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This paper is introduced as a survey of result on some generalization of Banach’s fixed point and their approximations to the fixed
point and error bounds, and it contains some new fixed point theorems and applications on dualistic partial metric spaces.

1. Introduction

The partial metric spaces were introduced in [1] as a part
of the study of denotational semantics of dataflow networks.
He established the precise relationship between partialmetric
spaces and the weightable quasi-metric spaces, and proved a
partial metric generalization of Banach contraction mapping
theorem.

A partial metric [1] on a set𝑋 is a function 𝑝 : 𝑋 × 𝑋 →

[0,∞) such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

(1) 𝑥 = 𝑦 ⇔ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦);
(2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);
(3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);
(4) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) − 𝑝(𝑦, 𝑦).

A partial metric space is a pair (𝑋, 𝑝), where 𝑝 is a partial
metric on 𝑋. If 𝑝 is a partial metric on 𝑋, then the function
𝑝
𝑠

: 𝑋×𝑋 → [0,∞) given by 𝑝𝑠(𝑥, 𝑦) = 2𝑝(𝑥, 𝑦)−𝑝(𝑥, 𝑥)−
𝑝(𝑦, 𝑦) is a (usual) metric on𝑋.

Each partial metric 𝑝 on𝑋 induces a𝑇
0
topology 𝜏

𝑝
on𝑋

which has as a basis the family of open 𝑝-balls {𝐵
𝑝
(𝑥, 𝜖) : 𝑥 ∈

𝑋, 𝜖 > 0}, where 𝐵
𝑝
(𝑥, 𝜖) = {𝑦 ∈ 𝑋 : 𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑥) + 𝜖}

for all 𝑥 ∈ 𝑋 and 𝜖 > 0. Similarly, closed 𝑝-ball is defined as
𝐵
𝑝
(𝑥, 𝜖) = {𝑦 ∈ 𝑋 : 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑥) + 𝜖}.
A sequence {𝑥

𝑛
}
𝑛∈𝑁

in a partial metric space (𝑋, 𝑝)

is called a Cauchy sequence if there exists (and is finite)
lim
𝑛,𝑚
𝑝(𝑥
𝑛
, 𝑥
𝑚
) [1].

Note that {𝑥
𝑛
}
𝑛∈𝑁

is a Cauchy sequence in (𝑋, 𝑝) if and
only if it is a Cauchy sequence in the metric space (𝑋, 𝑝𝑠) [1].

A partialmetric space (𝑋, 𝑝) is said to be complete if every
Cauchy sequence {𝑥

𝑛
}
𝑛∈𝑁

in 𝑋 converges, with respect to 𝜏
𝑝

to a point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = lim
𝑛,𝑚
𝑝(𝑥
𝑛
, 𝑥
𝑚
) [1].

A mapping 𝑇 : 𝑋 → 𝑋 is said to be continuous at 𝑥
0
∈

𝑋, if for 𝜖 > 0, there exists 𝛿 > 0 such that 𝑇(𝐵
𝑝
(𝑥
0
, 𝛿)) ⊂

𝐵
𝑝
(𝑇(𝑥
0
), 𝜖) [2].

Definition 1 (see [1]). An open ball for a partial metric 𝑝 :

𝑋 × 𝑋 → [0,∞) is a set of the form 𝐵
𝑝

𝜖
(𝑥) := {𝑦 ∈ 𝑋 :

𝑝(𝑥, 𝑦) < 𝜖} for each 𝜖 > 0 and 𝑥 ∈ 𝑋.

In [3], O’Neill proposed one significant change to Matt-
hews definition of the partial metrics, and that was to extend
their range from 𝑅

+ to 𝑅. In the following, partial metrics in
the O’Neill sense will be called dualistic partial metrics and a
pair (𝑋, 𝑝) such that 𝑋 is a nonempty set and 𝑝 is a dualistic
partial metric on 𝑋 will be called a dualistic partial metric
space.

A dualistic partial metric on a set 𝑋 is a partial metric
𝑝 : 𝑋 × 𝑋 → 𝑅. A dualistic partial metric space is a pair
(𝑋, 𝑝), where 𝑝 is a dualistic partial metric on𝑋.

A quasi-metric on a set 𝑋 is a nonnegative real-valued
function 𝑑 on𝑋 × 𝑋 such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

(i) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 0 ⇔ 𝑥 = 𝑦,
(ii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦).
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Lemma 2 (see [1]). If (𝑋, 𝑝) is a dualistic partial metric space,
then the function 𝑑

𝑝
: 𝑋 × 𝑋 → 𝑅

+ defined by 𝑑
𝑝
(𝑥, 𝑦) =

𝑝(𝑥, 𝑦)−𝑝(𝑥, 𝑥), is a quasi-metric on𝑋 such that 𝜏(𝑝) = 𝜏(𝑑
𝑝
).

