,

(20)

where𝑋(𝑘) is the prolongation of𝑋 of order 𝑘.The operator (18)
satisfying (20) is called an infinitesimal approximate symmetry
of or an approximate operator admitted by (16). Accordingly,
(20) is termed the determining equation for approximate
symmetries.

Theorem 4. If (16) admits an approximate transformation
group with the generator 𝑋 = 𝑋

0
+ 𝜀𝑋
1
, where 𝑋

0
̸= 0, then

the operator

𝑋
0
= 𝜉
𝑖

0
(𝑧)

𝜕

𝜕𝑧
𝑖

(21)

is an exact symmetry of the equation

𝐹
0
(𝑧) = 0. (22)

Definition 5. Equations (22) and (16) are termed an unper-
turbed equation and a perturbed equation, respectively.
Under the conditions ofTheorem 4, the operator𝑋

0
is called

a stable symmetry of the unperturbed equation (22).The cor-
responding approximate symmetry generator 𝑋 = 𝑋

0
+ 𝜀𝑋
1

for the perturbed equation (16) is called a deformation of the
infinitesimal symmetry𝑋

0
of (22) caused by the perturbation

𝜀𝐹
1
(𝑧). In particular, if themost general symmetry Lie algebra

of (22) is stable, we say that the perturbed equation (16)
inherits the symmetries of the unperturbed equation.
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3. Approximate Symmetries of the Perturbed
Harry Dym Equation

Consider the perturbed Harry Dym equation

𝑢
𝑡
+

1

2

𝑢
3
𝑢
𝑥𝑥𝑥

+ 𝜀𝑢
𝑥
= 0. (23)

By applying the method of approximate transformation
groups, we provide the infinitesimal approximate symmetries
(18) for the perturbed Harry Dym equation (2).

3.1. Exact Symmetries. Let us consider the approximate group
generators in the form

𝑋 = 𝑋
0
+ 𝜀𝑋
1
= (𝜉
0
+ 𝜀𝜉
1
)

𝜕

𝜕𝑥

+ (𝜏
0
+ 𝜀𝜏
1
)

𝜕

𝜕𝑡

+ (𝜙
0
+ 𝜀𝜙
1
)

𝜕

𝜕𝑢

,

(24)

where 𝜉
𝑖
, 𝜏
𝑖
, and 𝜙

𝑖
for 𝑖 = 0, 1 are unknown functions of 𝑥, 𝑡,

and 𝑢. Solving the determining equation

𝑋
(3)

0
(𝑢
𝑡
−

1

2

𝑢
3
𝑢
𝑥𝑥𝑥

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑢
𝑡
−(1/2)𝑢

3
𝑢
𝑥𝑥𝑥
=0

= 0, (25)

for the exact symmetries𝑋
0
of the unperturbed equation, we

obtain

𝜉
0
= (𝐴
1
+ 𝐴
2
𝑥 +

𝐴
3

2

𝑥
2
) ,

𝜏
0
= (𝐴
4
+ 𝐴
5
𝑡) ,

𝜙
0
= (𝐴

2
−

1

3𝐴
5

+ 𝑥𝐴
3
)𝑢,

(26)

where 𝐴
1
, . . . , 𝐴

5
are arbitrary constants. Hence,

𝑋
0
= (𝐴

1
+ 𝐴
2
𝑥 +

𝐴
3

2

𝑥
2
)

𝜕

𝜕𝑥

+ (𝐴
4
+ 𝐴
5
𝑡)

𝜕

𝜕𝑡

+ ((𝐴
2
−

1

3𝐴
5

+ 𝑥𝐴
3
)𝑢)

𝜕

𝜕𝑢

.

(27)

Therefore, the unperturbed Harry Dym equation admits the
five-dimensional Lie algebra with the basis

𝑋
1

0
=

𝜕

𝜕𝑥

, 𝑋
2

0
=

𝜕

𝜕𝑡

, 𝑋
3

0
= 𝑥

𝜕

𝜕𝑥

+ 𝑢

𝜕

𝜕𝑢

,

𝑋
4

0
= 3𝑡

𝜕

𝜕𝑡

− 𝑢

𝜕

𝜕𝑢

, 𝑋
5

0
= 𝑥
2 𝜕

𝜕𝑥

+ 2𝑥𝑢

𝜕

𝜕𝑢

.

