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Electromagnetic TEwave propagation in an inhomogeneous nonlinear cylindrical waveguide is considered.The permittivity inside
the waveguide is described by the Kerr law. Inhomogeneity of the waveguide is modeled by a nonconstant term in the Kerr law.
Physical problem is reduced to a nonlinear eigenvalue problem for ordinary differential equations. Existence of propagating waves
is proved with the help of fixed point theorem and contracting mapping method. For numerical solution, an iteration method
is suggested and its convergence is proved. Existence of eigenvalues of the problem (propagation constants) is proved and their
localization is found. Conditions of k waves existence are found.

1. Introduction

Electromagnetic wave propagation in linear (homogeneous
and inhomogeneous) waveguide plane layers and cylindrical
waveguides with circular cross section is of particular interest
in linear optics (see, e.g., [1, 2]). In nonlinear optics, waveg-
uides (plane and cylindrical) filled with nonlinear medium
have been the focus of a number of studies [3–11]. However,
many of researches are devoted to study homogeneous nonlin-
ear waveguides [6–11].

Problems of electromagnetic wave propagation in non-
linear waveguides (plane and cylindrical) lead to nonlinear
boundary and transmission eigenvalue problems for ordinary
differential equations. Eigenvalues in these problems corre-
spond to propagation constants of the waveguides. In these
problems differential equations depend nonlinearly either on
sought-for functions and the spectral parameter. Boundary
and/or transmission conditions depend nonlinearly on the
spectral parameter. The main goal is to prove existence of
eigenvalues and determine their localization. Existence and
localization can be derived from the dispersion equation
(DE). DE is an equation with respect to spectral parameter.
There are two ways to obtain the DE. The first one is
to integrate the differential equations and obtain, using
boundary and/or transmission conditions, the DE. This way

is of very limited applicability, as it is very rarely possible
to find explicit solutions of nonlinear differential equations.
However, there are some problems in which this way works
(see, e.g., [10, 12, 13]). The second one is a very general
approach based on reduction of the differential equations to
integral equations using the Green function. This approach
we call integral equation approach.Herewe consider this very
method. Inspite of the fact that by this method the DE is
found in an implicit form, it is possible to prove existence of
eigenvalues and find their localization.

Electromagnetic guided waves in a cylindrical waveguide
with Kerr nonlinearity are considered in [6]. It is one of the
first studies, which we know about, where electromagnetic
wave propagation in nonlinear medium is considered in
a rigorous electromagnetic statement. Then there were a
lot of researches devoted to study Kerr nonlinearity in
homogeneous plane and cylindrical waveguides. For more
details, about Kerr nonlinearity and homogeneous plane
and cylindrical waveguides see the following references: TE
guidedwaves in a plane layer were investigated in [12, 14], and
additional results were obtained in [13]; TM guided waves in
a plane layer were investigated in [15–20]; TE guided waves
in a cylindrical waveguide were investigated in [21–23]; TM
guided waves in a cylindrical waveguide were investigated in
[24].
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Inmost cases it is very difficult (if at all possible) to obtain
exact solutions of the equations in nonlinear waveguiding
problems. However, integral equation approach can help in
this case [21–25]. In this approach a problem is reduced to
an integral equation whose kernel depends on the Green
function of the linear part of the differential equations of the
problem. Two circumstances are important for the following
analysis. First, in the case of a homogeneous waveguide
this Green function can be found explicitly. Second, the
dispersion equation of the nonlinear homogeneous case can
be written as DElin + 𝑇nonlin = 0, where DElin is a linear
problem term and 𝑇nonlin is an extra nonlinear term. Here the
linear problem term is written in an explicit form. Moreover,
the equation DElin = 0 is well known and examined DE for
the linear problem. Its roots are also known. All this allows
to prove existence of the nonlinear problem solutions at least
near to the linear problem solutions.