Lemma 3 (see [1]). A dualistic partial metric space (𝑋, 𝑝) is
complete if and only if the metric space (𝑋, (𝑑

𝑝
)
𝑠

) is complete.
Furthermore lim

𝑛→∞
(𝑑
𝑝
)
𝑠

(𝑎, 𝑥
𝑛
) = 0 if and only if 𝑝(𝑎, 𝑎) =

lim
𝑛→∞

𝑝(𝑎, 𝑥
𝑛
) = lim

𝑛,𝑚→∞
𝑝(𝑥
𝑛
, 𝑥
𝑚
).

Before stating our main results, we establish some (essen-
tially known) correspondences between dualistic partial met-
rics and quasi-metric spaces. Also refer to definition of 𝜖-
Fixed point and the existence of 𝜖-Fixed point for 𝜖 > 0. Our
basic references for quasi-metric spaces are [4, 5] and for 𝜖-
Fixed point is [6].

If 𝑑 is a quasi-metric on 𝑋, then the function 𝑑𝑠 defined
on 𝑋 × 𝑋 by 𝑑𝑠(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑥)}, is a metric on
𝑋.

Definition 4 (see [6]). Let (𝑋, 𝑝) be a dualistic partial metric
space and 𝑇 : 𝑋 → 𝑋 be a map.Then 𝑥

0
∈ 𝑋 is 𝜖-fixed point

for 𝑇 if

𝑑
𝑝
(𝑇𝑥
0
, 𝑥
0
) ≤ 𝜖. (1)

We say 𝑇 has the 𝜖-fixed point property if for every 𝜖 > 0,
𝐴𝐹(𝑇) ̸= 0 where

𝐴𝐹 (𝑇) = {𝑥
0
∈ 𝑋 : 𝑑 (𝑇𝑥

0
, 𝑥
0
) ≤ 𝜖} . (2)

Theorem 5 (see [6]). Let (𝑋, 𝑝) be a dualistic partial metric
space and 𝑇 : 𝑋 → 𝑋 be a map, 𝑥

0
∈ 𝑋 and 𝜖 > 0. If

𝑑
𝑝
(𝑇
𝑛

(𝑥
0
), 𝑇𝑛+𝑘(𝑥

0
)) → 0 as 𝑛 → ∞ for some 𝑘 > 0, then

𝑇
𝑘 has an 𝜖-fixed point.

Definition 6 (see [7]). Let 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵, be continues
map such that 𝑇(𝐴) ⊆ 𝐵, 𝑇(𝐵) ⊆ 𝐴 and 𝜖 > 0. We define
diameter 𝑃𝑎

𝑇
(𝐴, 𝐵) by

diam (𝑃
𝑎

𝑇
(𝐴, 𝐵)) = sup {𝑑 (𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑃𝑎

𝑇
(𝐴, 𝐵)} . (3)

Theorem 7 (see [1]). The partial metric contraction mapping
theorem. Let (𝑋, 𝑝) be a complete partial metric space and 𝑇 :

𝑋 → 𝑋 be a map such that for all 𝑥, 𝑦 ∈ 𝑋

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝐿𝑝 (𝑥, 𝑦) : 0 ≤ 𝐿 < 1, (4)

then 𝑇 has a unique fixed point 𝑢, and 𝑇𝑛(𝑥) → 𝑢 as 𝑛 → ∞

for each 𝑥 ∈ 𝑋.

2. Some Result Fixed Point on Partial Metric

In this section, we give some result on fixed point and 𝜖-fixed
point in dualistic partial metric space and its diameter.

Definition 8. An open ball for a dualistic partial metric 𝑝 :

𝑋 × 𝑋 → 𝑅 is a set of the form 𝐵
𝑝

𝜖
(𝑥) := {𝑦 ∈ 𝑋 : 𝑝(𝑥, 𝑦) <

𝜖} for each 𝜖 > 0 and 𝑥 ∈ 𝑋.

Definition 9. Let 𝑇 be a mapping of a complete dualistic par-
tial metric 𝑋 into itself [𝑇 : 𝑋 → 𝑋], then 𝑇 is called

a partial metric contractionmapping if there exists a constant
𝐿, 0 ≤ 𝐿 < 1, such that 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝐿𝑝(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋.

