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We review recent results obtained to solve fractional order optimal control problems with free terminal time and a dynamic
constraint involving integer and fractional order derivatives. Some particular cases are studied in detail. A numerical scheme is
given, based on expansion formulas for the fractional derivative. The efficiency of the method is illustrated through examples.

1. Introduction

In a letter dated September 30, 1695 l’Hôpital posed the
question to Leibniz: what would be the derivative of order
𝛼 = 1/2? Leibniz’s response was “an apparent paradox, from
which one day useful consequences will be drawn.” In these
words fractional calculus was born. In 1730, based on the
formula

𝑑
𝑛

𝑥
𝑚

𝑑𝑥
𝑛
=𝑚 (𝑚−1) ⋅ ⋅ ⋅ (𝑚−𝑛+1) 𝑥

𝑚−𝑛

=

Γ (𝑚 + 1)

Γ (𝑚 − 𝑛 + 1)

𝑥
𝑚−𝑛

,

(1)

Euler suggested to use this relationship also for real values of
𝑛. Taking𝑚 = 1 and 𝑛 = 1/2, he obtained

𝑑
1/2

𝑥

𝑑𝑥
1/2

= √
4𝑥

𝜋

. (2)

Since then, many different approaches have been carried
out, trying to find proper definitions for what should be

a derivative and an integral of real order. Starting with
Cauchy’s formula for an 𝑛-fold integral,

∫

𝑡

𝑎

𝑑𝜏
1
∫

𝜏
1

𝑎

𝑑𝜏
2
⋅ ⋅ ⋅ ∫

𝜏
𝑛−1

𝑎

𝑥 (𝜏
𝑛
) 𝑑𝜏
𝑛

=

1

(𝑛 − 1)!

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝑛−1

𝑥 (𝜏) 𝑑𝜏,

(3)

Riemann defined fractional integration as

𝑎
𝐼
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

𝑥 (𝜏) 𝑑𝜏. (4)

This is nowadays the most common definition for fractional
integral. We remark that when the order 𝛼 is an integer, then
the fractional integral becomes amultiple integral, recovering
by this way the classical case.

We begin with some basic definitions and properties
about fractional operators [1, 2]. To avoid too many details,
we omit here the conditions that ensure the existence of
such fractional operators and the assumptions in which the
results given below hold. For an introduction to the fractional
variational calculus we refer the reader to [3].
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Definition 1. Let 𝑥:[𝑎, 𝑏] → R be a function, 𝛼 > 0 a real,
and 𝑛 = [𝛼] + 1, where [⋅] denotes the integer part function.
The left and right Riemann-Liouville fractional integrals are
defined, respectively, by

𝑎
𝐼
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

𝑥 (𝜏) 𝑑𝜏, (left RLFI)

𝑡
𝐼
𝛼

𝑏
𝑥 (𝑡) =

1

Γ (𝛼)

∫

𝑏

𝑡

(𝜏 − 𝑡)
𝛼−1

𝑥 (𝜏) 𝑑𝜏. (right RLFI)

The left and right Riemann-Liouville fractional derivatives
are defined, respectively, by

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡
𝑛
∫

𝑡

𝑎

(𝑡 − 𝜏)
𝑛−𝛼−1

𝑥 (𝜏) 𝑑𝜏,

(left RLFD)

𝑡
𝐷
𝛼

𝑏
𝑥 (𝑡) =

(−1)
𝑛

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥
𝑛
∫

𝑏

𝑡

(𝜏 − 𝑡)
𝑛−𝛼−1

𝑥 (𝜏) 𝑑𝜏.

(right RLFD)

The left and right Caputo fractional derivatives are defined,
respectively, by

𝐶

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝑛−𝛼−1

𝑥
(𝑛)

(𝜏) 𝑑𝜏,

(left CFD)

𝐶

𝑡
𝐷
𝛼

𝑏
𝑥 (𝑡) =

(−1)
𝑛

Γ (𝑛 − 𝛼)

∫

𝑏

𝑡

(𝜏 − 𝑡)
𝑛−𝛼−1

𝑥
(𝑛)

(𝜏) 𝑑𝜏.

