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Abstract. 
The sequence space 
	
		
			
				B
				V
			

			

				𝜎
			

		
	
 was introduced and studied by Mursaleen (1983). In this article we introduce the sequence space 2
	
		
			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 and study some of its properties and inclusion relations.
 

1. Introduction and Preliminaries
Let 
	
		
			

				ℕ
			

		
	
, 
	
		
			

				ℝ
			

		
	
, and 
	
		
			

				ℂ
			

		
	
  be the sets of all natural, real, and complex numbers, respectively. We write 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				
				
				𝑥
				𝜔
				=
				𝑥
				=
			

			

				𝑘
			

			
				
				∶
				𝑥
			

			

				𝑘
			

			
				
				,
				∈
				ℂ
			

		
	
showing the space of all real or complex sequences.
Definition 1. A double sequence of complex numbers is defined as a function 
	
		
			
				𝑥
				∶
				ℕ
				×
				ℕ
				→
				ℂ
			

		
	
. We denote a double sequence as 
	
		
			
				(
				𝑥
			

			
				𝑖
				𝑗
			

			

				)
			

		
	
 where the two subscripts run through the sequence of natural numbers independent of each other [1]. A number 
	
		
			
				𝑎
				∈
				ℂ
			

		
	
 is called a double limit of a double sequence 
	
		
			
				(
				𝑥
			

			
				𝑖
				𝑗
			

			

				)
			

		
	
 if for every 
	
		
			
				𝜖
				>
				0
			

		
	
 there exists some 
	
		
			
				𝑁
				=
				𝑁
				(
				𝜖
				)
				∈
				ℕ
			

		
	
 such that 
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				|
				|
				
				𝑥
			

			
				𝑖
				𝑗
			

			
				
				|
				|
				−
				𝑎
				<
				𝜖
				,
				∀
				𝑖
				,
				𝑗
				≥
				𝑁
				,
			

		
	
(see  [2]).
Let 
	
		
			

				𝑙
			

			

				∞
			

		
	
 and 
	
		
			

				𝑐
			

		
	
 denote the Banach spaces of bounded and convergent sequences, respectively, with norm 
	
		
			
				‖
				𝑥
				‖
			

			

				∞
			

			
				=
				s
				u
				p
			

			

				𝑘
			

			
				|
				𝑥
			

			

				𝑘
			

			

				|
			

		
	
. Let 
	
		
			

				𝑣
			

		
	
 denote the space of sequences of bounded variation; that is, 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				
				𝑥
				𝑣
				=
				𝑥
				=
			

			

				𝑘
			

			
				
				∶
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				|
				|
				𝑥
			

			

				𝑘
			

			
				−
				𝑥
			

			
				𝑘
				−
				1
			

			
				|
				|
				<
				∞
				,
				𝑥
			

			
				−
				1
			

			
				
				,
				=
				0
			

		
	

					where 
	
		
			

				𝑣
			

		
	
is a Banach space normed by 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				‖
				𝑥
				‖
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				|
				|
				𝑥
			

			

				𝑘
			

			
				−
				𝑥
			

			
				𝑘
				−
				1
			

			
				|
				|
				,
			

		
	
(see  [3]).
Definition 2. Let 
	
		
			

				𝜎
			

		
	
 be a mapping of the set of the positive integers into itself having no finite orbits. A continuous linear functional 
	
		
			

				𝜙
			

		
	
 on 
	
		
			

				𝑙
			

			

				∞
			

		
	
 is said to be an invariant mean or 
	
		
			

				𝜎
			

		
	
-mean if and only if(i)
	
		
			
				𝜙
				(
				𝑥
				)
				≥
				0
			

		
	
 when the sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
 has 
	
		
			

				𝑥
			

			

				𝑘
			

			
				≥
				0
			

		
	
 for all 
	
		
			

				𝑘
			

		
	
;(ii)
	
		
			
				𝜙
				(
				𝑒
				)
				=
				1
			

		
	
, where 
	
		
			
				𝑒
				=
				{
				1
				,
				1
				,
				1
				,
				…
				}
			

		
	
;(iii)
	
		
			
				𝜙
				(
				𝑥
			

			
				𝜎
				(
				𝑛
				)
			

			
				)
				=
				𝜙
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑙
			

			

				∞
			

		
	
.
In case 
	
		
			

				𝜎
			

		
	
 is the translation mapping 
	
		
			
				𝑛
				→
				𝑛
				+
				1
			

		
	
, a 
	
		
			

				𝜎
			

		
	
-mean is often called a Banach limit (see [4]), and 
	
		
			

				𝑉
			

			

				𝜎
			

		
	
, the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences (see [5]).
If 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
, then 
	
		
			
				𝑇
				𝑥
				=
				(
				𝑇
				𝑥
			

			

				𝑘
			

			
				)
				=
				(
				𝑥
			

			
				𝜎
				(
				𝑘
				)
			

			

				)
			

		
	
. Then it can be shown that
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝜎
			

			
				=
				
				
				𝑥
				𝑥
				=
			

			

				𝑘
			

			
				
				∶
			

			

				∞
			

			

				
			

			
				𝑚
				=
				1
			

			

				𝑡
			

			
				𝑚
				,
				𝑘
			

			
				
				,
				(
				𝑥
				)
				=
				𝐿
				u
				n
				i
				f
				o
				r
				m
				l
				y
				i
				n
				𝑘
				,
				𝐿
				=
				𝜎
				−
				l
				i
				m
				𝑥
			

		
	

					where 
	
		
			
				𝑚
				≥
				0
			

		
	
, 
	
		
			
				𝑘
				>
				0
			

		
	
. Consider
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑡
			

			
				𝑚
				,
				𝑘
			

			
				𝑥
				(
				𝑥
				)
				=
			

			

				𝑘
			

			
				+
				𝑥
			

			
				𝜎
				(
				𝑘
				)
			

			
				+
				⋯
				+
				𝑥
			

			

				𝜎
			

			

				𝑚
			

			
				(
				𝑘
				)
			

			
				
			
			
				𝑚
				+
				1
				,
				𝑡
			

			
				−
				1
				,
				𝑘
			

			
				=
				0
				,
			

		
	

					where 
	
		
			

				𝜎
			

			

				𝑚
			

			
				(
				𝑘
				)
			

		
	
 denote the 
	
		
			

				𝑚
			

		
	
th iterate of 
	
		
			
				𝜎
				(
				𝑘
				)
			

		
	
 at 
	
		
			

				𝑘
			

		
	
. The special case of (5) in which 
	
		
			
				𝜎
				(
				𝑛
				)
				=
				𝑛
				+
				1
			

		
	
 was given by Lorentz [5, Theorem 1], and that the general result can be proved in a similar way. It is familiar that a Banach limit extends the limit functional on 
	
		
			

				𝑐
			

		
	
. 
Theorem 3.  A 
	
		
			

				𝜎
			

		
	
-mean extends the limit functional on 
	
		
			

				𝑐
			

		
	
 in the sense that 
	
		
			
				𝜙
				(
				𝑥
				)
				=
				l
				i
				m
				𝑥
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑐
			

		
	
 if and only if 
	
		
			

				𝜎
			

		
	
 has no finite orbits; that is to say, if and only if, for all 
	
		
			
				𝑘
				≥
				0
			

		
	
, 
	
		
			
				𝑗
				≥
				1
			

		
	
, (see [3]) 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝜎
			

			

				𝑗
			

			
				(
				𝑘
				)
				≠
				𝑘
				.
			