Here we investigate guided waves in a nonlinear inhomo-
geneous cylindrical waveguide filled with Kerr medium. The
waveguide is placed in cylindrical coordinate system 𝑂𝜌𝜑𝑧,
where axis 𝑧 coincides with axis of the waveguide. Inhomo-
geneity is modeled by a function that depends on radius of
the waveguide. The permittivity inside the waveguide is 𝜀 =
𝜀
2
(𝜌)+𝑎|E|2, where 𝜀

2
(𝜌) is the inhomogeneity, 𝑎 is a constant

in the Kerr law, and E is complex amplitude. If 𝜀
2
(𝜌) ≡

const we have a nonlinear homogeneous waveguide. The
nonconstant term 𝜀

2
(𝜌) dramatically changes the situation.

In this case we cannot find explicitly the necessary Green
function, so we investigate it in an implicit form. The
dispersion equation of the nonlinear inhomogeneous case
can be also written as DElin + 𝑇nonlin = 0. However, in this
case the term DElin is written in an implicit form as opposed
to the case of a homogeneous waveguide, and its roots are
unknown. So, at first, we prove that the equation for the
linear inhomogeneous problem DElin = 0 has roots and
define localization of the roots.Then we prove that nonlinear
problem has solutions.

Integral equation approach has been already used for a
nonlinear inhomogeneous waveguiding problem [26]. How-
ever in study [26] authors apply integral equation approach
in the way as they would solve the problem for a homoge-
neous waveguide. To be precise, the authors use the Green
function for constant 𝜀

2
that helps them to determine the

Green function in explicit form. We pay heed that there
are no theoretical results (existence of eigenvalues and their
localization) in [26]. We emphasize that for inhomogeneous
waveguides important and general results can be obtained
with the method we use in this paper in which the Green
function has implicit form.

In spite of the fact that the method here looks similar to
the method in [21–24], we solve radically different problem,
as we consider inhomogeneous nonlinear waveguide.

2. Statement of the Problem

Let us consider three-dimensional space R3 with cylindrical
coordinate system 𝑂𝜌𝜑𝑧. The space is filled by isotropic
medium with constant permittivity 𝜀

1
≥ 𝜀
0
, where 𝜀

0
is

the permittivity of free space. In this medium a cylindrical

waveguide is placed. The waveguide is filled by isotropic
nonmagnetic medium and has cross section 𝑊 := {(𝜌, 𝜑) :
𝜌
2
< 𝑅
2
, 0 ≤ 𝜑 < 2𝜋} and its generating line (the

waveguide axis) is parallel to the axis 𝑂𝑧. We will consider
electromagnetic waves propagating along the waveguide axis.
Everywhere below 𝜇 = 𝜇

0
is the permeability of free space.

We use Maxwell’s equations in the following form [27]:

rot H̃ = 𝜕
𝑡
D̃,

rot Ẽ = −𝜕
𝑡
B̃,

(1)

where D̃ = 𝜀Ẽ, B̃ = 𝜇H̃, and 𝜕
𝑡
= 𝜕/𝜕𝑡. Field (Ẽ, H̃) is the total

field.
From formulae (1), we obtain

rot Ẽ = −𝜕
𝑡
(𝜇H̃) ,

rot H̃ = 𝜕
𝑡
(𝜀Ẽ) .

(2)

Real monochromatic field (Ẽ, H̃) in the medium can be
written in the following form:

Ẽ (𝜌, 𝜑, 𝑧, 𝑡) = E+ (𝜌, 𝜑, 𝑧) cos𝜔𝑡 + E− (𝜌, 𝜑, 𝑧) sin𝜔𝑡,

H̃ (𝜌, 𝜑, 𝑧, 𝑡) = H+ (𝜌, 𝜑, 𝑧) cos𝜔𝑡 +H− (𝜌, 𝜑, 𝑧) sin𝜔𝑡,
(3)

where 𝜔 is circular frequency; E+, E−, H+, and H− are real
required vectors.