(right CFD)

We remark that if 𝛼 = 𝑛 in Definition 1, then we have the
usual operators:

𝑎
𝐼
𝑛

𝑡
𝑥 (𝑡) = ∫
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𝑛
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,

𝑡
𝐼
𝑛

𝑏
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𝑎
𝐷
𝑛

𝑡
𝑥 (𝑡) = 𝑥

(𝑛)

(𝑡) ,
𝑡
𝐷
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𝛼

𝑏
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𝑛

𝑥
(𝑛)

(𝑡) .

(5)

Some basic properties are useful, namely, a relationship
between the Riemann-Liouville and the Caputo fractional
derivatives and a fractional integration by parts formula.

Theorem 2. The following conditions hold:

(1) 𝐶
𝑎
𝐷
𝛼

𝑡
𝑥(𝑡)=
𝑎
𝐷
𝛼

𝑡
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𝑘=0
(𝑥
(𝑘)
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(2)
𝑎
𝐼
𝛼

𝑡 𝑎
𝐼
𝛽
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𝑎
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𝛼+𝛽
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𝑎
𝐷
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𝐼
𝛼

𝑡
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(4)
𝑎
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(𝑘)

(𝑎)/𝑘!)(𝑡 − 𝑎)
𝑘,
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𝑎

𝑦(𝑡) ⋅
𝐶

𝑎
𝐷
𝛼

𝑡
𝑥(𝑡)𝑑𝑡 = ∫
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𝑦(𝑡) ⋅

𝑡
𝐷
𝑛−1−𝑗

𝑏
𝑥(𝑡)]

𝑏

𝑎
.

For numerical purposes, one of the most common pro-
cedures is to replace the fractional operators by a series that
involves integer derivatives only. The usual one is given by

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) =

∞

∑

𝑛=0

(

𝛼

𝑛
)

(𝑡 − 𝑎)
𝑛−𝛼

Γ (𝑛 + 1 − 𝛼)

𝑥
(𝑛)

(𝑡) , (6)

where

(

𝛼

𝑛
) =

(−1)
𝑛−1

𝛼Γ (𝑛 − 𝛼)

Γ (1 − 𝛼) Γ (𝑛 + 1)

. (7)

Although very simple to use, it is easy to conclude that in
order to have a small error when we approximate

𝑎
𝐷
𝛼

𝑡
𝑥 by a

finite sum up to order𝑁, we need to consider a large value for
𝑁; that is, we need to consider the set of admissible functions
to be 𝐶

𝑁

[𝑎, 𝑏] which is an important restriction of the set
of the space of functions. Recently, in [4], a new expansion
formula is given, with the advantage that we only need the
first derivative:

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴 (𝛼) (𝑡 − 𝑎)

−𝛼

𝑥 (𝑡) + 𝐵 (𝛼) (𝑡 − 𝑎)
1−𝛼

�̇� (𝑡)

−

∞

∑

𝑝=2

𝐶 (𝛼, 𝑝) (𝑡 − 𝑎)
1−𝑝−𝛼

𝑉
𝑝
(𝑡) ,

(8)

where 𝑉
𝑝
(𝑡) is the solution of the system

�̇�
𝑝
(𝑡) = (1 − 𝑝) (𝑡 − 𝑎)

𝑝−2

𝑥 (𝑡) ,

𝑉
𝑝
(𝑎) = 0,

(9)

for 𝑝 = 2, 3, . . ., and 𝐴, 𝐵, and 𝐶 are given by

𝐴 (𝛼) =

1

Γ (1 − 𝛼)

[1 +

∞

∑

𝑝=2

Γ (𝑝 − 1 + 𝛼)

Γ (𝛼) (𝑝 − 1)!

] ,

𝐵 (𝛼) =

1

Γ (2 − 𝛼)

[1 +

∞

∑

𝑝=1

Γ (𝑝 − 1 + 𝛼)

Γ (𝛼 − 1) 𝑝!

] ,

𝐶 (𝛼, 𝑝) =

1

Γ (2 − 𝛼) Γ (𝛼 − 1)

Γ (𝑝 − 1 + 𝛼)

(𝑝 − 1)!

.

(10)

Wemention the recent papers [5–7], where similar results
are proven for fractional integrals and for other types of
fractional operators.