		
	

						Put 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑚
				,
				𝑘
			

			
				(
				𝑥
				)
				=
				𝑡
			

			
				𝑚
				,
				𝑘
			

			
				(
				𝑥
				)
				−
				𝑡
			

			
				𝑚
				−
				1
				,
				𝑘
			

			
				(
				𝑥
				)
				,
			

		
	

						assuming that 
	
		
			

				𝑡
			

			
				−
				1
				,
				𝑘
			

			
				=
				0
			

		
	
. A straight forward calculation shows (see [6]) that 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑚
				,
				𝑘
			

			
				(
				⎧
				⎪
				⎨
				⎪
				⎩
				1
				𝑥
				)
				=
			

			
				
			
			
				𝑚
				(
				𝑚
				+
				1
				)
			

			

				𝑚
			

			

				∑
			

			
				𝑗
				=
				1
			

			
				𝐽
				
				𝑥
			

			

				𝜎
			

			

				𝑗
			

			
				(
				𝑘
				)
			

			
				−
				𝑥
			

			

				𝜎
			

			
				𝑗
				−
				1
			

			
				(
				𝑘
				)
			

			
				
				(
				𝑥
				𝑚
				≥
				1
				)
				,
			

			

				𝑘
			

			
				,
				(
				𝑚
				=
				0
				)
				.
			

		
	

For any sequence 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝑦
			

		
	
, and scalar 
	
		
			

				𝜆
			

		
	
, we have
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑚
				,
				𝑘
			

			
				(
				𝑥
				+
				𝑦
				)
				=
				𝜙
			

			
				𝑚
				,
				𝑘
			

			
				(
				𝑥
				)
				+
				𝜙
			

			
				𝑚
				,
				𝑘
			

			
				𝜙
				(
				𝑦
				)
				,
			

			
				𝑚
				,
				𝑘
			

			
				(
				𝜆
				𝑥
				)
				=
				𝜆
				𝜙
			

			
				𝑚
				,
				𝑘
			

			
				(
				𝑥
				)
				.
			

		
	

Definition 4. A sequence 
	
		
			
				𝑥
				∈
				𝑙
			

			

				∞
			

		
	
 is of 
	
		
			

				𝜎
			

		
	
-bounded variation if and only if (i)
	
		
			

				∑
			

			
				∞
				𝑘
				=
				0
			

			
				|
				𝜙
			

			
				𝑚
				,
				𝑘
			

			
				(
				𝑥
				)
				|
			

		
	
 converges uniformly in 
	
		
			

				𝑛
			

		
	
;(ii)
	
		
			
				l
				i
				m
			

			
				𝑚
				→
				∞
			

			

				𝑡
			

			
				𝑚
				,
				𝑘
			

			
				(
				𝑥
				)
			

		
	
, which must exist, should take the same value for all 
	
		
			

				𝑘
			

		
	
.
We denote by 
	
		
			
				B
				V
			

			

				𝜎
			

		
	
, the space of all sequences of 
	
		
			

				𝜎
			

		
	
-bounded variation (see [7]): 
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				B
				V
			

			

				𝜎
			

			
				=
				
				𝑥
				∈
				𝑙
			

			

				∞
			

			
				∶
				
			

			

				𝑚
			

			
				|
				|
				𝜙
			

			
				𝑚
				,
				𝑘
			

			
				|
				|
				
				.
				(
				𝑥
				)
				<
				∞
				,
				u
				n
				i
				f
				o
				r
				m
				l
				y
				i
				n
				𝑛
			

		
	

Theorem 5.  
	
		
			
				B
				V
			

			

				𝜎
			

		
	
 is a Banach space normed by 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				‖
				𝑥
				‖
				=
				s
				u
				p
			

			
				𝑘
				∞
			

			

				
			

			
				𝑚
				=
				0
			

			
				|
				|
				𝜙
			

			
				𝑚
				,
				𝑘
			

			
				|
				|
				,
				(
				𝑥
				)
			

		
	
 (see [8]). 
Subsequently, invariant means have been studied by Ahmad and Mursaleen [9], Mursaleen et al. [3, 6, 8, 10–14], Raimi [15], Schaefer  [16], Savas and Rhoades [17], Vakeel et al. [18–20], and many others [21–23]. For the first time, I-convergence was studied by Kostyrko et al. [24]. Later on, it was studied by Šalát et al. [25, 26], Tripathy and Hazarika [27], Ebadullah et al. [18–20, 28], and Vakeel et al. [1, 29].
Definition 6 (see [30, 31]). Let 
	
		
			

				𝑋
			

		
	
 be a nonempty set. Then, a family of sets 
	
		
			
				𝐼
				⊆
				2
			

			

				𝑋
			

		
	
 (
	
		
			

				2
			

			

				𝑋
			

		
	
 denoting the power set of 
	
		
			

				𝑋
			

		
	
) is said to be an ideal in 
	
		
			

				𝑋
			

		
	
 if(i)
	
		
			
				∅
				∈
				𝐼
			

		
	
;(ii)
	
		
			

				𝐼
			

		
	
 is additive; that is, 
	
		
			
				𝐴
				,
				𝐵
				∈
				𝐼
				⇒
				𝐴
				∪
				𝐵
				∈
				𝐼
			

		
	
;(iii)
	
		
			

				𝐼
			

		
	
 is hereditary that is, 
	
		
			
				𝐴
				∈
				𝐼
			

		
	
, 
	
		
			
				𝐵
				⊆
				𝐴
				⇒
				𝐵
				∈
				𝐼
			

		
	
;
An Ideal 
	
		
			
				𝐼
				⊆
				2
			

			

				𝑋
			

		
	
 is called nontrivial if 
	
		
			
				𝐼
				≠
				2
			

			

				𝑋
			

		
	
. A non-trivial ideal 
	
		
			
				𝐼
				⊆
				2
			

			

				𝑋
			

		
	
 is called admissible if 
	
		
			
				{
				{
				𝑥
				}
				∶
				𝑥
				∈
				𝑋
				}
				⊆
				𝐼
			

		
	
.
A non-trivial ideal 
	
		
			

				𝐼
			

		
	
 is maximal if there cannot exist any non-trivial ideal 
	
		
			
				𝐽
				≠
				𝐼
			

		
	
 containing 
	
		
			

				𝐼
			

		
	
 as a subset.
For each ideal 
	
		
			

				𝐼
			

		
	
, there is a filter 
	
		
			
				£
				(
				𝐼
				)
			

		
	
 corresponding to 
	
		
			

				𝐼
			

		
	
. That is, 
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				£
				(
				𝐼
				)
				=
				{
				𝐾
				⊆
				𝑁
				∶
				𝐾
			

			

				𝑐
			

			
				∈
				𝐼
				}
				,
				w
				h
				e
				r
				e
				𝐾
			

			

				𝑐
			

			
				=
				𝑁
				−
				𝐾
				.
			