Let us form complex amplitudes E,H:

E = E+ + 𝑖E−, H = H+ + 𝑖H−. (4)

It is clear that

Ẽ = Re {E𝑒−𝑖𝜔𝑡} , H̃ = Re {H𝑒−𝑖𝜔𝑡} , (5)

where

E = (𝐸
𝜌
, 𝐸
𝜑
, 𝐸
𝑧
)

𝑇

, H = (𝐻
𝜌
, 𝐻
𝜑
, 𝐻
𝑧
)

𝑇

, (6)

and components in (6) depend on three spatial variables.
It is known (see, e.g., [3, 6, 28]) that Kerr law in isotropic

medium for a monochromatic wave E𝑒−𝑖𝜔𝑡 has the form 𝜀 =
𝜀
2
+𝑎|E|2, where E is complex amplitude, 𝜀

2
is a constant part

of the permittivity 𝜀, 𝑎 is the coefficient of nonlinearity.
We obtain that in this case dependence of Maxwell’s

equations on 𝑡 is the same as in the case of constant 𝜀 inside
the waveguide.This allows us to writeMaxwell’s equations (2)
in the form

rot (E𝑒−𝑖𝜔𝑡) = 𝑖𝜔𝜇H𝑒−𝑖𝜔𝑡,

rot (H𝑒−𝑖𝜔𝑡) = −𝑖𝜔𝜀E𝑒−𝑖𝜔𝑡.
(7)

Complex amplitudes (4) satisfy the Maxwell equations

rotE = 𝑖𝜔𝜇H,

rotH = −𝑖𝜔𝜀E,
(8)

the continuity condition for the tangential components on
the media interfaces (on the boundary of the waveguide) and
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Figure 1: Geometry of the problem.

the radiation condition at infinity: the electromagnetic field
exponentially decays as 𝜌 → ∞.

The permittivity in the entire space has the form

𝜀 = 𝜀
0
{

𝜀
1
, 𝜌 > 𝑅

𝜀
2
(𝜌) + 𝑎|E|2, 𝜌 < 𝑅,

(9)

where 𝑎 is a real positive value, 𝜀
2
(𝜌) > 𝜀

1
. Here 𝜀

2
(𝜌) is a

linear part of the permittivity.
The solutions to the Maxwell equations are sought in the

entire space.
Thereby, passing from time-dependent equations (1) to

time-independent equations (8) is grounded on previous
consideration.

Geometry of the problem is shown in Figure 1. The
waveguide is infinite along axis 𝑂𝑧.

Let us consider TE waves with harmonical dependence
on time

E𝑒−𝑖𝜔𝑡 = 𝑒−𝑖𝜔𝑡(0, 𝐸
𝜑
, 0)

𝑇

, H𝑒−𝑖𝜔𝑡 = 𝑒−𝑖𝜔𝑡(𝐻
𝜌
, 0,𝐻
𝑧
)

𝑇

,

(10)

where E,H are the complex amplitudes.
Substituting the complex amplitudes into Maxwell equa-

tions (8), we obtain

1

𝜌

𝜕𝐻
𝑧

𝜕𝜑

= 0,

𝜕𝐻
𝜌

𝜕𝑧

−

𝜕𝐻
𝑧

𝜕𝜌

= −𝑖𝜔𝜀𝐸
𝜑
,

1

𝜌

𝜕𝐻
𝜌

𝜕𝜑

= 0,

𝜕𝐸
𝜑

𝜕𝑧

= −𝑖𝜔𝜇𝐻
𝜌
,

1

𝜌

𝜕 (𝜌𝐸
𝜑
)

𝜕𝜌

= 𝑖𝜔𝜇𝐻
𝑧
.

(11)

It is obvious from the first and the third equations of this
system that𝐻

𝑧
and𝐻

𝜌
do not depend on 𝜑. This implies that

𝐸
𝜑
does not depend on 𝜑.
Independence of the components on 𝜑 can be explained

if we chose dependence on 𝜑 in the form 𝑒𝑖𝑛𝜑 with 𝑛 = 0.