2. Necessary and Sufficient
Optimality Conditions

Let 𝛼 ∈ (0, 1), and let 𝐿, 𝑓 : [𝑎, +∞[×R2 → R be two
differentiable functions and 𝜙 : [𝑎, +∞[×R → R a
differentiable function.The fundamental problem, as studied
in [8], is the following:

minimize 𝐽 (𝑥, 𝑢, 𝑇)=∫

𝑇

𝑎

𝐿 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡+𝜙 (𝑇, 𝑥 (𝑇))

(11)
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subject to the dynamic control system

𝑀�̇� (𝑡) + 𝑁
𝐶

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) (12)

and the initial condition

𝑥 (𝑎) = 𝑥
𝑎
, (13)

with (𝑀,𝑁) ̸= (0, 0) and 𝑥
𝑎
being a fixed real number. Thus,

we are not only interested in finding the optimal state
function 𝑥 and the optimal control 𝑢, but also the optimal
time 𝑇.

Theorem 3. If (𝑥, 𝑢, 𝑇) is a minimizer of (11) under the
dynamic constraint (12) and the boundary condition (13), then
there exists a function 𝜆 for which the triplet (𝑥, 𝑢, 𝜆) satisfies

(i) the Hamiltonian system

𝑀
̇
𝜆 (𝑡) − 𝑁

𝑡
𝐷
𝛼

𝑇
𝜆 (𝑡) = −

𝜕𝐻

𝜕𝑥

(𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) ,

𝑀�̇� (𝑡) + 𝑁
𝐶

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) =

𝜕𝐻

𝜕𝜆

(𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡))

(14)

for all 𝑡 ∈ [𝑎, 𝑇];
(ii) the stationary condition

𝜕𝐻

𝜕𝑢

(𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) = 0, ∀𝑡 ∈ [𝑎, 𝑇] ; (15)

(iii) the transversality conditions

[𝐻 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) − 𝑁𝜆(𝑡)
𝐶

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡)

+𝑁�̇�(𝑡)
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) +

𝜕𝜙

𝜕𝑡

(𝑡, 𝑥 (𝑡))]

𝑡=𝑇

= 0,

[𝑀𝜆 (𝑡) + 𝑁
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) −

𝜕𝜙

𝜕𝑥

(𝑡, 𝑥 (𝑡))]

𝑡=𝑇

= 0;

(16)

where the Hamiltonian𝐻 is defined by

𝐻(𝑡, 𝑥, 𝑢, 𝜆) = 𝐿 (𝑡, 𝑥, 𝑢) + 𝜆𝑓 (𝑡, 𝑥, 𝑢) . (17)

This theorem states the general condition that the optimal
solution (𝑥, 𝑢, 𝑇) must fulfill. Next, depending on extra
conditions imposed over the final time 𝑇 or in 𝑥(𝑇), new
transversality conditions are obtained.

Theorem 4. Let (𝑥, 𝑢) be a minimizer of (11) under the
dynamic constraint (12) and the boundary condition (13).

(i) If 𝑇 is fixed and 𝑥(𝑇) is free, thenTheorem 3 holds with
the transversality conditions (16) replaced by

[𝑀𝜆 (𝑡) + 𝑁
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) −

𝜕𝜙

𝜕𝑥

(𝑡, 𝑥 (𝑡))]

𝑡=𝑇

= 0. (18)

(ii) If 𝑥(𝑇) is fixed and 𝑇 is free, thenTheorem 3 holds with
the transversality conditions (16) replaced by

[𝐻 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) − 𝑁𝜆(𝑡)
𝐶

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡)

+𝑁�̇�(𝑡)
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) +

𝜕𝜙

𝜕𝑡

(𝑡, 𝑥 (𝑡))]

𝑡=𝑇

= 0.

(19)

(iii) If 𝑇 and 𝑥(𝑇) are fixed, then Theorem 3 holds with no
transversality conditions.

(iv) If the terminal point 𝑥(𝑇) belongs to a fixed curve, that
is, 𝑥(𝑇) = 𝛾(𝑇) for some differentiable curve 𝛾, then
Theorem 3 holds with the transversality conditions (16)
replaced by

[𝐻 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) − 𝑁𝜆(𝑡)
𝐶

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡)

+ 𝑁�̇�(𝑡)
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) +

𝜕𝜙

𝜕𝑡

(𝑡, 𝑥 (𝑡))

− ̇𝛾 (𝑡) (𝑀𝜆 (𝑡) + 𝑁
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) −

𝜕𝜙

𝜕𝑥

(𝑡, 𝑥 (𝑡)))]

𝑡=𝑇

= 0.