(28)

3.2. Approximate Symmetries. At first, we need to determine
the auxiliary function𝐻 by virtue of (19), (20), and (16), that
is, by the equation

𝐻 =

1

𝜀

[𝑋
(𝑘)

0
(𝐹
0
(𝑧) + 𝜀𝐹

1
(𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨𝐹
0
(𝑧)+𝜀𝐹

1
(𝑧)=0

] . (29)

Substituting the expression (27) of the generator𝑋
0
into (29)

we obtain the auxiliary function

𝐻 = 𝑢
𝑥
(𝐴
5
− 𝐴
2
) + 𝐴
3
(𝑢 − 𝑥𝑢

𝑥
) . (30)

Now, calculate the operators 𝑋
1
by solving the inhomoge-

neous determining equation for deformations:

𝑋
(𝑘)

1
𝐹
0
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨𝐹
0
(𝑧)=0

+ 𝐻 = 0. (31)

So, the above determining equation for this equation is
written as

𝑋
(3)

1
(𝑢
𝑡
+

1

2

𝑢
3
𝑢
𝑥𝑥𝑥

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑢
𝑡
+(1/2)𝑢

3
𝑢
𝑥𝑥𝑥
=0

+ 𝑢
𝑥
(𝐴
5
− 𝐴
2
) + 𝐴
3
(𝑢 − 𝑥𝑢

𝑥
) = 0.

(32)

Solving the determining equation yields

𝜉
1
= (𝐴
5
− 𝐴
2
) 𝑡 − 𝐴

3
𝑥𝑡 + 𝐶

4
𝑥 − 𝐶

5
+

𝐶
3

2

𝑥
2
,

𝜏
1
= (𝐶
1
𝑡 + 𝐶
2
) ,

𝜙
1
= (−𝐴

3
𝑡 + 𝐶
4
+ 𝐶
3
𝑥 +

𝐶
1

3

) 𝑢,

(33)

where 𝐶
1
, . . . , 𝐶

5
are arbitrary constants.

Thus, we derive the following approximate symmetries of
the perturbed Harry Dym equation:

k
1
=

𝜕

𝜕𝑥

, k
2
=

𝜕

𝜕𝑡

,

k
3
= 𝑥

𝜕

𝜕𝑥

+ 𝑢

𝜕

𝜕𝑢

, k
4
= 3𝑡

𝜕

𝜕𝑡

− 𝑢

𝜕

𝜕𝑢

,

k
5
= 𝑥
2 𝜕

𝜕𝑥

+ 2𝑥𝑢

𝜕

𝜕𝑢

, k
6
= 𝜀

𝜕

𝜕𝑥

,

k
7
= 𝜀

𝜕

𝜕𝑡

, k
8
= 𝜀(𝑥

𝜕

𝜕𝑥

+ 𝑢

𝜕

𝜕𝑢

) ,

k
9
= 𝜀(3𝑡

𝜕

𝜕𝑡

− 𝑢

𝜕

𝜕𝑢

) , k
10

= 𝜀(𝑥
2 𝜕

𝜕𝑥

+ 2𝑥𝑢

𝜕

𝜕𝑢

) .

(34)

Table 1 of commutators, evaluated in the first order of preci-
sion, shows that the operators (34) span a ten-dimensional
approximate Lie algebra and hence generate a ten-parameter
approximate transformation group.

Remark 6. Equations (34) show that all symmetries (28) of
(1) are stable. Hence, the perturbed equation (2) inherits the
symmetries of the unperturbed equation (1).
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Table 1: Approximate commutators of approximate symmetry of perturbed Harry Dym equation.

k1 k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k1 0 0 k1 0 2k
3

0 0 k
6

0 2k
8

k
2

0 0 0 12k
2

0 0 0 0 3k
7

0

k
3

−k
1

0 0 0 k
5

−k
6

0 0 0 k
10

k
4

0 −12k
2

0 0 0 0 −3k
7

0 0 0

k
5

−2k
3

0 −k
5

0 0 −2k
8

0 −k
10

0 0

k
6

0 0 k
6

0 2k
8

0 0 0 0 0

k
7

0 0 0 3k
7

0 0 0 0 0 0

k
8

−k
6

0 0 0 k
10

0 0 0 0 0

k
9

0 −3k
7

0 0 0 0 0 0 0 0

k
10

−2k
8

0 −k
10

0 0 0 0 0 0 0

4. The Structure of the Lie Algebra of
Symmetries

In this section, we determine the structure of the Lie algebra
of symmetries of the perturbed Harry Dym equation.The Lie
algebra g is nonsolvable, since

g(1) = [g, g] = SpanR {k1, k2, k3, k5, k6, k7, k8, k10} ,

g(2) = [g(1), g(1)] = SpanR {k1, k3, k5, k6, k8, k10} ,

g(3) = [g(2), g(2)] = g(2).