		
	

Definition 7 (see [24, 31, 32]). A double sequence 
	
		
			
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
				𝜔
			

		
	
 is said to be 
	
		
			

				𝐼
			

		
	
-convergent to a number 
	
		
			

				𝐿
			

		
	
 if for every 
	
		
			
				𝜖
				>
				0
			

		
	
, 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				|
				|
				𝑥
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑖
				𝑗
			

			
				|
				|
				
				−
				𝐿
				≥
				𝜖
				∈
				𝐼
				.
			

		
	

						In this case, we write 
	
		
			
				𝐼
				−
				l
				i
				m
				𝑥
			

			
				𝑖
				𝑗
			

			
				=
				𝐿
			

		
	
.
Definition 8 (see [2]). A double sequence 
	
		
			
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
				𝜔
			

		
	
 is said to be 
	
		
			

				𝐼
			

		
	
-null if 
	
		
			
				𝐿
				=
				0
			

		
	
.  In this case, we write
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝐼
				−
				l
				i
				m
				𝑥
			

			
				𝑖
				𝑗
			

			
				=
				0
				.
			

		
	

Definition 9. A double sequence 
	
		
			
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
				𝜔
			

		
	
 is said to be 
	
		
			

				𝐼
			

		
	
-cauchy if for every 
	
		
			
				𝜖
				>
				0
			

		
	
 there exist numbers 
	
		
			
				𝑚
				=
				𝑚
				(
				𝜖
				)
			

		
	
, 
	
		
			
				𝑛
				=
				𝑛
				(
				𝜖
				)
			

		
	
 such that 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				|
				|
				𝑥
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑖
				𝑗
			

			
				−
				𝑥
			

			
				𝑚
				𝑛
			

			
				|
				|
				
				≥
				𝜖
				∈
				𝐼
				.
			

		
	

Definition 10. A double sequence 
	
		
			
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
				𝜔
			

		
	
 is said to be 
	
		
			

				𝐼
			

		
	
-bounded if there exists 
	
		
			
				𝑀
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				|
				|
				𝑥
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑖
				𝑗
			

			
				|
				|
				
				.
				>
				𝑀
			

		
	

Definition 11. A double-sequence space 
	
		
			

				𝐸
			

		
	
 is said to be solid or normal if 
	
		
			
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
				𝐸
			

		
	
 implies 
	
		
			
				(
				𝛼
			

			
				𝑖
				𝑗
			

			

				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
				𝐸
			

		
	
 for all sequence of scalars 
	
		
			
				(
				𝛼
			

			
				𝑖
				𝑗
			

			

				)
			

		
	
 with 
	
		
			
				|
				𝛼
			

			
				𝑖
				𝑗
			

			
				|
				<
				1
			

		
	
 for all 
	
		
			
				𝑖
				,
				𝑗
				∈
				ℕ
			

		
	
.
Definition 12 (see [24, 33]). A nonempty family of sets 
	
		
			
				£
				(
				𝐼
				)
				⊆
				2
			

			

				𝑋
			

		
	
 is said to be filter on 
	
		
			

				𝑋
			

		
	
 if and only if(i)
	
		
			
				Φ
				∉
				£
				(
				𝐼
				)
			

		
	
;(ii)for 
	
		
			
				𝐴
				,
				𝐵
				∈
				£
				(
				𝐼
				)
			

		
	
, we have 
	
		
			
				𝐴
				∩
				𝐵
				∈
				£
				(
				𝐼
				)
			

		
	
;(iii)for each 
	
		
			
				𝐴
				∈
				£
				(
				𝐼
				)
			

		
	
 and 
	
		
			
				𝐴
				⊆
				𝐵
			

		
	
 implies 
	
		
			
				𝐵
				∈
				£
				(
				𝐼
				)
			

		
	
.
Definition 13. Let 
	
		
			

				𝑋
			

		
	
 be a linear space. A function 
	
		
			
				𝑔
				∶
				𝑋
				→
				𝑅
			

		
	
 is called a paranorm, if for all 
	
		
			
				𝑥
				,
				𝑦
				,
				𝑧
				∈
				𝑋
			

		
	
,(i)
	
		
			
				𝑔
				(
				𝑥
				)
				=
				0
			

		
	
 if 
	
		
			
				𝑥
				=
				𝜃
			

		
	
;(ii)
	
		
			
				𝑔
				(
				−
				𝑥
				)
				=
				𝑔
				(
				𝑥
				)
			

		
	
;
								(iii)
	
		
			
				𝑔
				(
				𝑥
				+
				𝑦
				)
				≤
				𝑔
				(
				𝑥
				)
				+
				𝑔
				(
				𝑦
				)
			

		
	
;
								(iv)if 
	
		
			
				(
				𝜆
			

			

				𝑛
			

			

				)
			

		
	
 is a sequence of scalars with 
	
		
			

				𝜆
			

			

				𝑛
			

			
				→
				𝜆
				(
				𝑛
				→
				∞
				)
			

		
	
  and 
	
		
			

				𝑥
			

			

				𝑛
			

			
				,
				𝑎
				∈
				𝑋
			

		
	
 with 
	
		
			

				𝑥
			

			

				𝑛
			

			
				→
				𝑎
				(
				𝑛
				→
				∞
				)
			

		
	
, in the sense that 
	
		
			
				𝑔
				(
				𝑥
			

			

				𝑛
			

			
				−
				𝑎
				)
				→
				0
				(
				𝑛
				→
				∞
				)
			

		
	
, in the sense that 
	
		
			
				𝑔
				(
				𝜆
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝜆
				𝑎
				)
				→
				0
				(
				𝑛
				→
				∞
				)
			

		
	
.

