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Unstable manifolds of continuous self-mappings on completely densely ordered linear ordered topological spaces (CDOLOTS)
are discussed. Let 𝑓 be a continuous self-map. First, the interval with endpoints of two adjacent fixed points is contained in the
unilateral unstable manifold of one of the endpoints. Then, by using the above conclusion, we prove that periodic points of 𝑓 not
belong to the unstable manifold of their iteration points of 𝑓𝑛 (for some 𝑛 ∈ N), unless the iteration points are themselves.

1. Introduction

The complexity of a dynamical system is a central topic of
research since the introduction of the term of chaos in 1975 by
Li and Yorke [1], known as Li-Yorke chaos today. As concepts
relate to chaotic, generalized periodic points are intensively
discussed. Throughout this paper, the sets of fixed points,
periodic points, 𝜔-limit points, and nonwandering points of
a system (𝑋, 𝑓) are denoted by Fix(𝑓), Per(𝑓), 𝜔(𝑥, 𝑓), and
Ω(𝑓), respectively.

Considering a continuous self-map 𝑓 on a compact
interval 𝐼 ⊂ R, Block [2] proved the following results.

(1-1) If𝑓 has finitely many periodic points, then the period
of each periodic point is a power of 2.

(1-2) If Ω(𝑓) is finite, then Ω(𝑓) = Per(𝑓).

Based on Block’s results, Xiong [3] obtained that

(1-3) Ω(𝑓) = Per(𝑓) if and only if Per(𝑓) is closed,
(1-4) if Per(𝑓) is closed, then for every point 𝑥 in 𝐼, 𝜔(𝑥,

𝑓) ⊂ Per(𝑓).

In 2002, Ding and Nadler [4] showed that the invariant
set of an 𝜀-contractive map 𝑓 on a compact metric space𝑋 is
the same as the set of periodic points of 𝑓. Furthermore, the
set of periodic points of 𝑓 is finite and, only assuming that
𝑋 is locally compact, there is at most one periodic point in
each component of 𝑋. Forti et al. [5] gave an example of a

triangular map of the unite square, 𝐹(𝑥, 𝑦) = (𝑓(𝑥), 𝑔
𝑥
(𝑦)),

possessing periodic orbits of all periods and such that no
infinite 𝜔-limit set of 𝐹 contains a periodic point. Moreover,
Forti show that there is a triangular map 𝐹 of type 2∞

monotone on the fibres such that any recurrent point of 𝐹
is uniformly recurrent. And 𝐹 restricted to the set of its
recurrent point is chaotic in the sense of Li and Yorke. Mai
and Shao [6] obtained a structure theorem of graph maps
without periodic points, which states that any graph map
without periodic points must be topologically conjugate to
one of the described class. Recently, Abbas and Rhoades [7]
proved that some fixed point theorems in cone metric spaces
gave the fact that in a cone with only a partial ordering, the
continuous maps have no nontrivial periodic points.

However, the research of generalized periodic points on
topological space is very few. The current paper studies
continuous self-maps on CDOLOTS. To characterize the
properties of continuous self-maps, it is necessary to study
unstable manifolds on CDOLOTS. The conclusions in this
paper is the generalization of the ones on real line (see [2, 8]).
Furthermore, this paper gave a counterexample to examine
that a condition of Theorem 8 is indispensable.