Theorem 10. Every contraction mapping 𝑇 defined on a
complete dualistic partial metric𝑋 into itself has a unique fixed
point 𝑢 ∈ 𝑋. Moreover, if 𝑥

0
is any point in𝑋 and the sequence

𝑥
𝑛
is defined by

𝑥
1
= 𝑇 (𝑥

0
) , 𝑥

2
= 𝑇 (𝑥

1
) , . . . , 𝑥

𝑛
= 𝑇 (𝑥

𝑛−1
) , (5)

then lim
𝑛→∞

𝑥
𝑛
= 𝑢 and

𝑝 (𝑥
𝑛
, 𝑢) ≤

𝐿
𝑛

1 − 𝐿
𝑝 (𝑥
1
, 𝑥
0
) : 0 ≤ 𝐿 < 1. (6)

Proof. Existence of a fixed point. Let 𝑥
0
be an arbitrary point

in 𝑋, and we defined by 𝑥
1
= 𝑇(𝑥

0
), 𝑥
2
= 𝑇(𝑥

1
), . . ., 𝑥

𝑛
=

𝑇(𝑥
𝑛−1

). Then,

𝑥
2
= 𝑇 (𝑥

1
) = 𝑇 (𝑇 (𝑥

0
)) = 𝑇

2

(𝑥
0
)

𝑥
3
= 𝑇 (𝑥

2
) = 𝑇 (𝑇 (𝑥

1
)) = 𝑇 (𝑇 (𝑇 (𝑥

0
))) = 𝑇

3

(𝑥
0
)

...

𝑥
𝑛
= 𝑇
𝑛

(𝑥
0
) .

(7)

If𝑚 > 𝑛, say𝑚 = 𝑛 + 𝛼, 𝛼 = 1, 2, 3, . . ..
Then

𝑝 (𝑥
𝑛
+ 𝛼, 𝑥

𝑛
) = 𝑝 (𝑇

𝑛+𝛼

(𝑥
0
) , 𝑇
𝑛

(𝑥
0
))

= 𝑝 (𝑇 (𝑇
𝑛+𝛼−1

(𝑥
0
)) , 𝑇 (𝑇

𝑛−1

(𝑥
0
)))

≤ 𝐿𝑝 (𝑇
𝑛+𝛼−1

(𝑥
0
) , 𝑇
𝑛−1

(𝑥
0
)) .

(8)

Continuing this process 𝑛 − 1 times, we have

𝑝 (𝑥
𝑛+𝛼

, 𝑥
𝑛
) ≤ 𝐿
𝑛

𝑝 (𝑇
𝛼

(𝑥
0
) , 𝑥
0
) (9)

for 𝑛 = 0, 1, 2, . . ., and all 𝛼 ≥ 1.
However,

𝑝 (𝑇
𝛼

(𝑥
0
) , 𝑥
0
) ≤ 𝑝 (𝑇

𝛼

(𝑥
0
) , 𝑇
𝛼−1

(𝑥
0
))

+ 𝑝 (𝑇
𝛼−1

(𝑥
0
) , 𝑇
𝛼−2

(𝑥
0
)) + ⋅ ⋅ ⋅

+ 𝑝 (𝑇 (𝑥
0
) , 𝑥
0
) .

(10)

Therefore, we see that

𝑝 (𝑥
𝑛+𝛼

, 𝑥
𝑛
)

≤ 𝐿
𝑛

[𝐿
𝛼−1

𝑝 (𝑥
1
, 𝑥
0
) + 𝐿
𝛼−2

𝑝 (𝑥
1
, 𝑥
0
) + ⋅ ⋅ ⋅ + 𝑝 (𝑥

1
, 𝑥
0
)]

≤ 𝐿
𝑛

𝑝 (𝑥
1
, 𝑥
0
) [1 + 𝐿 + 𝐿

2

+ ⋅ ⋅ ⋅ + 𝐿
𝛼−1

+ 𝐿
𝛼

] .

(11)

Hence,

𝑝 (𝑥
𝑛+𝛼

, 𝑥
𝑛
) ≤ 𝐿
𝑛

𝑝 (𝑥
1
, 𝑥
0
)

1

1 − 𝐿
. (12)
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As 𝑛, 𝑚 = 𝑛 + 𝛼 → ∞, from (12), we see that
𝑝(𝑥
𝑛+𝛼

, 𝑥
𝑛
) → 0; that is, {𝑥

𝑛
} is a Cauchy sequence in

the metric space 𝑋. Hence, {𝑥
𝑛
} must be convergent, say

lim
𝑛→∞

𝑥
𝑛
= 𝑢.