				 The concept of paranorm is closely related to that of linear metric spaces. It is a generalization of that of absolute value (see [34, 35]).
2. Main Results
In this paper, we introduce the sequence space
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			
				
				
				𝑥
				∶
				=
				𝑥
				=
			

			
				𝑖
				𝑗
			

			
				
				
				|
				|
				𝜙
				∈
				𝜔
				∶
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				𝑖
				𝑗
			

			
				|
				|
				
				
				.
				(
				𝑥
				)
				−
				𝐿
				≥
				𝜖
				∈
				𝐼
				f
				o
				r
				s
				o
				m
				e
				𝐿
				∈
				ℂ
			

		
	

Theorem 14.  
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 is a linear space.
 Proof. Let 
	
		
			
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				,
				(
				𝑦
			

			
				𝑖
				𝑗
			

			
				)
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 and 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝛽
			

		
	
 be two scalars in 
	
		
			

				ℂ
			

		
	
. Then for a given 
	
		
			
				𝜖
				>
				0
			

		
	
, we have 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				−
				𝐿
			

			

				1
			

			
				|
				|
				≥
				𝜖
			

			
				
			
			
				2
				
				∈
				𝐼
				,
				f
				o
				r
				s
				o
				m
				e
				𝐿
			

			

				1
			

			
				
				|
				|
				𝜙
				∈
				ℂ
				,
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑦
				)
				−
				𝐿
			

			

				2
			

			
				|
				|
				≥
				𝜖
			

			
				
			
			
				2
				
				∈
				𝐼
				,
				f
				o
				r
				s
				o
				m
				e
				𝐿
			

			

				2
			

			
				∈
				ℂ
				.
			

		
	

						Now let, 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝐴
			

			

				1
			

			
				=
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				−
				𝐿
			

			

				1
			

			
				|
				|
				<
				𝜖
			

			
				
			
			
				2
				
				∈
				𝐼
				,
				f
				o
				r
				s
				o
				m
				e
				𝐿
			

			

				1
			

			
				𝐴
				∈
				ℂ
				,
			

			

				2
			

			
				=
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑦
				)
				−
				𝐿
			

			

				2
			

			
				|
				|
				<
				𝜖
			

			
				
			
			
				2
				
				∈
				𝐼
				,
				f
				o
				r
				s
				o
				m
				e
				𝐿
			

			

				2
			

			
				∈
				ℂ
			

		
	

						be such that 
	
		
			

				𝐴
			

			
				𝑐
				1
			

			
				,
				𝐴
			

			
				𝑐
				2
			

			
				∈
				𝐼
			

		
	
. Now consider
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				|
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				(
				𝛼
				𝑥
				+
				𝛽
				𝑦
				)
				−
				𝛼
				𝐿
			

			

				1
			

			
				+
				𝛽
				𝐿
			

			

				2
			

			
				
				|
				|
				=
				|
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝛼
				𝑥
				)
				+
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝛽
				𝑦
				)
				−
				𝛼
				𝐿
			

			

				1
			

			
				−
				𝛽
				𝐿
			

			

				2
			

			
				|
				|
				=
				|
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝛼
				𝑥
				)
				−
				𝛼
				𝐿
			

			

				1
			

			
				+
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝛽
				𝑦
				)
				−
				𝛽
				𝐿
			

			

				2
			

			
				|
				|
				≤
				|
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝛼
				𝑥
				)
				−
				𝛼
				𝐿
			

			

				1
			

			
				|
				|
				+
				|
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝛽
				𝑦
				)
				−
				𝛽
				𝐿
			

			

				2
			

			
				|
				|
				|
				|
				𝜙
				=
				|
				𝛼
				|
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				−
				𝐿
			

			

				1
			

			
				|
				|
				+
				|
				|
				𝛽
				|
				|
				|
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑦
				)
				−
				𝐿
			

			

				2
			

			
				|
				|
				𝜖
				≤
				|
				𝛼
				|
			

			
				
			
			
				2
				+
				|
				|
				𝛽
				|
				|
				𝜖
			

			
				
			
			
				2
				=
				
				|
				|
				𝛽
				|
				|
				
				𝜖
				|
				𝛼
				|
				+
			

			
				
			
			
				2
				≤
				𝜖
			

			

				
			

			
				(
				s
				a
				y
				)
				,
			

		
	

						this implies that the sequence space 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝐴
			

			

				3
			

			
				=
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				(
				𝛼
				𝑥
				+
				𝛽
				𝑦
				)
				−
				𝛼
				𝐿
			

			

				1
			

			
				+
				𝛽
				𝐿
			

			

				2
			

			
				
				|
				|
				<
				𝜖
			

			

				
			

			
				
				∈
				𝐼
				,
				f
				o
				r
				s
				o
				m
				e
				𝐿
			

			

				1
			

			
				,
				𝐿
			

			

				2
			

			
				∈
				ℂ
				.
			

		
	

						Hence, 
	
		
			
				(
				𝛼
				𝑥
				+
				𝛽
				𝑦
				)
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
. Therefore, 
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 is a linear space.
Theorem 15.  The space 
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 is a paranormed space, paranormed by 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝑔
				
				𝑥
			

			
				𝑖
				𝑗
			

			
				
				=
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				.
				(
				𝑥
				)
			

		
	

Proof. For 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				=
				0
			

		
	
, 
	
		
			
				𝑔
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				=
				0
			

		
	
 is trivial.For 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				≠
				0
			

		
	
, 
	
		
			
				𝑔
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				≠
				0
			

		
	
, we have(i)
	
		
			
				𝑔
				(
				𝑥
				)
				=
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				|
				≥
			

		
	
 0 for all 
	
		
			
				𝑥
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
.(ii)
	
		
			
				𝑔
				(
				−
				𝑥
				)
				=
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				−
				𝑥
				)
				|
				=
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				−
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				|
				=
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				|
				=
				𝑔
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
.(iii)
	
		
			
				𝑔
				(
				𝑥
				+
				𝑦
				)
				=
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				+
				𝑦
				)
				|
				≤
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				|
				+
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑦
				)
				|
				=
				𝑔
				(
				𝑥
				)
				+
				𝑔
				(
				𝑦
				)
			

		
	
.(iv)Let 
	
		
			
				(
				𝜆
			

			
				𝑖
				𝑗
			

			

				)
			

		
	
 be a sequence of scalars with 
	
		
			

				𝜆
			

			
				𝑖
				𝑗
			

			
				→
				𝜆
				(
				𝑖
				𝑗
				→
				∞
				)
			

		
	
  and 
	
		
			
				(
				𝑥
				)
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 such that 
										
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				→
				𝐿
				(
				𝑖
				𝑗
				→
				∞
				)
				,
			

		
	
in the sense that 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝑔
				
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				(
				𝑥
				)
				−
				𝐿
				→
				0
				(
				𝑖
				𝑗
				→
				∞
				)
				.
			

		
	

						Therefore, 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝑔
				
				𝜆
			

			
				𝑖
				𝑗
			

			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				
				𝜆
				(
				𝑥
				)
				−
				𝜆
				𝐿
				≤
				𝑔
			

			
				𝑖
				𝑗
			

			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				(
				𝑥
				)
				−
				𝑔
				(
				𝜆
				𝐿
				)
				=
				𝜆
			

			
				𝑖
				𝑗
			

			
				𝑔
				
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				(
				𝑥
				)
				−
				𝜆
				𝑔
				(
				𝐿
				)
				→
				0
				a
				s
				(
				𝑖
				𝑗
				→
				∞
				)
				.
			