(35)

The Lie algebra g admits a Levi decomposition as the
following semidirect product g = 𝑟 ∝ 𝑠, where

𝑟 = SpanR {k2, k4, k6, k7, k8, k9, k10} (36)

is the radical of g (the largest solvable ideal contained in g)
and

𝑠 = SpanR {k1, k3, k5} (37)

is a semisimple subalgebra of g.
The radical 𝑟 is solvable with the following chain of ideals:

𝑟
(1)

⊃ 𝑟
(2)

⊃ 𝑟
(3)

= {0} , (38)

where

𝑟
(1)

= SpanR {k2, k4, k6, k7, k8, k9, k10} ,

𝑟
(2)

= SpanR {k2, k7} .
(39)

The semisimple subalgebra 𝑠 of g is isomorphic to the Lie
algebra 𝐴

3,8
of the classification of three-dimensional Lie

algebras in [20], by the following isomorphism:

T : {k
1
, k
3
, k
5
} 󳨀→ {k

1
, −k
2
, −k
3
} . (40)

5. Optimal System for Perturbed
Harry Dym Equation

Definition 7. Let 𝐺 be a Lie group. An optimal system of
𝑠-parameter subgroups is a list of conjugacy inequivalent

𝑠-parameter subgroups with the property that any other
subgroup is conjugate to precisely one subgroup in the list.
Similarly, a list of 𝑠-parameter subalgebras forms an optimal
system if every 𝑠-parameter subalgebra of g is equivalent to a
unique member of the list under some element of the adjoint
representation: ̃h = Ad(𝑔(h)), 𝑔 ∈ 𝐺.

Proposition 8. Let 𝐻 and 𝐻̃ be connected, 𝑠-dimensional
Lie subgroups of the Lie group 𝐺 with corresponding Lie
subalgebras h and ̃h of the Lie algebra g of𝐺.Then 𝐻̃ = 𝑔𝐻𝑔

−1

are conjugate subgroups if and only if ̃h = 𝐴𝑑(𝑔(h)) are
conjugate subalgebras (Proposition 3.7 of [11]).

Actually, the proposition says that the problem of finding
an optimal system of subgroups is equivalent to that of finding
an optimal system of subalgebras. For one-dimensional subal-
gebras, this classification problem is essentially the same as the
problem of classifying the orbits of the adjoint representation,
since each one-dimensional subalgebra is determined by a
nonzero vector in g. To compute the adjoint representation one
uses the Lie series:

𝐴𝑑 (exp (𝜇k
𝑖
)) k
𝑗
= k
𝑗
− 𝜇 [k

𝑖
, k
𝑗
]

+

𝜇
2

2

[k
𝑖
, [k
𝑖
, k
𝑗
]] − ⋅ ⋅ ⋅ ,

(41)

where [k
𝑖
, k
𝑗
], 𝑖, 𝑗 = 1, . . . , 10 is the commutator for the Lie

algebra and 𝜇 is a parameter. In this manner, one constructs
Table 2 with the (𝑖, 𝑗)th entry indicating 𝐴𝑑(exp(𝜇k

𝑖
))k
𝑗
.

Theorem 9. An optimal system of one-dimensional approx-
imate Lie algebras of the perturbed Harry Dym equation is
provided by

k1 = k
8
,

k2 = k
7
+ 𝑎k
8
,

k3 = k
6
+ k
8
,

k4 = k
6
− k
7
+ k
8
,

k5 = k
6
+ k
7
+ k
8
,

k6 = k
2
+ 𝑎k
8
,
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Table 2: Adjoint representation of approximate symmetry of the perturbed Harry Dym equation.