(20)

(v) If 𝑇 is fixed and 𝑥(𝑇) ≥ 𝐾 for some fixed 𝐾 ∈ R, then
Theorem 3 holds with the transversality conditions (16)
replaced by

[𝑀𝜆 (𝑡) + 𝑁
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) −

𝜕𝜙

𝜕𝑥

(𝑡, 𝑥 (𝑡))]

𝑡=𝑇

≤ 0,

(𝑥 (𝑇) − 𝐾) [𝑀𝜆 (𝑡) + 𝑁
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) −

𝜕𝜙

𝜕𝑥

(𝑡, 𝑥 (𝑡))]

𝑡=𝑇

= 0.

(21)

Numerically, by using approximation (8) up to order 𝐾,
we can transform the original problem into the following
classical optimal control problem:

minimize 𝐽 (𝑥, 𝑢, 𝑇)=∫

𝑇

𝑎

𝐿 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡+𝜙 (𝑇, 𝑥 (𝑇))

(22)

subject to the dynamic constraints

�̇� (𝑡)=

𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡))−𝑁𝐴(𝑡 − 𝑎)
−𝛼

𝑥 (𝑡)

𝑀 + 𝑁𝐵(𝑡−𝑎)
1−𝛼

+

∑
𝐾

𝑝=2
𝑁𝐶
𝑝
(𝑡−𝑎)
1−𝑝−𝛼

𝑉
𝑝
(𝑡)

𝑀 + 𝑁𝐵(𝑡−𝑎)
1−𝛼

,

�̇�
𝑝
(𝑡) = (1 − 𝑝) (𝑡 − 𝑎)

𝑝−2

𝑥 (𝑡) , 𝑝 = 2, . . . , 𝐾

(23)

and the initial conditions

𝑥 (𝑎) = 𝑥
𝑎
,

𝑉
𝑝
(𝑎) = 0, 𝑝 = 2, . . . , 𝐾.

(24)

Theorem 3 can be generalized in the following way.
Observe that we have two initial points for the problem,
one for the fractional derivative and a second one for the
integral of the functional. We now consider a more general
approach, where the initial time for the integral is greater
than the initial time of the fractional derivative. We impose
a boundary condition on 𝑡 = 𝐴, but similar conditions could
be obtained if we considered conditions at 𝑡 = 𝑎 instead.
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The problem is formulated as follows. Let 𝛼 ∈ (0, 1), and let
𝐿, 𝑓 : [𝑎, +∞[×R2 → R be two differentiable functions,
𝜙 : [𝑎, +∞[×R → R a differentiable function, and 𝐴 > 𝑎

a real. We wish to

minimize 𝐽 (𝑥, 𝑢, 𝑇)=∫

𝑇

𝐴

𝐿 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡+𝜙 (𝑇, 𝑥 (𝑇))

(25)

subject to

𝑀�̇� (𝑡) + 𝑁
𝐶

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) , (26)

𝑥 (𝐴) = 𝑥
𝐴
, (27)

with (𝑀,𝑁) ̸= (0, 0) and 𝑥
𝐴
being a fixed real number.

Theorem 5. If (𝑥, 𝑢, 𝑇) is a minimizer of (25) under the
dynamic constraint (26) and the boundary condition (27), then
there exists a function 𝜆 for which the triplet (𝑥, 𝑢, 𝜆) satisfies

(i) the Hamiltonian system

𝑀
̇
𝜆 (𝑡) − 𝑁

𝑡
𝐷
𝛼

𝑇
𝜆 (𝑡) = −

𝜕𝐻

𝜕𝑥

(𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) ,

𝑀�̇� (𝑡) + 𝑁
𝐶

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) =

𝜕𝐻

𝜕𝜆

(𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡))

(28)

for all 𝑡 ∈ [𝐴, 𝑇] and

𝑡
𝐷
𝛼

𝑇
𝜆 (𝑡) −

𝑡
𝐷
𝛼

𝐴
𝜆 (𝑡) = 0 (29)

for all 𝑡 ∈ [𝑎, 𝐴];
(ii) the stationary condition

𝜕𝐻

𝜕𝑢

(𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) = 0, ∀𝑡 ∈ [𝐴, 𝑇] ; (30)

(iii) the transversality conditions

[𝐻 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) − 𝑁𝜆(𝑡)
𝐶

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡)

+𝑁�̇�(𝑡)
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) +

𝜕𝜙

𝜕𝑡

(𝑡, 𝑥 (𝑡))]