		
	

						Hence,   
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 is a paranormed space.
Theorem 16.  
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 is a closed subspace of 
	
		
			

				2
			

			

				𝑙
			

			
				𝐼
				∞
			

		
	
.
 Proof. Let 
	
		
			
				(
				𝑥
			

			
				(
				𝑝
				𝑞
				)
				𝑖
				𝑗
			

			

				)
			

		
	
 be a cauchy sequence in 
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 such that 
	
		
			

				𝑥
			

			
				(
				𝑝
				𝑞
				)
			

			
				→
				𝑥
			

		
	
. We show that 
	
		
			
				𝑥
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
. Since 
	
		
			
				(
				𝑥
			

			
				(
				𝑝
				𝑞
				)
				𝑖
				𝑗
			

			
				)
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
, then there exists 
	
		
			

				𝑎
			

			
				𝑝
				𝑞
			

		
	
 such that 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
				𝑞
				)
			

			
				
				−
				𝑎
			

			
				𝑝
				𝑞
			

			
				|
				|
				
				≥
				𝜖
				∈
				𝐼
				.
			

		
	
We need to show that (i)
	
		
			
				(
				𝑎
			

			
				𝑝
				𝑞
			

			

				)
			

		
	
 converges to 
	
		
			

				𝑎
			

		
	
.(ii)If 
	
		
			
				𝑈
				=
				{
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
				|
				𝑥
			

			
				𝑖
				𝑗
			

			
				−
				𝑎
				|
				<
				𝜖
				}
			

		
	
, then 
	
		
			

				𝑈
			

			

				𝑐
			

			
				∈
				𝐼
			

		
	
.Since 
	
		
			
				(
				𝑥
			

			
				(
				𝑝
				𝑞
				)
				𝑖
				𝑗
			

			

				)
			

		
	
 is a cauchy sequence in 
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
, then for a given 
	
		
			
				𝜖
				>
				0
			

		
	
, there exists 
	
		
			

				𝑘
			

			

				0
			

			
				∈
				ℕ
			

		
	
 such that 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				|
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
				𝑞
				)
				𝑖
				𝑗
			

			
				
				−
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑟
				𝑠
				)
				𝑖
				𝑗
			

			
				
				|
				|
				|
				<
				𝜖
			

			
				
			
			
				3
				,
				∀
				𝑝
				,
				𝑞
				,
				𝑟
				,
				𝑠
				≥
				𝑘
			

			

				0
			

			

				.
			

		
	
For a given 
	
		
			
				𝜖
				>
				0
			

		
	
, we have 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑝
				𝑞
				𝑟
				𝑠
			

			
				=
				
				|
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
				𝑞
				)
				𝑖
				𝑗
			

			
				
				−
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑟
				𝑠
				)
				𝑖
				𝑗
			

			
				
				|
				|
				|
				<
				𝜖
			

			
				
			
			
				3
				
				,
				𝐵
			

			
				𝑝
				𝑞
			

			
				=
				
				|
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
				𝑞
				)
				𝑖
				𝑗
			

			
				
				−
				𝑎
			

			
				𝑝
				𝑞
			

			
				|
				|
				|
				<
				𝜖
			

			
				
			
			
				3
				
				,
				𝐵
			

			
				𝑟
				𝑠
			

			
				=
				
				|
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑟
				𝑠
				)
				𝑖
				𝑗
			

			
				
				−
				𝑎
			

			
				𝑟
				𝑠
			

			
				|
				|
				|
				<
				𝜖
			

			
				
			
			
				3
				
				.
			

		
	

						Then 
	
		
			

				𝐵
			

			
				𝑐
				𝑝
				𝑞
				𝑟
				𝑠
			

			
				,
				𝐵
			

			
				𝑐
				𝑝
				𝑞
			

		
	
, and 
	
		
			

				𝐵
			

			
				𝑐
				𝑟
				𝑠
			

			
				∈
				𝐼
			

		
	
. Let 
	
		
			

				𝐵
			

			

				𝑐
			

			
				=
				𝐵
			

			
				𝑐
				𝑝
				𝑞
				𝑟
				𝑠
			

			
				∩
				𝐵
			

			
				𝑐
				𝑝
				𝑞
			

			
				∩
				𝐵
			

			
				𝑐
				𝑟
				𝑠
			

			

				,
			

		
	
where 
	
		
			
				𝐵
				=
				{
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
				|
				𝑎
			

			
				𝑝
				𝑞
			

			
				−
				𝑎
			

			
				𝑟
				𝑠
			

			
				|
				<
				𝜖
				}
			

		
	
. Then 
	
		
			

				𝐵
			

			

				𝑐
			

			
				∈
				𝐼
			

		
	
. We choose 
	
		
			

				𝑘
			

			

				0
			

			
				∈
				𝐵
			

			

				𝑐
			

		
	
, then for each 
	
		
			
				𝑝
				,
				𝑞
				,
				𝑟
				,
				𝑠
				≥
				𝑘
			

			

				0
			

		
	
, we have 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				
				|
				|
				𝑎
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑝
				𝑞
			

			
				−
				𝑎
			

			
				𝑟
				𝑠
			

			
				|
				|
				
				⊇
				
				|
				|
				|
				𝜙
				<
				𝜖
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
				𝑞
				)
				𝑖
				𝑗
			

			
				
				−
				𝑎
			

			
				𝑝
				𝑞
			

			
				|
				|
				|
				<
				𝜖
			

			
				
			
			
				3
				
				∩
				
				|
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
				𝑞
				)
				𝑖
				𝑗
			

			
				
				−
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑟
				𝑠
				)
				𝑖
				𝑗
			

			
				
				|
				|
				|
				<
				𝜖
			

			
				
			
			
				3
				
				∩
				
				|
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑟
				𝑠
				)
				𝑖
				𝑗
			

			
				
				−
				𝑎
			

			
				𝑟
				𝑠
			

			
				|
				|
				|
				<
				𝜖
			

			
				
			
			
				3
				
				.
			

