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Abstract. 
We employ approximate analytical method, namely, Optimal Homotopy Asymptotic Method (OHAM), to investigate a one-dimensional steady advection-diffusion-reaction equation with variable inputs arises in the mathematical modeling of dispersion of pollutants in water is proposed. Numerical values are obtained via Runge-Kutta-Fehlberg fourth-fifth order method for comparison purpose. It was found that OHAM solution agrees well with the numerical solution. An example is included to demonstrate the efficiency, accuracy, and simplicity of the proposed method.
 

1. Introduction
Differential equations have been the focus of many studies due to their frequent appearance in various applications in physics, fluid mechanics, biology, and engineering. Consequently, considerable attention has been given to the solutions of higher order ordinary differential equations, integral equations, and fractional order partial differential equations of physical interest. Number of literatures concerning the application of higher order differential equations in nonlinear dynamics has grown rapidly in the recent years [1–5]. Several numerical and semianalytical methods have been developed for solving high order boundary value problems [6–9].
A mathematical model for the dispersion of pollutants in a river is presented. The optimal homotopy asymptotic method for assessment of the chemical oxygen demand (COD) concentration in a river is considered. Pochai and Tangmanee [10] have provided a mathematical model of water pollution with the help of numerical method. Furthermore, Pochai and coworkers [11–14] have used numerical methods for the solution of hydrodynamic model with constant coefficients in the uniform reservoir and stream.
The optimal homotopy asymptotic method is an approximate analytical tool that is simple and straightforward and does not require the existence of any small or large parameter as does traditional perturbation method. Optimal Homotopy Asymptotic Method (OHAM) has been successfully applied to a number of nonlinear problems arising in fluid mechanics and heat transfer by various researchers [15–19].
This paper is organized as follows. First in Section 2, advection-diffusion-reaction equation is presented. In Section 3 we described the basic principles of OHAM. The OHAM solution of the problem is given in Section 4. Section 5 is devoted for the concluding remarks.

2. Dispersion in a Stream
The dispersion of chemical oxygen demand (COD) is described by the advection-diffusion-reaction equation (ADRE) [11] in the domain 
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3. Basic Principles of OHAM
We review the basic principles of OHAM as illustrated in [3] and other works.(i)Consider the following differential equation:
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(iv)Substitute (6) in (3); we have the following residual:
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, collocation method, Ritz method, or the method of least squares can be used.(v)Finally, substitute these constants in (6) and one can get the approximate solution.
4. Application of OHAM
Consider the advection-dispersion-reaction equation (1) in the form
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 in (19) and after simplification, we obtain the second order approximate solution via OHAM. To check the accuracy of the OHAM solution, a comparison between the solutions obtained by OHAM and numerical method was made and is presented in Table 1. Graphical representation of the solution using OHAM and Runge-Kutta-Fehlberg-fourth fifth order method is shown in Figure 1; an excellent agreement can be observed.
Table 1: Comparison of 
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	0.1	1.2031	1.2031
	0.2	1.1580	1.1580
	0.3	1.1147	1.1146
	0.4	1.0731	1.0731
	0.5	1.0333	1.0332
	0.6	0.9952	0.9951
	0.7	0.9588	0.9588
	0.8	0.9242	0.9242
	0.9	0.8914	0.8913
	1.0	0.8604	0.8602
	1.1	0.8313	0.8310
	1.2	0.8042	0.8037
	1.3	0.7792	0.7784
	1.4	0.7564	0.7553
	1.5	0.7362	0.7347
	1.6	0.7187	0.7167
	1.7	0.7042	0.7016
	1.8	0.6832	0.6899
	1.9	0.6862	0.6821
	





	


	
























	
		
	



































	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
	
	


	


	
	
	


	


	
	
	


	
	
	


	
	
	


	


	
	
	


	
	
	


	
	
	


	
	
	
	


	
	
	
	
	




Figure 1: Comparison of two methods.


5. Concluding Remarks
In this paper, we have presented the solution of the one-dimensional steady advection-diffusion-reaction equation with variable inputs using homotopy approach and Runge-Kutta-Fehlberg fourth-fifth order method. Both approximate analytical and numerical results are obtained for the given problem. The validity of the proposed procedure, called the Optimal Homotopy Asymptotic Method (OHAM), was demonstrated on an example, and very good agreement was found between the approximate analytic results and numerical simulation results. The proposed scheme provides us with a simple and accurate way to optimally control and adjust the convergence of a solution and can give very good approximations in a few terms.
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