Since 𝑇 is continuous, we have

𝑇𝑢 = 𝑇( lim
𝑛→∞

𝑥
𝑛
) = lim
𝑛→∞

𝑇 (𝑥
𝑛
) = lim
𝑛→∞

𝑥
𝑛+1

(13)

or 𝑇𝑢 = 𝑢. Thus, 𝑢 is a fixed point of 𝑇.
Uniqueness of the fixed point 𝑇.
Let V be another fixed point of 𝑇. Then 𝑇V = V. We also

have 𝑝(𝑇(𝑢), 𝑇(V)) ≤ 𝐿𝑝(𝑢, V). But 𝑝(𝑇(𝑢), 𝑇(V)) = 𝑝(𝑢, V)
which implies that 𝑝(𝑢, V) ≤ 𝐿𝑝(𝑢, V) where 0 ≤ 𝐿 < 1. This
is possible only when 𝑝(𝑢, V) = 0, that is, 𝑢 = V. This proves
that the fixed point of 𝑇 is unique.

Corollary 11. Let (𝑋, 𝑝) be a complete dualistic partial metric
space and 𝐵𝑝

𝑟
(𝑥
0
) := {𝑦 ∈ 𝑋 : 𝑝(𝑥

0
, 𝑦) < 𝑟}. Let 𝑇 : 𝐵

𝑝

𝑟
→ 𝑋

be a partial metric contraction mapping If 𝑝(𝑇𝑦
0
, 𝑦
0
) < (1 −

𝐿)𝑟, then 𝑇 has a fixed point.

Proof. Choose 𝑟 < 𝜖 so that 𝑝(𝑇𝑦
0
, 𝑦
0
) ≤ (1 − 𝐿)𝑟 < (1 − 𝐿)𝜖.

We show that 𝑇 maps the closed ball 𝐾 = {𝑦 : 𝑝(𝑦, 𝑦
0
) ≤ 𝜖}

into itself; for if 𝑦 ∈ 𝐾, then

𝑝 (𝑇 (𝑦) , 𝑦
0
) ≤ 𝑝 (𝑇 (𝑦) , 𝑇 (𝑦

0
)) + 𝑝 (𝑇 (𝑦

0
) , 𝑦
0
)

≤ 𝐿𝑝 (𝑦, 𝑦
0
) + (1 − 𝐿) 𝜖

≤ 𝐿𝜖 + 𝜖 − 𝐿𝜖 = 𝜖.

(14)

Since 𝐾 is complete and 𝑇 : 𝐾 → 𝐾 satisfy in (5) thus by
Theorem 10, 𝑇 has a fixed point.

Theorem 12. If 𝑋 is a complete dualistic partial metric space,
and 𝑇 : 𝑋 → 𝑋 is such that 𝑇𝑟 is contraction for some integer
𝑟 > 0, then 𝑇𝑟 has an unique fixed point.

Proof. Since 𝑇𝑟, where 𝑟 is a positive integer, is a contraction
mapping by Theorem 10, there exists an unique fixed point 𝑢
of 𝑇𝑟, that is, 𝑇𝑟(𝑢) = 𝑢. We want to show that 𝑢 ia a fixed
point of 𝑇, that is, 𝑇(𝑢) = 𝑢. Let 𝑆 = 𝑇

𝑟; therefore, 𝑆(𝑢) = 𝑢.
This implies that

𝑆
2

(𝑢) = 𝑆 (𝑆 (𝑢)) = 𝑆 (𝑢) = 𝑢,

𝑆
3

(𝑢) = 𝑆
2

(𝑆 (𝑢)) = 𝑆
2

(𝑢) ℎ = 𝑢,

𝑆
𝑛

(𝑢) = 𝑆
𝑛−1

(𝑆 (𝑢)) = 𝑆
𝑛−1

(𝑢) = ⋅ ⋅ ⋅ = 𝑢,

(15)

and so 𝑇(𝑢) = 𝑇(𝑆𝑛(𝑢)) = 𝑠𝑛(𝑇(𝑢)) = 𝑠𝑛𝑦 say

𝑝 (𝑆
𝑛

(𝑦) , 𝑢) = 𝑝 (𝑆
𝑛

(𝑦) , 𝑆
𝑛

(𝑢))

≤ 𝐿𝑝 (𝑆
𝑛−1

(𝑦) , 𝑆
𝑛−1

(𝑢))

≤ 𝐿
2

𝑝 (𝑆
𝑛−2

(𝑦) , 𝑆
𝑛−2

(𝑢))

...