Ad k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k
1

k
1

k
2

k
3
− 𝜇k
1

k
4

k
5
− 2𝜇k

3
+ 𝜇
2k
1

k
6

k
7

k
8
− 𝜇k
6

k
9

k
10
− 2𝜇k

8
+ 𝜇
2k
6

k
2

k
1

k
2

k
3

k
4
− 12𝜇k

2
k
5

k
6

k
7

k
8

k
9
− 3𝜇k

7
k
10

k
3

𝑒
𝜇k
1

k
2

k
3

k
4

𝑒
−𝜇k
5

𝑒
𝜇k
6

k
7

k
8

k
9

𝑒
−𝜇k
10

k
4

k
1

𝑒
12𝜇k
2

k
3

k
4

k
5

k
6

𝑒
3𝜇k
7

k
8

k
9

k
10

k
5
k
1
+ 2𝜇k

3
+ 𝜇
2k
5

k
2

k
3
+ 𝜇k
5

k
4

k
5

k
6
+ 2𝜇k

8
+ 𝜇
2k
10

k
7

k
8
+ 𝜇 + k

10
k
9

k
10

k
6

k
1

k
2

k
3
− 𝜇k
6

k
4

k
5
− 2𝜇k

8
k
6

k
7

k
8

k
9

k
10

k
7

k
1

k
2

k
3

k
4
− 3𝜇k

7
k
5

k
6

k
7

k
8

k
9

k
10

k
8

k
1
+ 𝜇k
6

k
2

k
3

k
4

k
5
− 𝜇k
10

k
6

k
7

k
8

k
9

k
10

k
9

k
1

k
2
+ 3𝜇k

7
k
3

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k
10

k
1
+ 2𝜇k

8
k
2

k
3
+ 𝜇k
10

k
4

k
5

k
6

k
7

k
8

k
9

k
10

k7 = k
2
− k
6
+ 𝑎k
8
,

k8 = k
2
+ k
6
+ 𝑎k
8
,

k9 = k
1
+ 𝑎k
2
+ 𝑏k
7
,

k10 = 𝑎k
1
+ 𝑏k
2
+ k
5
+ 𝑐k
6
+ 𝑑k
7
,

k11 = 𝑎k
1
+ 𝑏k
2
+ k
3
+ 𝑐k
5
+ 𝑑k
7
+ 𝑒k
8
,

k12 = 𝑎k
1
+ 𝑏k
3
+ k
4
+ 𝑐k
5
+ 𝑑k
6
+ 𝑒k
8
,

k13 = 𝑎k
1
+ 𝑏k
3
+ 𝑐k
4
+ 𝑑k
5
+ 𝑒k
6
+ 𝑓k
8
+ k
9
,

k14 = 𝑎k
1
− k
2
+ 𝑏k
3
+ 𝑐k
4
+ 𝑑k
5
+ 𝑒k
6
+ 𝑓k
8
+ k
9
,

k15 = 𝑎k
1
+ k
2
+ 𝑏k
3
+ 𝑐k
4
+ 𝑑k
5
+ 𝑒k
6
+ 𝑓k
8
+ k
9
,

k16 = 𝑎k
1
+ k
2
+ 𝑏k
3
+ 𝑐k
4
+ 𝑑k
5
+ 𝑒k
6
+ 𝑓k
8
+ k
9
.

(42)

Proof. Consider the approximate symmetry algebra g of the
unperturbed Harry Dym equation, whose adjoint represen-
tation was determined in Table 2. Given a nonzero vector

k =

10

∑

𝑖=1

𝑎
𝑖
ki, (43)

our task is to simplify asmany of the coefficients 𝑎
𝑖
as possible

through judicious applications of adjoint maps to k.
Suppose first that 𝑎

10
̸= 0. Scaling k if necessary, we can

assume that 𝑎
10

= 1. Referring to Table 2, if we act on such a
k by

k󸀠 = Ad(exp(
𝑎
8

2

k
8
)) k

= 𝑎
󸀠

1
k
1
+ 𝑎
2
k
2
+ 𝑎
󸀠

3
k
3
+ 𝑎
4
k
4
+ 𝑎
5
k
5

+ 𝑎
󸀠

6
k
6
+ 𝑎
7
k
7
+ 𝑎
9
k
9
+ k
10
,

(44)

we can make the coefficient of 𝑎
8
vanish. The remaining one-

dimensional subalgebras are spanned by vectors of the above

form with 𝑎
10

= 0. If 𝑎
9

̸= 0, we scale to make 𝑎
9
= 1 and then

act on k to cancel the coefficient of 𝑎
7
as follows:

k󸀠 = Ad(exp (
𝑎
7

3

k
2
)) k

= 𝑎
󸀠

1
k
1
+ 𝑎
2
k
2
+ 𝑎
󸀠

3
k
3
+ 𝑎
4
k
4

+ 𝑎
5
k
5
+ 𝑎
6
k
6
+ 𝑎
8
k
8
+ k
9
.