		
	

						Then 
	
		
			
				(
				𝑎
			

			
				𝑝
				𝑞
			

			

				)
			

		
	
 is a cauchy sequence of scalars in 
	
		
			

				ℂ
			

		
	
, so there exists a scalar 
	
		
			
				𝑎
				∈
				ℂ
			

		
	
  such that 
	
		
			
				(
				𝑎
			

			
				𝑝
				𝑞
			

			
				)
				→
				𝑎
			

		
	
, as 
	
		
			
				𝑝
				,
				𝑞
				→
				∞
			

		
	
.For the next step, let 
	
		
			
				0
				<
				𝛿
				<
				1
			

		
	
 be given. Then, we show that if 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				
				|
				|
				𝜙
				𝑈
				=
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				
				,
				(
				𝑥
				)
				−
				𝑎
				<
				𝛿
			

		
	

						then 
	
		
			

				𝑈
			

			

				𝑐
			

			
				∈
				𝐼
			

		
	
. Since 
	
		
			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
			

			
				(
				𝑝
				𝑞
				)
			

			
				)
				→
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
			

		
	
, then there exists 
	
		
			

				𝑝
			

			

				0
			

			
				,
				𝑞
			

			

				0
			

			
				∈
				ℕ
			

		
	
 such that 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				
				|
				|
				|
				𝜙
				𝑃
				=
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				)
				𝑖
				𝑗
			

			
				
				−
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				|
				<
				𝛿
				(
				𝑥
				)
			

			
				
			
			
				3
				
			

		
	

						which implies that 
	
		
			

				𝑃
			

			

				𝑐
			

			
				∈
				𝐼
			

		
	
. The number 
	
		
			

				𝑝
			

			

				0
			

		
	
,  
	
		
			

				𝑞
			

			

				0
			

		
	
 can be so chosen that together with (32), we have
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				|
				|
				𝑎
				𝑄
				=
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			

				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				|
				|
				<
				𝛿
				−
				𝑎
			

			
				
			
			
				3
				
			

		
	

						such that 
	
		
			

				𝑄
			

			

				𝑐
			

			
				∈
				𝐼
			

		
	
. Since 
	
		
			
				{
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
			

			
				(
				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				)
				𝑖
				𝑗
			

			
				)
				−
				𝑎
			

			

				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				|
				≥
				𝛿
				}
				∈
				𝐼
			

		
	
, then we have a subset 
	
		
			

				𝑆
			

		
	
 of 
	
		
			

				ℕ
			

		
	
 such that 
	
		
			

				𝑆
			

			

				𝑐
			

			
				∈
				𝐼
			

		
	
, where 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				
				|
				|
				|
				𝜙
				𝑆
				=
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				)
				𝑖
				𝑗
			

			
				
				−
				𝑎
			

			

				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				|
				|
				|
				<
				𝛿
			

			
				
			
			
				3
				
				.
			

		
	

						Let 
	
		
			

				𝑈
			

			

				𝑐
			

			
				=
				𝑃
			

			

				𝑐
			

			
				∩
				𝑄
			

			

				𝑐
			

			
				∩
				𝑆
			

			

				𝑐
			

		
	
, where 
	
		
			
				𝑈
				=
				{
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				−
				𝑎
				|
				<
				𝛿
				}
				.
			

		
	
Therefore, for each 
	
		
			
				𝑖
				,
				𝑗
				∈
				𝑈
			

			

				𝑐
			

		
	
, we have 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				
				⊇
				
				|
				|
				|
				𝜙
				(
				𝑥
				)
				−
				𝑎
				<
				𝛿
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				)
				𝑖
				𝑗
			

			
				
				−
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				|
				<
				𝛿
				(
				𝑥
				)
			

			
				
			
			
				3
				
				∩
				
				|
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				
				𝑥
			

			
				(
				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				)
				𝑖
				𝑗
			

			
				
				−
				𝑎
			

			

				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				|
				|
				|
				<
				𝛿
			

			
				
			
			
				3
				
				∩
				
				|
				|
				𝑎
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			

				𝑝
			

			

				0
			

			

				𝑞
			

			

				0
			

			
				|
				|
				<
				𝛿
				−
				𝑎
			

			
				
			
			
				3
				
				.
			

		
	

						Hence, the result 
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			

				⊂
			

			

				2
			

			

				𝑙
			

			
				𝐼
				∞
			

		
	
 follows. 
Theorem 17.  The space   
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 is nowhere dense subsets of 
	
		
			

				2
			

			

				𝑙
			

			
				𝐼
				∞
			

		
	
.
Proof. Proof of the result follows from the previous theorem.
Theorem 18.  The space 
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 is solid and monotone.
Proof. Let 
	
		
			
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 and 
	
		
			

				𝛼
			

			
				𝑖
				𝑗
			

		
	
 be a sequence of scalars with 
	
		
			
				|
				𝛼
			

			
				𝑖
				𝑗
			

			
				|
				≤
				1
			

		
	
 for all 
	
		
			
				𝑖
				,
				𝑗
				∈
				ℕ
			

		
	
. Then, we have 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				|
				|
				𝛼
			

			
				𝑖
				𝑗
			

			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				≤
				|
				|
				𝛼
				(
				𝑥
				)
			

			
				𝑖
				𝑗
			

			
				|
				|
				|
				|
				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				≤
				|
				|
				𝜙
				(
				𝑥
				)
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				(
				𝑥
				)
				,
				∀
				𝑖
				,
				𝑗
				∈
				ℕ
				.
			

		
	

						The space   
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 is solid follows from the following inclusion relation:
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				
				⊇
				
				|
				|
				𝛼
				(
				𝑥
				)
				≥
				𝜖
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑖
				𝑗
			

			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				
				.
				(
				𝑥
				)
				≥
				𝜖
			

		
	

						Also a sequence space is solid implies monotone. Hence, the space  
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
is monotone.
Theorem 19.  
	
		
			

				2
			

			

				𝑐
			

			
				𝐼
				0
			

			

				⊂
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			

				⊂
			

			

				2
			

			

				𝑙
			

			
				𝐼
				∞
			

		
	
 and the inclusions are proper.
Proof. Let 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
			

			

				2
			

			

				𝑐
			

			
				𝐼
				0
			

		
	
. Then, we have 
	
		
			
				{
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
				|
				𝑥
			

			
				𝑖
				𝑗
			

			
				|
				≥
				𝜖
				}
				∈
				𝐼
			

		
	
. Since  
	
		
			

				2
			

			

				𝑐
			

			

				0
			

			

				⊂
			

			

				2
			

			
				B
				V
			

			

				𝜎
			

		
	
, 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 implies 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				
				(
				𝑥
				)
				≥
				𝜖
				∈
				𝐼
				.
			