≤ 𝐿
𝑛

𝑝 (𝑦, 𝑢) ,

lim
𝑛→∞

𝑝 (𝑆
𝑛

(𝑦) , 𝑢) = 0,

(16)

as 𝐿𝑛 → 0. Thus, lim
𝑛→∞

𝑆
𝑛

(𝑦) = 𝑢 and we have 𝑇(𝑢) =
𝑢.

Theorem 13. Let (𝑋, 𝑝) is a complete dualistic partial metric
space, and let 𝑇 : 𝑋 → 𝑋 and 𝑆 : 𝑋 → 𝑋 be two maps
contraction. If for every 𝑥 ∈ 𝑋,

𝑝 (𝑇𝑥, 𝑆𝑦) ≤ 𝜆, (17)

𝜆 > 0, chosen suitably. Then for every 𝑥 ∈ 𝑋,

𝑝 (𝑇
𝑚

(𝑥) , 𝑆
𝑚

(𝑥)) ≤ 𝜆
1 − 𝐿
𝑚

1 − 𝐿
: 0 ≤ 𝐿 < 1,

𝑚 = 1, 2, . . . .

(18)

Proof. The relation is true for 𝑚 = 1. We use the principle of
induction in order to prove this relation. Let it be true for all
𝑚 ≥ 1. Then

𝑝 (𝑇
𝑛+1

(𝑥) − 𝑆
𝑛+1

(𝑥)) = 𝑝 (𝑇𝑇
𝑚

(𝑥) , 𝑆𝑆
𝑚

(𝑥))

≤ 𝑝 (𝑇𝑇
𝑚

(𝑥) , 𝑇𝑆
𝑚

(𝑥))

+ 𝑝 (𝑇𝑆
𝑚

(𝑥) , 𝑆𝑆
𝑚

(𝑥))

≤ 𝐿𝑝 (𝑇
𝑚

(𝑥) , 𝑆
𝑚

(𝑥)) + 𝜆

≤ 𝐿𝜆
1 − 𝐿
𝑚

1 − 𝐿
+ 𝜆

=
𝐿𝜆 − 𝐿

𝑚+1

𝜆 + 𝜆 − 𝐿𝜆

1 − 𝐿

= 𝜆
1 − 𝐿
𝑚+1

1 − 𝐿
.

(19)

Thus, the relation is true for𝑚 + 1.

Corollary 14. Let (𝑋, 𝑝) is a complete dualistic partial metric
space and let 𝑇 : 𝑋 → 𝑋 be a partial contractive map on 𝑋.
Moreover, the iteration sequence 𝑥

1
= 𝑇(𝑥

0
), 𝑥
2
= 𝑇(𝑥

1
) =

𝑇
2

𝑥
0
, . . ., 𝑥

𝑛
= 𝑇
𝑛

𝑥
0
, . . . with arbitrary 𝑥

0
∈ 𝑋 converges to

the unique fixed point 𝑢 of 𝑇. Error estimate is the following
estimate (prior estimate):

𝑝 (𝑥
𝑚
, 𝑢) ≤

𝐿
𝑚

1 − 𝐿
𝑝 (𝑥
0
, 𝑥
1
) , (20)

and the posterior estimate

𝑝 (𝑥
𝑚
, 𝑢) ≤

𝐿

1 − 𝐿
𝑝 (𝑥
𝑚−1

, 𝑥
𝑚
) . (21)
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Proof. The First statement is obvious by

𝑝 (𝑥
𝑚
, 𝑥
𝑛
) ≤ 𝑝 (𝑥

𝑚
, 𝑥
𝑚+1

) + 𝑝 (𝑥
𝑚+1

, 𝑥
𝑚+2

) + ⋅ ⋅ ⋅

+ 𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)

≤ (𝐿
𝑚

+ 𝐿
𝑚+1

+ ⋅ ⋅ ⋅ + 𝐿
𝑛−1

) 𝑝 (𝑥
0
, 𝑥
1
) .

(22)

Thus

𝑝 (𝑥
𝑚
, 𝑥
𝑛
) ≤

𝐿
𝑚

1 − 𝐿
𝑝 (𝑥
0
, 𝑥
1
) (𝑛 > 𝑚) . (23)

Now, inequality (20) follows from (23) by letting 𝑛 → ∞.
We have

𝑝 (𝑥
𝑚
, 𝑢) ≤

𝐿
𝑚

1 − 𝐿
𝑝 (𝑥
0
, 𝑥
1
) . (24)

Now, for inequality (21) taking 𝑚 = 1 and writing 𝑦
0
for

𝑥
0
and 𝑦

1
for 𝑥
1
, we have from (23)

𝑝 (𝑦
1
, 𝑢) ≤

𝐿

1 − 𝐿
𝑝 (𝑦
0
, 𝑦
1
) . (25)

Setting 𝑦
0
= 𝑥
𝑚−1

, we have 𝑦
1
= 𝑇𝑦
0
= 𝑥
𝑚
and obtain (21).