Waves propagating along waveguide axis 𝑂𝑧 depend
harmonically on 𝑧. This means that the fields components
have the form

𝐸
𝜑
= 𝐸
𝜑
(𝜌) 𝑒
𝑖𝛾𝑧
, 𝐻

𝜌
= 𝐻
𝜌
(𝜌) 𝑒
𝑖𝛾𝑧
,

𝐻
𝑧
= 𝐻
𝑧
(𝜌) 𝑒
𝑖𝛾𝑧
,

(12)

where 𝛾 is the unknown spectral parameter of the problem
(propagation constant).

So we obtain from system (11) that

𝑖𝛾𝐻
𝜌
(𝜌) − 𝐻



𝑧
(𝜌) = −𝑖𝜔𝜀𝐸

𝜑
(𝜌) ,

𝑖𝛾𝐸
𝜑
(𝜌) = −𝑖𝜔𝜇𝐻

𝜌
(𝜌) ,

1

𝜌

(𝜌𝐸
𝜑
(𝜌))



= 𝑖𝜔𝜇𝐻
𝑧
(𝜌) ,

(13)

where ( ⋅ ) ≡ 𝑑/𝑑𝜌.
Then 𝐻

𝑧
(𝜌) = (1/𝑖𝜔𝜇)(1/𝜌)(𝜌𝐸

𝜑
(𝜌))
 and 𝐻

𝜌
(𝜌) =

−(𝛾/𝜔𝜇)𝐸
𝜑
(𝜌). From the first equation of the latter system,

we obtain

(

1

𝜌

(𝜌𝐸
𝜑
(𝜌))



)



+ (𝜔
2
𝜇𝜀 − 𝛾

2
) 𝐸
𝜑
(𝜌) = 0. (14)

Denoting by 𝑢(𝜌) := 𝐸
𝜑
(𝜌), we obtain

𝑢

+

1

𝜌

𝑢

−

1

𝜌
2
𝑢 + (𝑘

2

0
𝜀 − 𝛾
2
) 𝑢 = 0 (15)

and 𝜀 = 𝜀𝜀
0
, where

𝜀 = {

𝜀
1
, 𝜌 > 𝑅,

𝜀
2
(𝜌) + 𝑎𝑢

2
, 𝜌 < 𝑅,

(16)

and 𝑘2
0
= 𝜔
2
𝜇𝜀
0
.

Also we assume that function 𝑢 is sufficiently smooth:

𝑢 (𝜌) ∈ 𝐶 [0, +∞) ∩ 𝐶
1
[0, +∞) ∩ 𝐶

2
(0, 𝑅) ∩ 𝐶

2
(𝑅, +∞) .

(17)

Physical nature of the problem implies these conditions.
We will seek 𝛾 under conditions 𝑘2

0
𝜀
1
< 𝛾

2
<

𝑘
2

0
min
𝜌∈[0,𝑅]

𝜀
2
(𝜌).

In the domain 𝜌 > 𝑅, we have 𝜀 = 𝜀
1
. From (15), we obtain

the equation

𝑢

+

1

𝜌

𝑢

−

1

𝜌
2
𝑢 + 𝑘
2

1
𝑢 = 0, (18)

where 𝑘2
1
= 𝑘
2

0
𝜀
1
− 𝛾
2. It is the Bessel equation.

In the domain 𝜌 < 𝑅, we have 𝜀 = 𝜀
2
(𝜌) + 𝑎𝑢

2. From (15),
we obtain the equation

𝑢

+

1

𝜌

𝑢

−

1

𝜌
2
𝑢 + 𝑘
2
(𝜌) 𝑢 + 𝛼𝑢

3
= 0, (19)

where 𝑘2(𝜌) = 𝑘2
2
(𝜌) − 𝛾

2, 𝑘2
2
(𝜌) = 𝑘

2

0
𝜀
2
(𝜌), and 𝛼 = 𝑎𝑘2

0
.
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Tangential components of electromagnetic field are
known to be continuous atmedia interfaces. Hence we obtain

𝐸
𝜑
(𝑅 + 0) = 𝐸

𝜑
(𝑅 − 0) , 𝐻

𝑧
(𝑅 + 0) = 𝐻

𝑧
(𝑅 − 0) .