𝑡=𝑇

= 0,

[𝑀𝜆 (𝑡) + 𝑁
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) −

𝜕𝜙

𝜕𝑥

(𝑡, 𝑥 (𝑡))]

𝑡=𝑇

= 0,

[
𝑡
𝐼
1−𝛼

𝑇
𝜆 (𝑡) −

𝑡
𝐼
1−𝛼

𝐴
𝜆 (𝑡)]
𝑡=𝑎

= 0;

(31)

where the Hamiltonian𝐻 is defined by

𝐻(𝑡, 𝑥, 𝑢, 𝜆) = 𝐿 (𝑡, 𝑥, 𝑢) + 𝜆𝑓 (𝑡, 𝑥, 𝑢) . (32)

We remark that when 𝐴 = 𝑎, Theorem 5 reduces to
Theorem 3.

Under some additional conditions, namely, convexity
conditions over 𝐿, 𝑓, and 𝜙, Theorem 3 provides also suf-
ficient conditions to ensure optimal solutions. The result is
given in the next theorem.

Theorem 6. Let (𝑥, 𝑢, 𝜆) be a triplet satisfying the necessary
conditions of Theorem 3. Moreover, assume that

(1) 𝐿 and 𝑓 are convex on 𝑥 and 𝑢, and 𝜙 is convex in 𝑥;

(2) 𝑇 is fixed;

(3) 𝜆(𝑡) ≥ 0 for all 𝑡 ∈ [𝑎, 𝑇] or 𝑓 is linear in 𝑥 and 𝑢.

Then (𝑥, 𝑢) is an optimal solution to problem (11)–(13).

3. Numerical Treatment

So far, we have provided a theoretical approach to fractional
optimal control problems, which involves solving fractional
differential equations. As it is known, solving such equations
is in most cases impossible to do, and numerical methods are
used to find approximated solutions for the problem (see, e.g.,
[9, 10]).We describe next, briefly, how formula (8) is deduced
and generalized for arbitrary size expansions.

Let 𝑥 ∈ 𝐶
2

[𝑎, 𝑏]. Using integration by parts two times, we
deduce that

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) =

𝑥 (𝑎)

Γ (1 − 𝛼)

(𝑡 − 𝑎)
−𝛼

+

�̇� (𝑎)

Γ (2 − 𝛼)

(𝑡 − 𝑎)
1−𝛼

+

(𝑡 − 𝑎)
1−𝛼

Γ (2 − 𝛼)

∫

𝑡

𝑎

(1 −

𝜏 − 𝑎

𝑡 − 𝑎

)

1−𝛼

�̈� (𝜏) 𝑑𝜏.

(33)

By the binomial formula, we can rewrite the fractional deriva-
tive as

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) =

𝑥 (𝑎)

Γ (1 − 𝛼)

(𝑡 − 𝑎)
−𝛼

+

(𝑡 − 𝑎)
1−𝛼

Γ (2 − 𝛼)

�̇� (𝑎)

+

(𝑡 − 𝑎)
1−𝛼

Γ (2 − 𝛼)

∫

𝑡

𝑎

(

∞

∑

𝑝=0

Γ (𝑝 − 1 + 𝛼)

Γ (𝛼 − 1) 𝑝!

(

𝜏 − 𝑎

𝑡 − 𝑎

)

𝑝

)

× �̈� (𝜏) 𝑑𝜏.

(34)

Further integration by parts gives

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴 (𝛼) (𝑡 − 𝑎)

−𝛼

𝑥 (𝑡) + 𝐵 (𝛼) (𝑡 − 𝑎)
1−𝛼

�̇� (𝑡)

−

∞

∑

𝑝=2

𝐶 (𝛼, 𝑝) (𝑡 − 𝑎)
1−𝑝−𝛼

𝑉
𝑝
(𝑡) ,

(35)

where 𝑉
𝑝
(𝑡), 𝐴(𝛼), 𝐵(𝛼), and 𝐶(𝛼, 𝑝) are given in (9)-

(10). Following similar calculations, we can deduce the next
theorem.
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Theorem 7. Fix 𝑛 ∈ N and let 𝑥 ∈ 𝐶
𝑛

[𝑎, 𝑏]. Then,

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (1 − 𝛼)

(𝑡 − 𝑎)
−𝛼

𝑥 (𝑡)

+

𝑛−1

∑

𝑖=1

𝐴 (𝛼, 𝑖) (𝑡 − 𝑎)
𝑖−𝛼

𝑥
(𝑖)

(𝑡)

+

∞

∑

𝑝=𝑛

[

−Γ (𝑝 − 𝑛 + 1 + 𝛼)

Γ (−𝛼) Γ (1+𝛼) (𝑝−𝑛+1)!