Corollary 15. Let (𝑋, 𝑝) be a complete dualistic partial metric
space and let 𝑇 : 𝑋 → 𝑋 be a contraction on a closed ball
𝐵 = 𝐵(𝑥

0
, 𝑟) = {𝑥 : 𝑝(𝑥, 𝑥

0
) ≤ 𝑟}. Moreover, assume that

𝑝(𝑥
0
, 𝑇x
0
) < (1−𝐿)𝑟.Then, prior error estimate is the following

estimate:

𝑝 (𝑥
𝑚
, 𝑢) ≤ 𝐿

𝑚

𝑟, (26)

and the posterior estimate

𝑝 (𝑥
𝑚
, 𝑢) ≤ 𝐿𝑟. (27)

Proof. By Corollary 11 the iteration sequence as (5) is con-
verges to the unique fixed point 𝑢 of𝑇; hence, byCorollary 14,
we have

𝑝 (𝑥
𝑚
, 𝑢) ≤

𝐿
𝑚

1 − 𝐿
𝑝 (𝑥
0
, 𝑥
1
) , (28)

since 𝑥
1
= 𝑇𝑥
0
and 𝑝(𝑥

0
, 𝑇𝑥
0
) < (1 − 𝐿)𝑟, we have

𝑝 (𝑥
𝑚
, 𝑢) ≤

𝐿
𝑚

1 − 𝐿
𝑝 (𝑥
0
, 𝑥
1
)

=
𝐿
𝑚

1 − 𝐿
𝑝 (𝑥
0
, 𝑇𝑥
0
)

<
𝐿
𝑚

1 − 𝐿
⋅ (1 − 𝐿) 𝑟

= 𝐿
𝑚

⋅ 𝑟.

(29)

Therefore 𝑝(𝑥
𝑚
, 𝑢) < 𝐿

𝑚

𝑟. Also, by Corollary 14 we have

𝑝 (𝑥
𝑚
, 𝑢) ≤

𝐿

1 − 𝐿
𝑝 (𝑥
𝑚−1

, 𝑥
𝑚
) , (30)

since 𝑥
𝑚−1

= 𝑇
𝑚−1

𝑥
0
and 𝑝(𝑥

0
, 𝑇𝑥
0
) < (1 − 𝐿)𝑟, we have

𝑝 (𝑥
𝑚
, 𝑢) ≤

𝐿

1 − 𝐿
𝑝 (𝑥
𝑚−1

, 𝑥
𝑚
)

=
𝐿

1 − 𝐿
𝑝 (𝑇
𝑚−1

𝑥
0
, 𝑇
𝑚

𝑥
0
)

=
𝐿

1 − 𝐿
𝑝 (𝑇
𝑚−1

𝑥
0
, 𝑇 (𝑇

𝑚−1

𝑥
0
))

<
𝐿

1 − 𝐿
(1 − 𝐿) 𝑟

< 𝐿𝑟.

(31)

Therefore 𝑝(𝑥
𝑚
, 𝑢) < 𝐿𝑟.

3. Applications of Banach Contraction
Principle on Complete Dualistic Partial
Metric Space

In this section, we apply Theorem 10 to prove existence of
the solutions a system of 𝑛 linear algebraic equations with 𝑛
unknowns, and we show that applied of Corollaries 14 and 15
in numerical analysis.

3.1. Application 3.1. Suppose we want to find the solution of a
system of 𝑛 linear algebraic equations with 𝑛 unknowns, then

𝑎
11
𝑥
1
+ 𝑎
12
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

1𝑛
𝑥
𝑛
= 𝑏
1

𝑎
21
𝑥
1
+ 𝑎
22
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

2𝑛
𝑥
𝑛
= 𝑏
2

...

𝑎
𝑛1
𝑥
1
+ 𝑎
𝑛2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛𝑛
𝑥
𝑛
= 𝑏
𝑛
.

(32)

This system can be written as

𝑥
1
= (1 − 𝑎

11
) 𝑥
1
− 𝑎
12
𝑥
2
− 𝑎
13
𝑥
3
− ⋅ ⋅ ⋅ − 𝑎

1𝑛
𝑥
𝑛
+ 𝑏
1

𝑥
2
= −𝑎
21
𝑥
1
+ (1 − 𝑎

22
) 𝑥
2
− 𝑎
23
𝑥
3
− ⋅ ⋅ ⋅ − 𝑎

2𝑛
𝑥
𝑛
+ 𝑏
2

𝑥
3
= −𝑎
31
𝑥
1
− 𝑎
3
2𝑥
3
+ (1 − 𝑎

33
) 𝑥
3
− ⋅ ⋅ ⋅ − 𝑎

3𝑛
𝑥
𝑛
+ 𝑏
3

...