2. Preliminaries

Throughout this paper, the order relationship of linear
ordered set 𝑋 is denoted by “≺”. And 𝑎 ⪯ 𝑏 denotes “𝑎 ≺ 𝑏
or 𝑎 = 𝑏”. N(𝑥) is the system of all open neighborhoods
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of a point 𝑥. Definitions and notations of intervals in 𝑋
are similar to the real line. Infinite intervals are denoted by
(←, 𝑎], [𝑏, → ), and (←, → ). If (𝑎, 𝑏) is empty, 𝑎 will be
called for immediate predecessor of 𝑏 and 𝑏 will be called
for immediate successor of 𝑎. If there exists an element
𝑚 ∈ 𝑋 such that 𝑥 ⪯ 𝑚 for all 𝑥 ∈ 𝑋, 𝑚 will be
called for the largest element of 𝑋 and denoted by End{𝑋}.
If there exists an element 𝑚 ∈ 𝑋 such that 𝑚 ⪯ 𝑥 for
all 𝑥 ∈ 𝑋, 𝑚 will be called for smallest element of 𝑋
and denoted by Ah{𝑋}. If 𝑋 is a topological space with the
subbase {(←, 𝑏), (𝑎, → ) : 𝑎, 𝑏 ∈ 𝑋}, then 𝑋 is called a linear
ordered topological space. We say that 𝑋 is densely ordered
if whenever 𝑎, 𝑏 ∈ 𝑋 with 𝑎 ≺ 𝑏, there is an element
𝑐 ∈ 𝑋 such that 𝑎 ≺ 𝑐 ≺ 𝑏. We say that 𝑋 is com-
plete if every nonempty set with upper bound has a least
upper bound in 𝑋. A space 𝑋 is called a completely densely
ordered linear ordered topological space (CDOLOTS), if it
is a linear ordered topological space and its order relation
is complete and densely ordered. In Munkres [9], there are
some examples of CDOLOTS which are different from real
line. A separation of 𝑋 is a pair 𝑈, 𝑉 of disjoint nonempty
open subsets of𝑋whose union is𝑋.The space𝑋 is said to be
connected if there does not exist a separation of𝑋. According
to [9], if 𝑋 be a CDOLOTS, then 𝑋 is connected, and so are
integers and rays in 𝑋. A connected set is an interval if it
includes more than one point. The definitions of other basic
concepts (e.g., continuous self-mapping, periodic point, and
periodic orbit) are as usual (see [9–11]).

Let 𝑓 : 𝑋 → 𝑋 be a continuous map. Then the image
of a closed interval in 𝑋 is a closed interval. Let 𝑝 ∈ Per(𝑓).
The unstable manifold𝑊𝑢(𝑝, 𝑓) is defined as follows. Denote
𝑥 ∈ 𝑊𝑢(𝑝, 𝑓) if for any neighborhood 𝑈 of 𝑥, 𝑥 ∈ 𝑓𝑛(𝑈) for
some positive integer 𝑛. If 𝑝 is a fixed point of 𝑓, unilateral
unstable manifolds 𝑊𝑢(𝑝, 𝑓, +) and 𝑊𝑢(𝑝, 𝑓, −) are defined
as follows. Denote 𝑥 ∈ 𝑊𝑢(𝑝, 𝑓, +) if for every interval𝐾with
left endpoint𝑝,𝑥 ∈ 𝑓𝑛(𝐾) for some positive integer 𝑛. Denote
𝑥 ∈ 𝑊𝑢(𝑝, 𝑓, −) if for every interval𝐾 with right endpoint 𝑝,
𝑥 ∈ 𝑓𝑛(𝐾) for some positive integer 𝑛. By [8], the unstable
manifold (or unilateral unstable manifold) of a fixed point on
𝑋 is connected.

The following property follows easily from the definitions.

Lemma 1. Let 𝑋 be a CDOLOTS and 𝑓 : 𝑋 → 𝑋 a contin-
uous map. If 𝑝 is a fixed point of 𝑓, then 𝑊𝑢(𝑝, 𝑓) = 𝑊𝑢(𝑝,
𝑓, +) ∪ 𝑊𝑢(𝑝, 𝑓, −).

3. Inclusion Relationship

Lemma 2. Let𝑋 be a general topological space and 𝑌 a totally
ordered set.𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑌 are continuous maps.
Then {𝑥 ∈ 𝑋 : 𝑔(𝑥) ≺ 𝑓(𝑥)} is an open set in 𝑋.

Proof. Given any 𝑥 ∈ 𝑈 = {𝑥 ∈ 𝑋 : 𝑔(𝑥) ≺ 𝑓(𝑥)}, it is clear
that (𝑔(𝑥), → ) ∈ N(𝑓(𝑥)) and (←, 𝑓(𝑥)) ∈ N(𝑔(𝑥)). Now
we consider two cases.

Case 1. If 𝑔(𝑥) is an immediate predecessor of 𝑓(𝑥), by
continuity of 𝑓, it follows that 𝑈

𝑥
= 𝑓−1((𝑔(𝑥), → )) ∩

𝑔−1((←, 𝑓(𝑥)))∈ N(𝑥). For any 𝑧 ∈ 𝑈
𝑥
, we have that

𝑓(𝑧) ∈ (𝑔(𝑥), → ) and 𝑔(𝑧) ∈ (←, 𝑓(𝑥)), then 𝑔(𝑥) ≺
𝑓(𝑧), 𝑔(𝑧) ≺ 𝑓(𝑥). Noting the fact that 𝑔(𝑥) is immediate
predecessor of 𝑓(𝑥), one has 𝑔(𝑧) ≺ 𝑓(𝑧). This implies that
𝑈
𝑥
⊂ 𝑈.