(45)

We can further act on k󸀠 by the group generated by k
4
; this

has the net effect of scaling the coefficients of k
2
:

k󸀠󸀠 = Ad (exp (𝜇k
4
)) k

= 𝑎
1
k
1
+ 𝑒
12𝜇

𝑎
2
k
2
+ 𝑎
3
k
3
+ 𝑎
4
k
4

+ 𝑎
5
k
5
+ 𝑎
6
k
6
+ 𝑎
8
k
8
+ k
9
.

(46)

So, depending on the sign of 𝑎
2
, we can make the coefficient

of k
2
either +1, −1, or 0. If 𝑎

10
= 𝑎
9
= 0 and 𝑎

4
̸= 0, we scale

to make 𝑎
4
= 1. So, the nonzero vector k is equivalent to k󸀠

under adjoint maps:

k󸀠 = Ad(exp (
𝑎
7

3

k
7
)) ∘ Ad(exp ( 𝑎2

12

k
2
)) k

= 𝑎
1
k
1
+ 𝑎
3
k
3
+ k
4
+ 𝑎
5
k
5
+ 𝑎
6
k
6
+ 𝑎
8
k
8
.

(47)

If 𝑎
10

= 𝑎
9
= 𝑎
4
= 0 and 𝑎

3
̸= 0, by scaling k, we can assume

that 𝑎
3
= 1. Referring to Table 2, if we act on such a k by the

following adjoint map, we can arrange that the coefficients of
𝑎
6
vanish:

k󸀠 = Ad (exp (𝑎
6
k
6
)) k

= 𝑎
1
k
1
+ 𝑎
2
k
2
+ k
3
+ 𝑎
5
k
5

+ 𝑎
6
k
6
+ 𝑎
7
k
7
+ 𝑎
󸀠

8
k
8
.

(48)

If 𝑎
10

= 𝑎
9
= 𝑎
4
= 𝑎
3
= 0 and 𝑎

5
̸= 0, we scale to make 𝑎

5
= 1.

Thus, k is equivalent to k󸀠 under the adjoint representations:

k󸀠 = Ad(exp (
𝑎
8

2

k
6
)) k

= 𝑎
1
k
1
+ 𝑎
2
k
2
+ k
5
+ 𝑎
6
k
6
+ 𝑎
7
k
7
.

(49)
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If 𝑎
10

= 𝑎
9
= 𝑎
4
= 𝑎
3
= 𝑎
5
= 0 and 𝑎

1
̸= 0, we scale to make

𝑎
1
= 1. So, we canmake the coefficients of 𝑎

6
, 𝑎
8
zero by using

the following adjoint maps:

k󸀠 = Ad(exp(−
𝑎
8

2

k
10
)) ∘ Ad (exp (−𝑎

6
k
8
)) k

= k
1
+ 𝑎
2
k
2
+ 𝑎
7
k
7
.

(50)

If 𝑎
10

= 𝑎
9
= 𝑎
4
= 𝑎
3
= 𝑎
5
= 𝑎
1
= 0 and 𝑎

2
̸= 0, by scaling k,

we can assume that 𝑎
2
= 1. Therefore, we can arrange that the

coefficients of 𝑎
7
vanish by simplifying the nonzero vector k

as follows:

k󸀠 = Ad(exp(−
𝑎
7

3

k
9
)) k

= k
2
+ 𝑎
6
k
6
+ 𝑎
8
k
8
.

(51)

We can further act on k󸀠 by the group generated by k
3
:

k󸀠󸀠 = Ad (exp (𝜇k
3
) k󸀠)

= k
2
+ 𝑒
𝜇
𝑎
6
k
6
+ 𝑎
8
k
8
.