𝑥
𝑛
= −𝑎
𝑛1
𝑥
1
− 𝑎
𝑛2
𝑥
2
− 𝑎
𝑛3
𝑥
3
− ⋅ ⋅ ⋅ + (1 − 𝑎

𝑛𝑛
) 𝑥
𝑛
+ 𝑏
𝑛
.

(33)

By assuming 𝛼
𝑖𝑗
= −𝑎
𝑖𝑗
+ 𝛿
𝑖𝑗
, where

𝛿
𝑖𝑗
= {

0 𝑖 ̸= 𝑗

1 𝑖 = 𝑗.
(34)

Equation (33) can bewritten in the following equivalent form:

𝑥
𝑖
=

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝑥
𝑗
+ 𝑏
𝑖
, 𝑖 = 1, 2, 3, . . . , 𝑛. (35)
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If 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛 then (35) can be written in the

form 𝑇𝑥 = 𝑥, where 𝑇 is defined by

𝑇𝑥 = 𝑦, where 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) , (36)

𝑦
𝑖
=

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝑥
𝑗
+ 𝑏
𝑖
, 𝑖 = 1, 2, 3, . . . , 𝑛,

𝑇 : 𝑅
𝑛

󳨀→ 𝑅
𝑛

, (𝛼
𝑖𝑗
) is a 𝑛 × 𝑛 matrix.

(37)

Finding solutions of the system described by (32) or (35)
is thus equivalent to finding the fixed point of the operator
equation, (36). In order to find a unique solution of 𝑇, that
is, a unique solution of (32), we apply Theorem 10. In fact,
we prove the following result. Equation (32) has a unique
solution, if

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
=

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
−𝑎
𝑖𝑗
+ 𝛿
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝐿 < 1, 𝑖 = 1, . . . , 𝑛. (38)

For 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) and 𝑥󸀠 = (𝑥󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
), we have

𝑝 (𝑇𝑥, 𝑇𝑥
󸀠

) = 𝑝 (𝑦, 𝑦
󸀠

) , (39)

where

𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑅
𝑛

,

𝑦
󸀠

= (𝑦
󸀠

1
, 𝑦
󸀠

2
, . . . , 𝑦

󸀠

𝑛
) ∈ 𝑅
𝑛

,

𝑦
𝑖
=

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝑥
𝑗
+ 𝑏
𝑖
,

𝑦
󸀠

𝑖
=

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝑥
󸀠

𝑗
+ 𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(40)

If 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑅

𝑛, then 𝑝(𝑦, 𝑦) = sup
1≤𝑖≤𝑛

|𝑦
𝑖
|.

Therefore,

𝑝 (𝑇𝑥, 𝑇𝑥
󸀠

) = sup
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑖
− 𝑦
󸀠

𝑖

󵄨󵄨󵄨󵄨󵄨

= sup
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝑥
𝑗
+ 𝑏
𝑖
−

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝑥
󸀠

𝑗
− 𝑏
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
(𝑥
𝑗
− 𝑥
󸀠

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ sup
1≤𝑖≤𝑛

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
− 𝑥
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

≤ sup
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
− 𝑥
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨
sup
1≤𝑖≤𝑛

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

≤ 𝐿 sup
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
− 𝑥
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨
.

(41)

Since 𝑝(𝑥, 𝑥󸀠) = sup
1≤𝑗≤𝑛

|𝑥
𝑗
− 𝑥
󸀠

𝑗
|, we have 𝑝(𝑇𝑥, 𝑇𝑥󸀠) ≤

𝐿𝑝(𝑥, 𝑥
󸀠

), 0 ≤ 𝐿 < 1, that is, 𝑇 is a contraction mapping of

the complete dualistic partial metric space 𝑅
𝑛 into itself.

Hence, by Theorem 10, there exists a unique fixed point 𝑢 of
𝑇 in 𝑅𝑛, that is, 𝑢 is a unique solution of (32).

Theorem 16. If 𝑓(𝑡) is a nonlinear integral equation as the
following:

𝑓 (𝑡) = ∫

𝑡

0

𝑒
−V𝑡 cos (𝛼𝑓 (V)) 𝑑V, 0 ≤ 𝑡 ≤ 1; 0 < 𝛼 < 1,

(42)

then it has a unique solution.