Case 2. If 𝑔(𝑥) is not an immediate predecessor of 𝑓(𝑥), then
there exist some 𝑦

0
∈ 𝑌 such that 𝑔(𝑥) ≺ 𝑦

0
≺ 𝑓(𝑥). Clearly,

(𝑦
0
, → ) ∈ N(𝑓(𝑥)) and (←, 𝑦

0
) ∈ N(𝑔(𝑥)). Thus it is not

difficult to check that 𝑉
𝑥
= 𝑓−1((𝑦

0
, → )) ∩ 𝑔−1((←, 𝑦

0
)) ∈

N(𝑥) and 𝑉
𝑥
⊂ 𝑈.

Summing up Cases 1 and 2, according to the arbitrariness
of 𝑥, it follows that 𝑈 is an open set in𝑋.

In what follows,𝑋 is a CDOLOTS and𝑓 : 𝑋 → 𝑋 a con-
tinuous map.

Lemma 3. Let 𝑝
1
, 𝑝
2
∈ 𝑋 with 𝑝

1
≺ 𝑝
2
. If Fix(𝑓) ∩ (𝑝

1
, 𝑝
2
) =

0, then one of the following two cases holds:
(i) 𝑥 ≺ 𝑓(𝑥) for any 𝑥 ∈ (𝑝

1
, 𝑝
2
);

(ii) 𝑓(𝑥) ≺ 𝑥 for any 𝑥 ∈ (𝑝
1
, 𝑝
2
).

Proof. Suppose that there exist 𝑥
1
, 𝑥
2
in (𝑝
1
, 𝑝
2
) such that

𝑥
1

≺ 𝑓(𝑥
1
) and 𝑓(𝑥

2
) ≺ 𝑥

2
. Define a continuous map

𝑔 : 𝑋 → 𝑋 by 𝑔(𝑥) = 𝑥 for any 𝑥 ∈ 𝑋. Let us take

𝑈 = {𝑥 ∈ (𝑝
1
, 𝑝
2
) : 𝑔 (𝑥) ≺ 𝑓 (𝑥)} ,

𝑉 = {𝑥 ∈ (𝑝
1
, 𝑝
2
) : 𝑓 (𝑥) ≺ 𝑔 (𝑥)} .

(1)

Clearly, 𝑥
1
∈ 𝑈 and 𝑥

2
∈ 𝑉. Combining this with Lemma 2, it

is not difficult to check that𝑈 and𝑉 constitute a separation of
(𝑝
1
, 𝑝
2
), which contradicts the connectivity of (𝑝

1
, 𝑝
2
).

Theorem 4. If 𝑝
1
and 𝑝

2
are two adjacent fixed points of 𝑓

with 𝑝
1
≺ 𝑝
2
, then

(𝑝
1
, 𝑝
2
) ⊂ 𝑊𝑢 (𝑝

1
, 𝑓, +) 𝑜𝑟 (𝑝

1
, 𝑝
2
) ⊂ 𝑊𝑢 (𝑝

2
, 𝑓, −) .

(2)

Proof. Since 𝑝
1
and 𝑝

2
are two adjacent fixed points of𝑓with

𝑝
1
≺ 𝑝
2
, applying Lemma 3, it follows that one of the follow-

ing cases holds:
(i) 𝑥 ≺ 𝑓(𝑥) for any 𝑥 ∈ (𝑝

1
, 𝑝
2
);

(ii) 𝑓(𝑥) ≺ 𝑥 for any 𝑥 ∈ (𝑝
1
, 𝑝
2
).

Without loss of generality, we may assume that case (i)
holds.

Now we assert that (𝑝
1
, 𝑝
2
) ⊂ 𝑊𝑢(𝑝

1
, 𝑓, +). That is, given

any fixed 𝑦 ∈ (𝑝
1
, 𝑝
2
), for any 𝑧 ∈ (𝑝

1
, → ), there exists a

𝑘 ∈ N such that 𝑦 ∈ 𝑓𝑘([𝑝
1
, 𝑧]). Take 𝛼 = End{𝑓([𝑝

1
, 𝑧])}. To

prove this, we consider three cases.