(52)

So, depending on the sign of 𝑎
6
, we canmake the coefficient of

k
6
either +1, −1, or 0. If 𝑎

10
= 𝑎
9
= 𝑎
4
= 𝑎
3
= 𝑎
5
= 𝑎
1
= 𝑎
2
= 0

and 𝑎
6

̸= 0, by scaling k, we can assume that 𝑎
6
= 1. We can

act on such a k by the group generated by k
4
. So, depending

on the sign of 𝑎
7
, we can make the coefficient of k

7
either +1,

−1 or 0. The case 𝑎
10

= 𝑎
9
= 𝑎
4
= 𝑎
3
= 𝑎
5
= 𝑎
1
= 𝑎
2
=

𝑎
6

= 0 and 𝑎
7

̸= 0, no further simplifications are possible.
The last remaining case occurs when 𝑎

10
= 𝑎
9

= 𝑎
4

=

𝑎
3
= 𝑎
5
= 𝑎
1
= 𝑎
2
= 𝑎
4
= 𝑎
6
= 𝑎
7
= 0 and 𝑎

8
̸= 0, for

which our earlier simplifications were unnecessary. Hence,
the only remaining vectors are the multiples of k

8
, on which

the adjoint representation acts trivially.

6. Approximately Differential Invariants for
the Perturbed Harry Dym Equation

In this section, we compute some approximately differential
invariants of the perturbedHarry Dym equation with respect
to the optimal system.Consider the operator k2. To determine
the independent invariants 𝐼, we need to solve the first-order
partial differential equation:

(𝜀

𝜕

𝜕𝑡

+ 𝑎𝜀𝑥

𝜕

𝜕𝑥

+ 𝑎𝜀𝑢

𝜕

𝜕𝑢

) (𝐼 (𝑥, 𝑡, 𝑢)) = 0; (53)

that is,

𝜀

𝜕𝐼

𝜕𝑡

+ 𝑎𝜀𝑥

𝜕𝐼

𝜕𝑥

+ 𝑎𝜀𝑢

𝜕𝐼

𝜕𝑢

= 0, (54)

which is a first-order homogeneous PDE.The solution can be
found by integrating the corresponding characteristic system
of ordinary differential equation, which is

𝑑𝑥

𝑎𝜀𝑥

=

𝑑𝑡

𝜀

=

𝑑𝑢

𝑎𝜀𝑢

. (55)

Table 3: Approximately differential invariants for the perturbed
Harry Dym equation.

Operator Approximate differential invariants
k
1

𝑡, 𝑢

k
2

𝑥, 𝑢

k
3

𝑡,

𝑢

𝑥

k
4

𝑥, 𝑢𝑡
1/3

k
5

𝑡,

𝑢

𝑥
2

k
7
+ 𝑎k
8

−

ln𝑥
𝑎

+ 𝑡,

𝑢

𝑥

k
6
+ k
8

𝑡,

𝑢

𝑥 + 1

k
6
− k
7
+ k
8

ln(𝑥 + 1) + 𝑡,

𝑢

𝑥 + 1

k
6
+ k
7
+ k
8

− ln(𝑥 + 1) + 𝑡,

𝑢

𝑥 + 1

k
2
+ 𝑎k
8

−

ln𝑥
𝑎𝜀

+ 𝑡,

𝑢

𝑥

k
2
− k
6
+ 𝑎k
8

−

ln(𝑎𝑥 − 1)

𝑎𝜀

+ 𝑡,

𝑢

𝑎𝑥 − 1

k
2
+ k
6
+ 𝑎k
8

−

ln(𝑎𝑥 + 1)

𝑎𝜀

+ 𝑡,

𝑢

𝑎𝑥 + 1

k
1
+ 𝑎k
2
+ 𝑏k
7

−𝑏𝜀𝑥 − 𝑎𝜀 + 𝑡, 𝑢

𝑎k
1
+ 𝑏k
2
+ k
5

+𝑐k
6
+ 𝑑k
7

−𝑑𝜀 − 𝑏

√𝑐𝜀 + 𝑎

arctan( 𝑥

√𝑐𝜀 + 𝑎

) + 𝑡,

𝑢

𝑥
2
+ 𝑐𝜀 + 𝑎

Hence, the independent approximately differential invariants
are as follows:

𝑦 =

𝑢

𝑥

, V =
ln𝑥 − 𝑎𝑡

𝑎

. (56)

In this manner, we investigate some independent approx-
imately differential invariants with respect to the optimal
system which are listed in Table 3.

7. Conclusions

In this paper, we investigate the approximate symmetry of the
perturbed Harry Dym equation and discuss the structure of
its Lie algebra. Moreover, we compute optimal system of one-
dimensional approximate Lie algebras of the perturbedHarry
Dym equation and derive some approximately differential
invariants with respect to the generators of Lie algebra and
optimal system.
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