(𝑡−𝑎)
−𝛼

𝑥 (𝑡)

+𝐵 (𝛼, 𝑝) (𝑡−𝑎)
𝑛−1−𝑝−𝛼

𝑉
𝑝
(𝑡) ] ,

(36)

where

𝐴 (𝛼, 𝑖) =

1

Γ (𝑖 + 1 − 𝛼)

[

[

1 +

∞

∑

𝑝=𝑛−𝑖

Γ (𝑝 − 𝑛 + 1 + 𝛼)

Γ (𝛼 − 𝑖) (𝑝 − 𝑛 + 𝑖 + 1)!

]

]

,

𝐵 (𝛼, 𝑝) =

Γ (𝑝 − 𝑛 + 1 + 𝛼)

Γ (−𝛼) Γ (1 + 𝛼) (𝑝 − 𝑛 + 1)!

,

𝑉
𝑝
(𝑡) = (𝑝 − 𝑛 + 1)∫

𝑡

𝑎

(𝜏 − 𝑎)
𝑝−𝑛

𝑥 (𝜏) 𝑑𝜏.

(37)

The idea is to replace the fractional derivative with such
expansions and to consider finite sums only.Whenwe use the
approximation

𝑎
𝐷
𝛼

𝑡
𝑥 (𝑡) ≈

𝑛−1

∑

𝑖=0

𝐴 (𝛼, 𝑖,𝑁) (𝑡 − 𝑎)
𝑖−𝛼

𝑥
(𝑖)

(𝑡)

+

𝑁

∑

𝑝=𝑛

𝐵 (𝛼, 𝑝) (𝑡 − 𝑎)
𝑛−1−𝑝−𝛼

𝑉
𝑝
(𝑡) ,

(38)

the error is bounded by





𝐸
𝑡𝑟
(𝑡)





≤ 𝐿
𝑛

𝑒
(𝑛−1−𝛼)

2
+𝑛−1−𝛼

Γ (𝑛 − 𝛼) (𝑛 − 1 − 𝛼)𝑁
𝑛−1−𝛼

(𝑡 − 𝑎)
𝑛−𝛼

, (39)

where

𝐿
𝑛
= max
𝜏∈[𝑎,𝑡]






𝑥
(𝑛)

(𝜏)






. (40)

To see the accuracy of themethod, we exemplify it by con-
sidering some functions and compare the exact expression of
the fractional derivative with the approximated one. To start,
consider 𝑥

1
(𝑡) = 𝑡

4 and 𝑥
2
(𝑡) = 𝑒

2𝑡 and expansions with 𝑛 = 2

and different values for𝑁.The result is exemplified in Figures
1(a) and 1(b).

A different approach is to consider a fixed𝑁 and vary the
size of the expansion, that is, to consider different values for
𝑛. For the same functions 𝑥

1
and 𝑥

2
, with 𝑁 = 6, the results

are shown in Figures 2(a) and 2(b).

4. Examples

We will see that applying the numerical method given in the
previous section, we are able to solve fractional optimal con-
trol problems applying known techniques from the classical
optimal control theory. First, consider the following optimal
control problem:

𝐽 (𝑥, 𝑢) = ∫

1

0

(𝑡𝑢 (𝑡) − (𝛼 + 2) 𝑥 (𝑡))
2

𝑑𝑡 → min (41)

subject to the control system

�̇� (𝑡) +
𝐶

0
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑢 (𝑡) + 𝑡

2 (42)

and the boundary conditions

𝑥 (0) = 0, 𝑥 (1) =

2

Γ (3 + 𝛼)

. (43)

The solution is given by

(𝑥 (𝑡) , 𝑢 (𝑡)) = (

2𝑡
𝛼+2

Γ (𝛼 + 3)

,

2𝑡
𝛼+1

Γ (𝛼 + 2)

) . (44)