Case 1 (𝑧 ∈ (𝑝
1
, 𝑦]). Noting that 𝑥 ≺ 𝑓(𝑥) holds for any 𝑥 ∈

(𝑝
1
, 𝑝
2
) and that 𝑝

1
∈ Fix(𝑓), one has that

𝑧 ≺ 𝑓 (𝑧) ⪯ 𝛼,

[𝑝
1
, 𝑧] ⊂ [𝑓 (𝑝

1
) , 𝑓 (𝑧)] ⊂ 𝑓 ([𝑝

1
, 𝑧]) .

(3)

(1-1) If 𝑦 ≺ 𝛼, then 𝑦 ∈ 𝑓([𝑝
1
, 𝑧]).

(1-2) If 𝛼 ≺ 𝑦, we have that 𝑦 ∈ 𝑓𝑘([𝑝
1
, 𝑧]) for some 𝑘 ≥ 2.
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In fact, suppose that 𝑦 ∉ 𝑓𝑘([𝑝
1
, 𝑧]) holds for any 𝑘 ≥ 2,

and then

𝑦 ≺ Ah {𝑓𝑘 ([𝑝
1
, 𝑧])} or End {𝑓𝑘 ([𝑝

1
, 𝑧])} ≺ 𝑦. (4)

For any 𝑘 ≥ 2, as Ah{𝑓𝑘([𝑝
1
, 𝑧])} ⪯ 𝑓𝑘(𝑝

1
) = 𝑝
1
≺ 𝑦, we

have End{𝑓𝑘([𝑝
1
, 𝑧])} ≺ 𝑦. Combining this with the fact that

𝑥 ≺ 𝑓(𝑥) holds for any 𝑥 ∈ (𝑝
1
, 𝑝
2
), it follows that

𝑝
1
≺ 𝑧 ≺ 𝑓 (𝑧) ≺ 𝑓2 (𝑧) ≺ ⋅ ⋅ ⋅ ≺ 𝑓𝑘 (𝑧) ≺ ⋅ ⋅ ⋅ ≺ 𝑦 ≺ 𝑝

2
. (5)

Take 𝛽 = sup{𝑓𝑘(𝑧) : 𝑘 ∈ N}. Clearly, 𝛽 ∈ (𝑝
1
, 𝑝
2
).

Meanwhile, it is easy to see that

𝛽 = lim
𝑘→∞

𝑓𝑘 (𝑧) = lim
𝑘→∞

𝑓 (𝑓𝑘−1 (𝑧))

= 𝑓( lim
𝑘→∞

𝑓𝑘−1 (𝑧)) = 𝑓 (𝛽) .

(6)

Case 2 (𝑧 ∈ (𝑦, 𝑝
2
)). Observing that 𝑧 ≺ 𝑓(𝑧) and𝑓(𝑝

1
) = 𝑝
1
,

we know that 𝑦 ∈ [𝑝
1
, 𝑧] ⊂ [𝑓(𝑝

1
), 𝑓(𝑧)] ⊂ 𝑓([𝑝

1
, 𝑧]).

Case 3 (𝑧 ∈ (𝑝
2
, → )). Then 𝑦 ∈ [𝑝

1
, 𝑝
2
] ⊂ 𝑓([𝑝

1
, 𝑝
2
]) ⊂

𝑓([𝑝
1
, 𝑧]).

According to Lemma 1 and Theorem 4, Corollary 5 fol-
lows immediately.

Corollary 5. If 𝑝
1
and 𝑝

2
are two adjacent fixed points of 𝑓

with 𝑝
1
≺ 𝑝
2
, then

(𝑝
1
, 𝑝
2
) ⊂ 𝑊𝑢 (𝑝

1
, 𝑓) 𝑜𝑟 (𝑝

1
, 𝑝
2
) ⊂ 𝑊𝑢 (𝑝

2
, 𝑓) . (7)

4. Separability

Lemma 6. Let𝐾 ⊂ 𝑋 be a nonempty closed interval such that
𝐾 ⊂ 𝑓(𝐾) or 𝑓(𝐾) ⊂ 𝐾. Then Fix(𝑓) ∩ 𝐾 ̸= 0.

Proof. Without loss of generality, we may assume that 𝐾 =
[𝑎, 𝑏].

When 𝑓(𝐾) ⊂ 𝐾, this holds trivially. It remains to
consider the case that 𝐾 ⊂ 𝑓(𝐾).