(20)

Further, we have 𝐻
𝑧
(𝜌) = (1/𝑖𝜔𝜇)(1/𝜌)𝐸

𝜑
(𝜌) + 𝐸



𝜑
(𝜌)).

Since 𝐸
𝜑
(𝜌) and 𝐻

𝑧
(𝜌) are continuous at the point 𝜌 = 𝑅,

therefore, 𝐸
𝜑
(𝜌) is continuous at 𝜌 = 𝑅. These conditions

imply the transmission conditions for functions 𝑢(𝜌) and
𝑢

(𝜌)

[𝑢]𝜌=𝑅 = 0, [𝑢

]
𝜌=𝑅
= 0, (21)

where [𝑓]
𝑥=𝑥0
= lim
𝑥→𝑥0−0

𝑓(𝑥) − lim
𝑥→𝑥0+0

𝑓(𝑥).
Let us formulate the transmission eigenvalue problem

(problem P). It is necessary to find eigenvalues 𝛾 and
correspond to them nonzero eigenfunctions 𝑢(𝜌) such that
𝑢(𝜌) satisfy (18), (19); transmission conditions (21) and the
radiation condition at infinity: eigenfunctions exponentially
decay as 𝜌 → ∞.

The general solution of (18) is taken in the following
form 𝑢(𝜌) = 𝑏𝐻(1)

1
(𝑘
1
𝜌) + 𝑏

1
𝐻
(2)

1
(𝑘
1
𝜌), where 𝐻(1)

1
and 𝐻(2)

1

are the Hankel functions of the first and the second kinds,
respectively. In accordance with the radiation condition we
obtain that 𝑏

1
= 0; then the solution has the form 𝑢(𝜌) =

𝑏𝐻
(1)

1
(𝑘
1
𝜌), 𝜌 > 𝑅, where 𝑏 is a constant. If Re 𝑘

1
= 0, then

𝑢 (𝜌) =
̃
𝑏𝐾
1
(




𝑘
1





𝜌) , 𝜌 > 𝑅, (22)

as 𝐻(1)
1
(𝑖𝑧) = −(2/𝜋)𝐾

1
(𝑧) and 𝐾

1
(𝑧) is the Macdonald

function.
The radiation condition is fulfilled since 𝐾

1
(|𝑘
1
|𝜌) → 0

as 𝜌 → ∞.

3. Nonlinear Integral Equation and
Dispersion Equation

Consider nonlinear equation (19) written in the form

(𝜌𝑢

)



+ (𝑘
2
(𝜌) 𝜌 −

1

𝜌

) 𝑢 + 𝛼𝜌𝑢
3
= 0 (23)

and the linear equation

(𝜌𝑢

)



+ (𝑘
2
(𝜌) 𝜌 −

1

𝜌

) 𝑢 = 0. (24)

The latter equation can be written in the operator form as

𝐿
𝑘
𝑢 = 0, 𝐿

𝑘
=

𝑑

𝑑𝜌

(𝜌

𝑑

𝑑𝜌

) + (𝑘
2
(𝜌) 𝜌 −

1

𝜌

) (25)

(here we place index 𝑘 in order to stress that the operator and
the Green function depend on 𝑘(𝜌)).

Suppose that the Green function𝐺
𝑘
(𝜌, 𝜌
0
; 𝜆) exists for the

following boundary value problem

𝐿
𝑘
𝐺
𝑘
= −𝛿 (𝜌 − 𝜌

0
) , 𝐺|𝜌=0 = 𝐺




𝜌=𝑅
= 0 (0 < 𝜌

0
< 𝑅) .