Using the necessary conditions given inTheorem 4, we arrive
at

�̇� (𝑡) +
𝐶

0
𝐷
𝛼

𝑡
𝑥 (𝑡) = −

𝜆

2𝑡
2
+

𝛼 + 2

𝑡

𝑥 (𝑡) + 𝑡
2

,

−
̇
𝜆 (𝑡) +

𝑡
𝐷
𝛼

1
𝜆 (𝑡) =

𝛼 + 2

𝑡

𝜆 (𝑡) ,

𝑥 (0) = 0,

𝑥 (1) =

2

Γ (3 + 𝛼)

,

(45)

which is a fractional boundary value problem. We approxi-
mate this problem by approximation in (8) up to order𝑁:

�̇� (𝑡)

= [(

𝛼 + 2

𝑡

−𝐴𝑡
−𝛼

)𝑥 (𝑡)+

𝑁

∑

𝑝=2

𝐶
𝑝
𝑡
1−𝑝−𝛼

𝑉
𝑝
(𝑡)−

𝜆 (𝑡)

2𝑡
2

+𝑡
2

]

×

1

1 + 𝐵𝑡
1−𝛼

,

�̇�
𝑝
(𝑡) = (1 − 𝑝) 𝑡

𝑝−2

𝑥 (𝑡) , 𝑝 = 2, . . . , 𝑁,

̇
𝜆 (𝑡)

= [(𝐴(1−𝑡)
−𝛼

−

𝛼 + 2

𝑡

) 𝜆 (𝑡)−

𝑁

∑

𝑝=2

𝐶
𝑝
(1−𝑡)
1−𝑝−𝛼

𝑊
𝑝
(𝑡)]

×

1

1 + 𝐵(1 − 𝑡)
1−𝛼

,

�̇�
𝑝
(𝑡) = − (1 − 𝑝) (1 − 𝑡)

𝑝−2

𝜆 (𝑡) , 𝑝 = 2, . . . , 𝑁,

(46)
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Figure 1: Analytic versus numerical approximation for a fixed 𝑛 (𝑛 = 2).
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Figure 2: Analytic versus numerical approximation for a fixed𝑁 (𝑁 = 6).

subject to the boundary conditions

𝑥 (0) = 0, 𝑥 (1) =

2

Γ (3 + 𝛼)

,

𝑉
𝑝
(0) = 0, 𝑝 = 2, . . . , 𝑁,

𝑊
𝑝
(1) = 0, 𝑝 = 2, . . . , 𝑁.

(47)

The solutions are depicted in Figure 3, for 𝑁 = 2, 𝑁 = 3,
and 𝛼 = 1/2, with the error being given by 𝐸 = max

𝑖
(|𝑥(𝑡
𝑖
) −

𝑥(𝑡
𝑖
)|).
Another approach is to approximate the original problem

by using approximation from (8) directly, getting

𝐽 (𝑥, 𝑢) = ∫

1

0

(𝑡𝑢 − (𝛼 + 2) 𝑥)
2

𝑑𝑡 → min (48)
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Figure 3: Exact solution (solid line) for the fractional optimal control problem (41)–(43) with 𝛼 = 1/2 versus numerical solutions (dashed
lines) obtained approximating the optimality conditions given byTheorem 4.

subject to the control system

�̇� (𝑡) [1 + 𝐵 (𝛼,𝑁) 𝑡
1−𝛼

] + 𝐴 (𝛼,𝑁) 𝑡
−𝛼

𝑥 (𝑡)

−

𝑁

∑

𝑝=2

𝐶 (𝛼, 𝑝) 𝑡
1−𝑝−𝛼

𝑉
𝑝
(𝑡) = 𝑢 (𝑡) + 𝑡

2

,

�̇�
𝑝
(𝑡) = (1 − 𝑝) 𝑡

𝑝−2

𝑥 (𝑡)

(49)

and boundary conditions

𝑥 (0) = 0, 𝑥 (1) =

2

Γ (3 + 𝛼)

,

𝑉
𝑝
(0) = 0, 𝑝 = 2, 3, . . . , 𝑁.