Since𝐾 ⊂ 𝑓(𝐾), then there exist some 𝑥, 𝑦 ∈ 𝐾 such that

𝑓 (𝑥) = 𝑎 ⪯ 𝑥, 𝑦 ⪰ 𝑏 = 𝑓 (𝑦) . (8)

(1) If 𝑓(𝑥) = 𝑥 or 𝑓(𝑦) = 𝑦, the conclusion is clear.
(2) If𝑓(𝑥) ̸= 𝑥 and𝑓(𝑦) ̸= 𝑦, then𝑓(𝑥) ≺ 𝑥 and𝑦 ≺ 𝑓(𝑦).

(𝑥; 𝑦) is an open set with endpoints 𝑥 and 𝑦. Then,
there exists an element 𝑧 in (𝑥; 𝑦) such that 𝑓(𝑧) = 𝑧.
Otherwise, it contradicts that [𝑥; 𝑦] is a connect set.

Lemma 7. Let 𝑝 is a fixed point of 𝑓 and 𝑥 ∈ 𝑊𝑢(𝑝, 𝑓). Then
𝑥 ∈ 𝑊𝑢(𝑝, 𝑓, +) if 𝑝 ≺ 𝑥 and 𝑥 ∈ 𝑊𝑢(𝑝, 𝑓, −) if 𝑥 ≺ 𝑝.

Proof. Suppose that 𝑝 ≺ 𝑥 (the case 𝑥 ≺ 𝑝 is similar).

Case 1. If 𝑝 is the smallest element of 𝑋, then 𝐾 = [𝑝, 𝑏
0
) ∈

N(𝑝) for arbitrary 𝑏
0
in 𝑋. Since 𝑥 ∈ 𝑊𝑢(𝑝, 𝑓), one has 𝑥 ∈

𝑓𝑛(𝐾) for some integer 𝑛. Thus, 𝑥 ∈ 𝑊𝑢(𝑝, 𝑓, +).

Case 2. If 𝑝 is not the smallest element of 𝑋, let 𝑝
1
is a fixed

point adjacent to𝑝with𝑝
1
≺ 𝑝 (or let arbitrary𝑝

1
in𝑋which

satisfied 𝑝
1
≺ 𝑝 if there are no fixed points which is ahead of

𝑝). Since (𝑝
1
, 𝑝) ∩ Fix(𝑓) = 𝜙, then.

(i) 𝑡 ≺ 𝑓(𝑡) for every 𝑡 in (𝑝
1
, 𝑝) or (ii) 𝑓(𝑡) ≺ 𝑡 for every

𝑡 in (𝑝
1
, 𝑝).

And because 𝑝 is a fixed point of 𝑓, one has 𝑓𝑛((𝑝
1
, 𝑝]) ⊂

(←, 𝑝] for every positive integer 𝑛.
We prove 𝑥 ∈ 𝑊𝑢(𝑝, 𝑓, +) by contradiction.
Suppose 𝑥 ∉ 𝑊𝑢(𝑝, 𝑓, +), then 𝑥 ∈ 𝑊𝑢(𝑝, 𝑓, −). There

exists a positive integer 𝑛
1
such that 𝑥 ∈ 𝑓𝑛1((𝑝

1
, 𝑝]) ⊂(←, 𝑝].

Then 𝑥 ⪯ 𝑝, a contradiction.
Thus 𝑥 ∈ 𝑊𝑢(𝑝, 𝑓, +).

Theorem 8. If 𝑓 has finitely many periodic points.
{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
} is a periodic orbit of 𝑓 with period 𝑛.

And 𝑝
𝑖
, 𝑝
𝑗
are distinct elements on the periodic orbit. Then

𝑝
𝑗
∉ 𝑊𝑢(𝑝

𝑖
, 𝑓𝑛).

Proof. According to the connectivity of the unstablemanifold
at a fixed point, it is obvious that 𝑊𝑢(𝑝

𝑖
, 𝑓𝑛) is an interval.

By resorting, one can assume that 𝑝
1
≺ 𝑝
2
≺ ⋅ ⋅ ⋅ ≺ 𝑝

𝑛
. Use

reduction to absurdity.
Suppose there exist 𝑖, 𝑗 (𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛) such that

𝑝
𝑗
∈ 𝑊𝑢(𝑝

𝑖
, 𝑓𝑛).