(26)

In this case the Green function has the representation
(see, e.g., [29, 30])

𝐺
𝑘
(𝜌, 𝜌
0
; 𝜆) = −

V
𝑖
(𝜌) V
𝑖
(𝜌
0
)

𝜆 − 𝜆
𝑖

+ 𝐺
1
(𝜌, 𝜌
0
; 𝜆) (27)

in the vicinity of eigenvalue 𝜆
𝑖
. Here 𝜆 := 𝛾2 and 𝐺

1
(𝜌, 𝜌
0
; 𝜆)

is regular with respect to 𝜆 in the vicinity of 𝜆
𝑖
; 𝜆
𝑛
, V
𝑛
(𝜌) are

complete orthonormal (real) eigenvalues and eigenfunctions
systems of boundary eigenvalue problem

(𝜌V


𝑛
)



+ (𝑘
2

2
(𝜌) 𝜌 −

1

𝜌

) V
𝑛
= 𝜆
𝑛
𝜌V
𝑛
,

V
𝑛




𝜌=0
= V


𝑛





 𝜌=𝑅

= 0.

(28)

The Green function exists if 𝜆 ̸= 𝜆
𝑖
.

For 𝜀
2
≡ const explicit form of theGreen function is given

in [21].
Let us write (19) in the operator form

𝐿
𝑘
𝑢 + 𝛼𝐵 (𝑢) = 0, 𝐵 (𝑢) = 𝜌𝑢

3
(𝜌) . (29)

Using the second Green formula [31]

∫

𝑅

0

(V𝐿
𝑘
𝑢 − 𝑢𝐿

𝑘
V) 𝑑𝜌 = ∫

𝑅

0

(V(𝜌𝑢

)



− 𝑢(𝜌V

)



) 𝑑𝜌

= 𝑅 (𝑢

(𝑅) V (𝑅) − V


(𝑅) 𝑢 (𝑅))

(30)

and assuming that V = 𝐺, we obtain that

∫

𝑅

0

(𝐺
𝑘
𝐿
𝑘
𝑢 − 𝑢𝐿

𝑘
𝐺
𝑘
) 𝑑𝑝

= 𝑅 (𝑢

(𝑅 − 0) 𝐺

𝑘
(𝑅, 𝜌
0
) − 𝐺


𝑘
(𝑅, 𝜌
0
) 𝑢 (𝑅 − 0))

= 𝑅𝑢

(𝑅 − 0) 𝐺

𝑘
(𝑅, 𝜌
0
) .

(31)

From the previous formulae, we obtain

∫

𝑅

0

𝑢𝐿
𝑘
𝐺
𝑘
𝑑𝜌 = −∫

𝑅

0

𝑢 (𝜌) 𝛿 (𝜌 − 𝜌
0
) 𝑑𝜌 = −𝑢 (𝜌

0
) ,

∫

𝑅

0

𝐺
𝑘
𝐿
𝑘
𝑢𝑑𝜌 = −𝛼∫

𝑅

0

𝐺
𝑘
(𝜌, 𝜌
0
) 𝜌𝑢
3
(𝜌) 𝑑𝜌.

(32)

Taking into account these results and using (29), we
obtain the nonlinear integral representation of solution 𝑢(𝜌

0
)

of (19) on the segment [0, 𝑅]

𝑢 (𝜌
0
) = 𝛼∫

𝑅

0

𝐺
𝑘
(𝜌, 𝜌
0
) 𝜌𝑢
3
(𝜌) 𝑑𝜌

+ 𝑅𝑢

(𝑅 − 0) 𝐺

𝑘
(𝑅, 𝜌
0
) , 0 ≤ 𝜌

0
≤ 𝑅.