		
	
Now let, 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝐴
			

			

				1
			

			
				=
				
				|
				|
				𝑥
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑖
				𝑗
			

			
				|
				|
				
				,
				𝐴
				<
				𝜖
			

			

				2
			

			
				=
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				
				(
				𝑥
				)
				<
				𝜖
			

		
	

						be such that 
	
		
			

				𝐴
			

			
				𝑐
				1
			

			
				,
				𝐴
			

			
				𝑐
				2
			

			
				∈
				𝐼
			

		
	
. As 
	
		
			

				𝑙
			

			

				∞
			

			
				=
				{
				𝑥
				=
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∶
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				𝑥
			

			
				𝑖
				𝑗
			

			
				|
				<
				∞
				}
			

		
	
, taking supremum over 
	
		
			
				𝑖
				,
				𝑗
			

		
	
 we get 
	
		
			

				𝐴
			

			
				𝑐
				1
			

			
				⊂
				𝐴
			

			
				𝑐
				2
			

		
	
. Hence,  
	
		
			

				2
			

			

				𝑐
			

			
				𝐼
				0
			

			

				⊂
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			

				⊂
			

			

				2
			

			

				𝑙
			

			
				𝐼
				∞
			

		
	
.Next we show that the inclusion is proper(i) First for 
	
		
			

				2
			

			

				𝑐
			

			
				𝐼
				0
			

			

				⊂
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
. Consider 
	
		
			
				𝑥
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
, then by the definition 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			
				
				
				𝑥
				∶
				=
				𝑥
				=
			

			
				𝑖
				𝑗
			

			
				
				
				|
				|
				𝜙
				∈
				𝜔
				∶
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				𝑖
				𝑗
			

			
				|
				|
				
				
				,
				(
				𝑥
				)
				−
				𝐿
				≥
				𝜖
				∈
				𝐼
				f
				o
				r
				s
				o
				m
				e
				𝐿
				∈
				ℂ
			

		
	

						we have
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				=
				𝑡
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				−
				𝑡
			

			
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				,
			

		
	

						where
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝑡
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				𝑥
				(
				𝑥
				)
				=
			

			
				𝑖
				𝑗
			

			
				+
				𝑥
			

			
				𝜎
				(
				𝑖
				𝑗
				)
			

			
				+
				𝑥
			

			

				𝜎
			

			

				2
			

			
				(
				𝑖
				𝑗
				)
			

			
				+
				⋯
				+
				𝑥
			

			

				𝜎
			

			
				𝑚
				𝑛
			

			
				(
				𝑖
				𝑗
				)
			

			
				
			
			
				.
				𝑚
				𝑛
			

		
	

						Therefore, 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑡
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				−
				𝑡
			

			
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
				,
				𝑖
				𝑗
			

			
				=
				𝑥
				(
				𝑥
				)
			

			
				𝑖
				𝑗
			

			
				+
				𝑥
			

			
				𝜎
				(
				𝑖
				𝑗
				)
			

			
				+
				𝑥
			

			

				𝜎
			

			

				2
			

			
				(
				𝑖
				𝑗
				)
			

			
				+
				⋯
				+
				𝑥
			

			

				𝜎
			

			
				𝑚
				𝑛
			

			
				(
				𝑖
				𝑗
				)
			

			
				
			
			
				−
				𝑥
				𝑚
				𝑛
			

			
				𝑖
				𝑗
			

			
				+
				𝑥
			

			
				𝜎
				(
				𝑖
				𝑗
				)
			

			
				+
				𝑥
			

			

				𝜎
			

			

				2
			

			
				(
				𝑖
				𝑗
				)
			

			
				+
				⋯
				+
				𝑥
			

			

				𝜎
			

			
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
			

			
				(
				𝑖
				𝑗
				)
			

			
				
			
			
				(
				=
				
				𝑥
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
			

			
				𝑖
				𝑗
			

			
				+
				𝑥
			

			
				𝜎
				(
				𝑖
				𝑗
				)
			

			
				+
				⋯
				+
				𝑥
			

			

				𝜎
			

			
				𝑚
				𝑛
			

			
				(
				𝑖
				𝑗
				)
			

			

				
			

			
				
			
			
				−
				
				𝑥
				𝑚
				𝑛
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
				𝑚
				𝑛
			

			
				𝑖
				𝑗
			

			
				+
				𝑥
			

			
				𝜎
				(
				𝑖
				𝑗
				)
			

			
				+
				⋯
				+
				𝑥
			

			

				𝜎
			

			
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
			

			
				(
				𝑖
				𝑗
				)
			

			

				
			

			
				
			
			
				.
				𝑚
				𝑛
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
			

		
	

						On solving, we get 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				=
				(
				𝑥
				)
				𝑚
				𝑛
				𝑥
			

			

				𝜎
			

			
				𝑚
				𝑛
			

			
				(
				𝑖
				𝑗
				)
			

			
				
			
			
				+
				
				𝑥
				𝑚
				𝑛
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
				(
				1
				−
				𝑚
				−
				𝑛
				)
			

			
				𝑖
				𝑗
			

			
				+
				𝑥
			

			
				𝜎
				(
				𝑖
				𝑗
				)
			

			
				+
				𝑥
			

			

				𝜎
			

			

				2
			

			
				(
				𝑖
				𝑗
				)
			

			
				+
				⋯
				+
				𝑥
			

			

				𝜎
			

			
				𝑚
				𝑛
			

			
				(
				𝑖
				𝑗
				)
			

			

				
			

			
				
			
			
				.
				𝑚
				𝑛
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
			

		
	

						As 
	
		
			

				𝜎
			

		
	
 is a translation map, that is, 
	
		
			
				𝜎
				(
				𝑛
				)
				=
				𝑛
				+
				1
			

		
	
, we have 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				=
				(
				𝑥
				)
				𝑚
				𝑛
				𝑥
			

			
				(
				𝑖
				+
				𝑚
				)
				(
				𝑗
				+
				𝑛
				)
			

			
				
			
			
				+
				
				𝑥
				𝑚
				𝑛
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
				(
				1
				−
				𝑚
				−
				𝑛
				)
			

			
				𝑖
				𝑗
			

			
				+
				𝑥
			

			
				(
				𝑖
				+
				1
				)
				(
				𝑗
				+
				1
				)
			

			
				+
				⋯
				+
				𝑥
			

			
				(
				𝑖
				+
				𝑚
				)
				(
				𝑗
				+
				𝑛
				)
			

			

				
			

			
				
			
			
				.
				𝑚
				𝑛
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
			

		
	

						Taking 
	
		
			
				l
				i
				m
				𝑖
				,
				𝑗
				→
				∞
			

		
	
, we have 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				(
				𝑖
				,
				𝑗
				)
				→
				∞
			

			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				=
				l
				i
				m
			

			
				(
				𝑖
				,
				𝑗
				)
				→
				∞
			

			
				
				
				𝑚
				𝑛
				𝑥
			

			
				(
				𝑖
				+
				𝑚
				)
				(
				𝑗
				+
				𝑛
				)
			

			
				×
				
				𝑥
				+
				(
				1
				−
				𝑚
				−
				𝑛
				)
			

			
				𝑖
				𝑗
			

			
				+
				𝑥
			

			
				(
				𝑖
				+
				1
				)
				(
				𝑗
				+
				1
				)
			

			
				+
				⋯
				+
				𝑥
			

			
				(
				𝑖
				+
				𝑚
				)
				(
				𝑗
				+
				𝑛
				)
			

			
				
				
				×
				(
				𝑚
				𝑛
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
				)
			

			
				−
				1
			

			
				
				,
				𝐿
				(
				𝑚
				𝑛
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
				)
				=
				l
				i
				m
			

			
				(
				𝑖
				,
				𝑗
				)
				→
				∞
			

			
				
				𝑚
				𝑛
				𝑥
			

			
				(
				𝑖
				+
				𝑚
				)
				(
				𝑗
				+
				𝑛
				)
			

			
				×
				
				𝑥
				+
				(
				1
				−
				𝑚
				−
				𝑛
				)
			

			
				𝑖
				𝑗
			

			
				+
				𝑥
			

			
				(
				𝑖
				+
				1
				)
				(
				𝑗
				+
				1
				)
			

			
				+
				⋯
				+
				𝑥
			

			
				(
				𝑖
				+
				𝑚
				)
				(
				𝑗
				+
				𝑛
				)
			

			
				.
				