For arbitrary 𝑘 ∈ {1, 2, . . . , 𝑛}.
If 𝑘 = 𝑖, then

𝑝
𝑗
∈ 𝑊𝑢 (𝑝

𝑘
, 𝑓𝑛) ∩ ({𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
} \ {𝑝
𝑘
}) . (9)

If 𝑘 ̸= 𝑖, then 𝑓𝑟(𝑝
𝑖
) = 𝑝
𝑘
for some 𝑟 (1 ≤ 𝑟 ≤ 𝑛). Since 𝑓𝑟 is

a continuous map, there exists a neighborhood 𝑈 of 𝑝
𝑖
such

that𝑓𝑟(𝑈) ⊂ 𝑉 for every neighborhood𝑉 of𝑝
𝑘
. Because𝑝

𝑗
∈

𝑊𝑢(𝑝
𝑖
, 𝑓𝑛), there exists an integer 𝑠 such that 𝑝

𝑗
∈ 𝑓𝑛𝑠(𝑈).

Then

𝑓𝑟 (𝑝
𝑗
) ∈ 𝑓𝑟 (𝑓𝑛𝑠 (𝑈)) = 𝑓𝑛𝑠 (𝑓𝑟 (𝑈)) ⊂ 𝑓𝑛𝑠 (𝑉) . (10)

One has

𝑓𝑟 (𝑝
𝑗
) ∈ 𝑊𝑢 (𝑝

𝑘
, 𝑓𝑛) . (11)

Since 𝑓𝑟(𝑝
𝑖
) = 𝑝
𝑘
and 𝑝

𝑖
̸= 𝑝
𝑗
, one has 𝑓𝑟(𝑝

𝑗
) ̸= 𝑝
𝑘
. Then

𝑓𝑟 (𝑝
𝑗
) ∈ 𝑊𝑢 (𝑝

𝑘
, 𝑓𝑛) ∩ ({𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
} \ {𝑝
𝑘
}) . (12)

Combining with (9) and (12), clearly, for arbitrary 𝑘 ∈
{1, 2, . . . , 𝑛}, 𝑊𝑢(𝑝

𝑘
, 𝑓𝑛) contains at least one element of

({𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
} \ {𝑝
𝑘
}). Thus𝑊𝑢(𝑝

1
, 𝑓𝑛) is an interval which

contains 𝑝
1
and 𝑝

2
. Similarly, one has

𝑝
1
∈ 𝑊𝑢 (𝑝

2
, 𝑓𝑛) or 𝑝

3
∈ 𝑊𝑢 (𝑝

2
, 𝑓𝑛) . (13)

Next we will show that 𝑝
1
∉ 𝑊𝑢(𝑝

2
, 𝑓𝑛).
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In fact, by Lemma 7, if 𝑝
1

∈ 𝑊𝑢(𝑝
2
, 𝑓𝑛), then 𝑝

1
∈

𝑊𝑢(𝑝
2
, 𝑓𝑛, −) and 𝑝

2
∈ 𝑊𝑢(𝑝

1
, 𝑓𝑛, +). One has 𝑓𝑛𝑚(𝑥) = 𝑝

2

for some integer𝑚 and some 𝑥 in (𝑝
1
, 𝑝
2
).

Put

𝑧 = Ah {𝑥 ∈ (𝑝
1
, 𝑝
2
) : 𝑓𝑛𝑚 (𝑥) = 𝑝

2
} . (14)

For arbitrary 𝑎 in (𝑝
1
, 𝑧), there exists an element𝑥 in [𝑎, 𝑧)

such that𝑓𝑛𝑚(𝑥) ≺ 𝑝
2
(otherwise it contradicts the definition

of 𝑧).Then𝑓𝑛𝑚([𝑎, 𝑧]) contains an interval of the form [𝑏, 𝑝
2
].

Since 𝑝
1
∈ 𝑊𝑢(𝑝

2
, 𝑓𝑛, −), for the above interval [𝑏, 𝑝

2
], there

exists a positive integer 𝑠 such that 𝑝
1
∈ 𝑓𝑛𝑠([𝑏, 𝑝

2
]). And

because 𝑓𝑛𝑚([𝑎, 𝑧]) ⊃ [𝑏, 𝑝
2
], then

𝑝
1
∈ 𝑓𝑛𝑠 (𝑓𝑛𝑚 ([𝑎, 𝑧])) = 𝑓𝑛(𝑠+𝑚) ([𝑎, 𝑧]) . (15)