(33)

Using transmission conditions 𝑢(𝑅 − 0) = 𝑢(𝑅 + 0), we
can rewrite (33)

𝑢 (𝜌
0
) = 𝛼∫

𝑅

0

𝐺
𝑘
(𝜌, 𝜌
0
) 𝜌𝑢
3
(𝜌) 𝑑𝜌 + 𝑓 (𝜌

0
) , 0 ≤ 𝜌

0
≤ 𝑅,

(34)

where 𝑓(𝜌
0
) = 𝑅𝑢


(𝑅 + 0)𝐺

𝑘
(𝑅, 𝜌
0
).
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Using (34) and transmission condition𝑢(𝑅−0) = 𝑢(𝑅+0),
we obtain the dispersion equation (DE) with respect to the
propagation constant

𝑢 (𝑅 + 0) = 𝛼∫

𝑅

0

𝐺
𝑘
(𝜌, 𝑅) 𝜌𝑢

3
(𝜌) 𝑑𝜌 + 𝑅𝑢


(𝑅 + 0) 𝐺 (𝑅, 𝑅) ,

(35)

Let us denote by 𝑁(𝜌, 𝜌
0
; 𝜆) := 𝛼𝐺

𝑘
(𝜌, 𝜌
0
; 𝜆)𝜌 and

consider integral equation (34)

𝑢 (𝜌
0
) = ∫

𝑅

0

𝑁(𝜌, 𝜌
0
) 𝑢
3
(𝜌) 𝑑𝜌 + 𝑓 (𝜌

0
) (36)

in 𝐶[0, 𝑅] [32]. It is assumed that 𝑓 ∈ 𝐶[0, 𝑅] and 𝜆 ̸= 𝜆
𝑖
.

The kernel 𝑁(𝜌, 𝜌
0
) is continuous in the square 0 ≤

𝜌, 𝜌
0
≤ 𝑅.

Let us consider linear integral operator 𝑁𝑤 =

∫

𝑅

0
𝑁(𝜌, 𝜌

0
)𝑤(𝜌)𝑑𝜌 in 𝐶[0, 𝑅]. It is bounded, completely

continuous, and ‖𝑁‖ = max
𝜌0∈[0,𝑅]

∫

𝑅

0
|𝑁(𝜌, 𝜌

0
)|𝑑𝜌.

Since nonlinear operator 𝐵
0
(𝑢) = 𝑢

3
(𝜌) is bounded and

continuous in 𝐶[0, 𝑅], therefore, nonlinear operator 𝐹(𝑢) =
∫

𝑅

0
𝑁(𝜌, 𝜌

0
)𝑢
3
(𝜌)𝑑𝜌 + 𝑓(𝜌

0
) is completely continuous in any

bounded set in 𝐶[0, 𝑅].
The following theorems (about existence of a unique

solution and continuous dependence of the solution on the
parameter) can be proved in the same way as for the case of a
homogeneous nonlinear cylindrical waveguide (for details of
proofs, see [22, 33]).

Proposition 1. If 𝛼 ≤ 𝐴2, where

𝐴 =

2

3

1





𝑓




√3




𝑁
1






,




𝑁
1





= max
𝜌0∈[0,𝑅]

∫

𝑅

0





𝜌𝐺
𝑘
(𝜌, 𝜌
0
)




𝑑𝜌,

(37)

then (36) has a unique continuous solution 𝑢 ∈ 𝐶[0, 𝑅] such
that ‖𝑢‖ ≤ 𝑟

∗
, where

𝑟
∗
= −

2

√3 ‖𝑁‖

cos(1
3

arccos(3
√3

2





𝑓




√‖𝑁‖) −

2𝜋

3

)

(38)

is a root of the equation ‖𝑁‖𝑟3 + ‖𝑓‖ = 𝑟.

Note that 𝐴 > 0 does not depend on 𝛼.

Proposition 2. Let the kernel𝑁 and the right-hand side 𝑓 of
equation (36) depend continuously on the parameter 𝜆 ∈ Λ

0
,

𝑁(𝜌, 𝜌
0
; 𝜆) ⊂ 𝐶([0, 𝑅]×[0, 𝑅]×Λ

0
),𝑓(𝜌
0
; 𝜆) ⊂ 𝐶([0, 𝑅]×Λ

0
)

on some segment Λ
0
of the real number axis. Let also

0 <




𝑓 (𝜆)





<

2

3√3 ‖𝑁 (𝜆)‖

. (39)

Then, for 𝜆 ∈ Λ
0
, a unique solution 𝑢(𝜌; 𝜆) of (36) exists

and depends continuously on 𝜆, 𝑢(𝜌; 𝜆) ⊂ 𝐶([0, 𝑅] × Λ
0
).