				
			

		
	

						Since 
	
		
			
				𝑚
				,
				𝑛
				,
				𝐿
				≠
				0
			

		
	
, therefore 
	
		
			
				l
				i
				m
			

			
				𝑖
				,
				𝑗
				→
				∞
			

			

				𝜙
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				≠
				0
			

		
	
 which implies that 
	
		
			
				𝑥
				∉
				(
			

			

				2
			

			

				𝑐
			

			
				𝐼
				0
			

			

				)
			

		
	
.  Hence, we get that the inclusion is proper.(ii) Second for   
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			

				⊂
			

			

				2
			

			

				𝑙
			

			
				𝐼
				∞
			

		
	
. The result of this part follows from the proof of Theorem 18.
Theorem 20.  
	
		
			

				2
			

			

				𝑐
			

			

				𝐼
			

			

				⊂
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			

				⊂
			

			

				2
			

			

				𝑙
			

			
				𝐼
				∞
			

		
	
 and the inclusions are proper.
Proof. Let 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
			

			

				2
			

			

				𝑐
			

			

				𝐼
			

		
	
. Then, we have 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				
				|
				|
				𝑥
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑖
				𝑗
			

			
				|
				|
				
				−
				𝐿
				≥
				𝜖
				∈
				𝐼
				.
			

		
	

						Since 
	
		
			

				2
			

			
				𝑐
				⊂
			

			

				2
			

			
				B
				V
			

			

				𝜎
			

			

				⊂
			

			

				2
			

			

				𝑙
			

			

				∞
			

		
	
, which implies 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
 implies 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				
				(
				𝑥
				)
				−
				𝐿
				≥
				𝜖
				∈
				𝐼
				.
			

		
	
Now let, 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				𝐵
			

			

				1
			

			
				=
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑖
				,
				𝑗
			

			
				|
				|
				
				,
				𝐵
				−
				𝐿
				<
				𝜖
			

			

				2
			

			
				=
				
				|
				|
				𝜙
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				|
				|
				
				(
				𝑥
				)
				−
				𝐿
				<
				𝜖
			

		
	

						be such that 
	
		
			

				𝐵
			

			
				𝑐
				1
			

			
				,
				𝐵
			

			
				𝑐
				2
			

			
				∈
				𝐼
			

		
	
. As 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				2
			

			

				𝑙
			

			

				∞
			

			
				=
				
				
				𝑥
				𝑥
				=
			

			
				𝑖
				𝑗
			

			
				
				∶
				s
				u
				p
			

			
				𝑖
				𝑗
			

			
				|
				|
				𝑥
			

			
				𝑖
				𝑗
			

			
				|
				|
				
				,
				<
				∞
			

		
	

						taking 
	
		
			
				l
				i
				m
				s
				u
				p
			

		
	
 over 
	
		
			
				𝑖
				,
				𝑗
			

		
	
, we get 
	
		
			

				𝐵
			

			
				𝑐
				1
			

			
				⊂
				𝐵
			

			
				𝑐
				2
			

		
	
. Hence, 
	
		
			

				2
			

			

				𝑐
			

			

				𝐼
			

			

				⊂
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			

				⊂
			

			

				2
			

			

				𝑙
			

			
				𝐼
				∞
			

			

				.
			

		
	
Next, we show that the inclusion is proper(i) First for 
	
		
			

				2
			

			

				𝑐
			

			

				𝐼
			

			

				⊂
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
. We show that 
	
		
			

				2
			

			

				𝑐
			

			

				𝐼
			

			

				⊊
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
.Let 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑖
				𝑗
			

			
				)
				∈
			

			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

		
	
, then by the definition 
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			
				
				
				𝑥
				∶
				=
				𝑥
				=
			

			
				𝑖
				𝑗
			

			
				
				
				|
				|
				𝜙
				∈
				𝜔
				∶
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
			

			
				𝑚
				𝑛
				𝑖
				𝑗
			

			
				|
				|
				
				
				.
				(
				𝑥
				)
				−
				𝐿
				≥
				𝜖
				∈
				𝐼
				f
				o
				r
				s
				o
				m
				e
				𝐿
				∈
				ℂ
			

		
	

						We have, 
	
		
			
				|
				𝜙
			

			
				𝑚
				𝑛
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				−
				𝐿
				|
				≥
				𝜖
			

		
	
. We say that the 
	
		
			
				𝐼
				−
				l
				i
				m
				(
				𝜙
			

			
				𝑚
				𝑛
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				)
				=
				𝐿
			

		
	
.Now considering the case when 
	
		
			
				|
				𝜙
			

			
				𝑚
				𝑛
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				−
				𝐿
				|
				<
				𝜖
			

		
	
, then 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				|
				|
				𝑡
			

			
				𝑚
				𝑛
				,
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				−
				𝑡
			

			
				(
				𝑚
				−
				1
				)
				(
				𝑛
				−
				1
				)
				,
				𝑖
				𝑗
			

			
				|
				|
				(
				𝑥
				)
				−
				𝐿
				<
				𝜖
				,
			

		
	

						when 
	
		
			
				𝑚
				,
				𝑛
				=
				0
			

		
	
, then we have 
	
		
			

				𝜙
			

			
				𝑚
				𝑛
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				=
				𝑡
			

			
				𝑖
				𝑗
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				𝑖
				𝑗
			

		
	
. Therefore we get, 
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑥
			

			
				𝑖
				𝑗
			

			
				|
				|
				−
				𝐿
				<
				𝜖
				∀
				𝑖
				,
				𝑗
				∈
				ℕ
				.
			

		
	

						Hence, 
	
		
			
				𝑥
				∉
			

			

				2
			

			

				𝑐
			

			

				𝐼
			

			
				=
				{
				𝑖
				,
				𝑗
				∈
				ℕ
				∶
				|
				𝑥
			

			
				𝑖
				𝑗
			

			
				−
				𝐿
				|
				≥
				𝜖
				}
				∈
				𝐼
			

		
	
. Hence, the inclusion is proper.(ii) Second for 
	
		
			

				2
			

			
				B
				V
			

			
				𝐼
				𝜎
			

			

				⊂
			

			

				2
			

			

				𝑙
			

			
				𝐼
				∞
			

		
	
. The result follows from the proof of Theorem 18.
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