(50)

The (classical) necessary optimality conditions become

�̇� (𝑡)=2𝜙
0
(𝑡) 𝜆
1
(𝑡)+𝜙

1
(𝑡) 𝑥 (𝑡)+

𝑁

∑

𝑝=2

𝜙
𝑝
(𝑡) 𝑉
𝑝
(𝑡)+𝜙

𝑁+1
(𝑡) ,

�̇�
𝑝
= (1 − 𝑝) 𝑡

𝑝−2

𝑥 (𝑡) , 𝑝 = 2, . . . , 𝑁,

̇
𝜆
1
= −𝜙
1
(𝑡) 𝜆
1
(𝑡) +

𝑁

∑

𝑝=2

(𝑝 − 1) 𝑡
𝑝−2

𝜆
𝑝
,

̇
𝜆
𝑝
= −𝜙
𝑝
(𝑡) 𝜆
1
(𝑡) , 𝑝 = 2, . . . , 𝑁

(51)
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Figure 4: Exact solution (solid line) for the fractional optimal control problem (41)–(43) with 𝛼 = 1/2 versus numerical solutions (dashed
lines) obtained approximating the original problem by a classical one.

subject to the boundary conditions

𝑥 (0) = 0,

𝑉
𝑝
(0) = 0, 𝑝 = 2, . . . , 𝑁;

𝑥 (1) =

2

Γ (3 + 𝛼)

,

𝜆
𝑝
(1) = 0, 𝑝 = 2, . . . , 𝑁.

(52)

The solutions are depicted in Figure 4 for𝑁 = 2,𝑁 = 3, and
𝛼 = 1/2.

For our next example, we consider the final time 𝑇 free
and thus a variable in the problem.Wewish to find an optimal
triplet (𝑥(⋅), 𝑢(⋅), 𝑇) that minimizes

𝐽 (𝑥, 𝑢, 𝑇) = ∫

𝑇

0

(𝑡𝑢 − (𝛼 + 2) 𝑥)
2

𝑑𝑡 (53)

subject to the control system

�̇� (𝑡) +
𝐶

0
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑢 (𝑡) + 𝑡

2 (54)

and boundary conditions

𝑥 (0) = 0, 𝑥 (𝑇) = 1. (55)

In this case, an exact solution to this problem is not known.
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Figure 5: Numerical solutions to the free final time problem (53)–(55), using fractional necessary optimality conditions (dashed lines) and
approximation of the problem to an integer order optimal control problem (dash-dotted lines).

The fractional necessary optimality conditions, after ap-
proximating the fractional terms, result in

�̇� (𝑡)

=[(

𝛼 + 2

𝑡

− 𝐴𝑡
−𝛼

)𝑥 (𝑡)+

𝑁

∑

𝑝=2

𝐶
𝑝
𝑡
1−𝑝−𝛼

𝑉
𝑝
(𝑡)−

𝜆 (𝑡)

2𝑡
2
+𝑡
2

]

×

1

1 + 𝐵𝑡
1−𝛼

,

�̇�
𝑝
(𝑡) = (1 − 𝑝) 𝑡

𝑝−2

𝑥 (𝑡) , 𝑝 = 2, . . . , 𝑁,

̇
𝜆 (𝑡)

=[(𝐴(1 − 𝑡)
−𝛼

−

𝛼 + 2

𝑡

) 𝜆 (𝑡)−

𝑁

∑

𝑝=2

𝐶
𝑝
(1 − 𝑡)

1−𝑝−𝛼

𝑊
𝑝
(𝑡)]

×

1

1 + 𝐵(1 − 𝑡)
1−𝛼

,

�̇�
𝑝
(𝑡) = − (1 − 𝑝) (1 − 𝑡)

𝑝−2

𝜆 (𝑡) , 𝑝 = 2, . . . , 𝑁

(56)

subject to the boundary conditions

𝑥 (0) = 0, 𝑥 (𝑇) = 1,

𝑉
𝑝
(0) = 0, 𝑝 = 2, . . . , 𝑁,

𝑊
𝑝
(𝑇) = 0, 𝑝 = 2, . . . , 𝑁.

(57)

Another way is transforming the problem into an integer
order optimal control problem with free final time. The
necessary optimality conditions are

�̇� (𝑡) = 2𝜙
0
(𝑡) 𝜆
1
(𝑡) + 𝜙

1
(𝑡) 𝑥 (𝑡) + 𝜙

2
(𝑡) 𝑉
2
(𝑡) + 𝜙

3
(𝑡) ,

�̇�
2
= −𝑥 (𝑡) ,

̇
𝜆
1
= −𝜙
1
(𝑡) 𝜆
1
(𝑡) + 𝑥 (𝑡) ,

̇
𝜆
2
= −𝜙
2
(𝑡) 𝜆
1
(𝑡) .

(58)

The results obtained are shown in Figure 5.
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