Proof. We apply Theorem 10 and we can prove that this
equation has a unique continuous real-valued solution 𝑓(𝑡).
Let 𝑋 = 𝐶[0, 1] and the mapping 𝑇 : 𝑋 → 𝑋, defined by
𝑇(𝑓) = 𝑓 for 𝑓 ∈ 𝑋, where 𝑋 is a complete dualistic partial
metric space with sup 𝑝(𝑥, 𝑦), is a contraction mapping:

cos (𝛼𝑎) − cos (𝛼𝑏) = 𝛼 (𝑏 − 𝑎) sin𝛽, (43)

where 𝛽 lies between 𝛼𝑎 and 𝛼𝑏. Therefore, | cos(𝛼𝑎) −
cos(𝛼𝑏)| ≤ 𝛼|𝑏 − 𝑎|. For functions 𝑎(𝑡) and 𝑏(𝑡); we get

|cos𝛼𝑎 (𝑡) − cos𝛼𝑏 (𝑡)| ≤ sup
0≤𝑡≤1

|𝑎 (𝑡) − 𝑏 (𝑡)| = 𝑝 (𝑎, 𝑏) .

(44)

For 𝑓 = 𝑇𝑓 and 𝑔 = 𝑇𝑔, we have

󵄨󵄨󵄨󵄨𝑇𝑓 − 𝑇𝑔
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑒
−V𝑡 󵄨󵄨󵄨󵄨cos (𝛼𝑓 (V)) − cos (𝛼𝑔 (V))󵄨󵄨󵄨󵄨 𝑑V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

𝑒
−V𝑡 󵄨󵄨󵄨󵄨cos (𝛼𝑓 (V)) − cos (𝛼𝑔 (V))󵄨󵄨󵄨󵄨 𝑑V

≤ 𝛼𝑝 (𝑓, 𝑔) ∫

𝑡

0

𝑒
−V𝑡
𝑑V ≤ 𝛼𝑝 (𝑓, 𝑔) .

(45)

Taking sup over 0 ≤ 𝑡 ≤ 1, we get

sup
𝑡

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑡) − 𝑇𝑔 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝛼𝑝 (𝑓, 𝑔) (46)

or

𝑝 (𝑇 (𝑓) , 𝑇 (𝑔)) ≤ 𝛼𝑝 (𝑓, 𝑔) . (47)

Theorem 17. Let 𝑥
0
be an initial value and the iterative

sequence {𝑥
𝑛
} as the following:

𝑥
𝑛
= 𝑔 (𝑥

𝑛−1
) 𝑛 = 1, 2, . . . . (48)

If 𝑔 is continuously differentiable on some interval 𝐾 = [𝑥
0
−

𝑟, 𝑥
0
+ 𝑟] and satisfies |𝑔󸀠(𝑥)| ≤ 𝐿 < 1 on 𝐾 as well as

󵄨󵄨󵄨󵄨𝑔 (𝑥0) − 𝑥0
󵄨󵄨󵄨󵄨 < (1 − 𝐿) 𝑟, (49)

then 𝑥 = 𝑔(𝑥) has a unique solution 𝑢 on 𝐾, the iterative
sequence {𝑥

𝑚
} converges to that solution, and one has the error

estimates
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝑚

󵄨󵄨󵄨󵄨 < 𝐿
𝑚

𝑟,
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝑚

󵄨󵄨󵄨󵄨 < 𝐿𝑟. (50)
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Proof. Suppose that 𝑝(𝑥, 𝑔(𝑥)) = |𝑥 − 𝑔(𝑥)| for 𝑥 ∈ 𝐾.
By the mean-value theorem and the given condition, 𝑔(𝑥)
is a contraction mapping of the complete dualistic partial
metric space𝐾 into itself. Hence, by Corollary 11, there exists
a unique fixed point 𝑢 of 𝑔 in𝐾, that is, 𝑢 is a unique solution
of 𝑥 = 𝑔(𝑥). Also, the iteration sequence {𝑥

𝑚
} converges to 𝑢.

Moreover, by 𝑝(𝑥, 𝑔(𝑥)) = |𝑥 − 𝑔(𝑥)| and Corollary 15, it has
the prior error estimate

󵄨󵄨󵄨󵄨𝑥 − 𝑥𝑚
󵄨󵄨󵄨󵄨 ≤ 𝐿
𝑚

𝑟, (51)

and the posterior estimate
󵄨󵄨󵄨󵄨𝑥 − 𝑥𝑚

󵄨󵄨󵄨󵄨 ≤ 𝐿𝑟. (52)
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