By 𝑓𝑛𝑚(𝑧) = 𝑝
2
, one has 𝑝

2
∈ 𝑓𝑛(𝑠+𝑚)([𝑎, 𝑧]). Then

𝑓𝑛(𝑠+𝑚) ([𝑎, 𝑧]) ⊃ [𝑝
1
, 𝑝
2
] ⊃ [𝑎, 𝑧] . (16)

So 𝑓 has a periodic point in [𝑎, 𝑧] by Lemma 6. Since 𝑎 is an
arbitrary point with 𝑝

1
≺ 𝑎 ≺ 𝑧, then 𝑓 has infinitely many

periodic points, a contradiction.
Therefore, by (13), 𝑝

3
∈ 𝑊𝑢(𝑝

2
, 𝑓𝑛).

Similar to the above discussion, it follows that

𝑝
𝑖+1

∈ 𝑊𝑢 (𝑝
𝑖
, 𝑓𝑛) for 𝑖 = 1, 2, . . . , 𝑛 − 1. (17)

In particular, 𝑝
𝑛
∈ 𝑊𝑢(𝑝

𝑛−1
, 𝑓𝑛). But𝑊𝑢(𝑝

𝑛
, 𝑓𝑛) is an inter-

val containing 𝑝
𝑛
and some elements of {𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛−1
},

then 𝑝
𝑛−1

∈ 𝑊𝑢(𝑝
𝑛
, 𝑓𝑛). By the same argument as the

preceding paragraphs, it follows that 𝑓 has infinitely many
periodic points, a contradiction.

We thus conclude that 𝑝
𝑗
∉ 𝑊𝑢(𝑝

𝑖
, 𝑓𝑛).

Remark 9. Since R is the most natural example of
CDOLOTS, Lemma 4 in [8], Lemma 3 in [8], Lemma 6 in [2],
andTheorem 8 in [2] are corollaries ofTheorem 4, Lemma 6,
Lemma 7, andTheorem 8 in this paper, respectively.

Remark 10. Practically, the results of Theorems 4 and 8 are
ture for continuous maps on compact intervals. This paper
makes it clear that topological structure of spaces has no
impact on these results, if the spaces are completely and
densely ordered.

Remark 11. The condition “𝑓 has finitely many periodic
points” in Theorem 8 cannot be removed. We will give an
example to show it.

Example 12. Triangular tent map 𝑓 : [0, 1] → [0, 1] by
𝑓(𝑥) = 2𝑥 for 0 ≤ 𝑥 ≤ 1/2 and 𝑓(𝑥) = 2−2𝑥 for 1/2 < 𝑥 ≤ 1.

As one knows, for every positive integer 𝑛, 𝑓 has periodic
pointswith period 𝑛. So𝑓has infinitelymany periodic points.

According the image of𝑓𝑛 for every positive integer 𝑛,𝑓𝑛
is a periodic functionwith period 1/2𝑛. [0, 1]was divided into
2𝑛−1 subintervals which have the same length 1/2𝑛−1. That is,
[0, 1/2𝑛−1], [1/2𝑛−1, 2/2𝑛−1], [2/2𝑛−1, 3/2𝑛−1], . . ., [(2𝑛−1 − 1)/
2𝑛−1, 1]. The image of 𝑓𝑛 on every subinterval is the same.

The image on the first subinterval [0, 1/2𝑛−1] was observed,
with 𝑓𝑛 increasing from 0 to 1 with slope 2𝑛 on [0, 1/2𝑛] and
decreasing from 1 to 0 with slope −2𝑛 on [1/2𝑛, 1/2𝑛−1]. So,
it is easy to check that there exists a positive integer 𝑛 such
that 𝑓𝑛((𝑎, 𝑏)) ⊃ [0, 1] for every open integer (𝑎, 𝑏) (there
0 ≤ 𝑎 < 𝑏 ≤ 1).

Now, we study the 2-periodic orbit {2/5, 4/5} of 𝑓. For
every 𝑈 ∈ N(4/5), let𝑈 = (𝑎, 𝑏) (there 0 ≤ 𝑎 < 4/5 < 𝑏 ≤ 1).
By the previous paragraph, there exists a positive integer 𝑛
such that 𝑓𝑛(𝑈) = [0, 1]. Then there exists an even 𝑛 such
that 2/5 ∈ 𝑓𝑛(𝑈). That is, 2/5 ∈ 𝑤𝑢(4/5, 𝑓2).
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