4. Iteration Method

Approximate solutions 𝑢
𝑛
of integral equation (36) repre-

sented in the form 𝑢 = 𝑊(𝑢) can be found by means of the
iteration process 𝑢

𝑛+1
= 𝑊(𝑢

𝑛
), 𝑛 = 0, 1, . . .,

𝑢
0
= 0, 𝑢

𝑛+1
= 𝛼∫

𝑅

0

𝐺
𝑘
(𝜌, 𝜌
0
) 𝜌𝑢
3

𝑛
𝑑𝜌 + 𝑓,

𝑛 = 0, 1, . . . .

(40)

The sequence𝑢
𝑛
converges uniformly to solution𝑢 of (36)

by virtue of the fact that 𝐹(𝑢) is a contracting operator. The
estimate of the convergence rate of iteration process (40) is
also known. Let us formulate these results as the following
(for proof see [22]).

Proposition 3. The sequence of approximate solutions 𝑢
𝑛
of

(36), obtained by means of iteration process (40), converges in
the norm of space 𝐶[0, 𝑅] to (unique) exact solution 𝑢 of this
equation.The following estimate of the convergence rate is valid
‖𝑢
𝑛
− 𝑢‖ ≤ (𝑞

𝑛
/(1 − 𝑞))𝑓(𝑢

0
), 𝑛 → ∞, where 𝑞 := 3𝑁𝑟2

∗
< 1

is the coefficient of contraction of mapping 𝐹.

5. Theorem of Existence

Taking into account formula (22), DE (35) can be represented
in the form

𝐾
1
(




𝑘
1





𝑅) −





𝑘
1





𝑅𝐾


1
(




𝑘
1





𝑅) 𝐺
𝑘
(𝑅, 𝑅; 𝜆)

=

𝛼

̃
𝑏

∫

𝑅

0

𝐺
𝑘
(𝜌, 𝑅; 𝜆) 𝜌𝑢

3
(𝜌) 𝑑𝜌.

(41)

As it can be seen DE (41) depends on ̃𝑏. Here ̃𝑏 is an initial
condition. This is the peculiarity of this (and not only this)
nonlinear problem. For the linear problem (if 𝛼 = 0), we
obtain, as it is expected, the DE that does not depend on the
initial condition.

From the properties of Bessel functions, it follows that

−




𝑘
1





𝑅𝐾


1
(




𝑘
1





𝑅) =





𝑘
1





𝑅𝐾
0
(




𝑘
1





𝑅) + 𝐾

1
(




𝑘
1





𝑅) . (42)

Now we can rewrite DE (41) in the following form:

𝑔 (𝜆) = 𝛼𝐹 (𝜆) , (43)

where

𝑔 (𝜆) = 𝐾
1
(




𝑘
1





𝑅)

+ (




𝑘
1





𝑅𝐾
0
(




𝑘
1





𝑅) + 𝐾

1
(




𝑘
1





𝑅))𝐺

𝑘

(𝑅, 𝑅; 𝜆) ,

𝐹 (𝜆) = ∫

𝑅

0

𝐺
𝑘
(𝜌, 𝑅; 𝜆) 𝜌𝑢

3
(𝜌) 𝑑𝜌.

(44)
We should note that DE (41) depends on frequency 𝜔

implicitly. If one obtains 𝜆∗ for chosen𝑅∗ (radius of the inner
core) such that 𝑔(𝜆∗) = 𝛼𝐹(𝜆∗) is satisfied, then one can
calculate 𝜔∗ which satisfies the propagation constants 𝛾∗ =
√𝜆
∗ using formulae in the beginning of this section.
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The zeros of the function Φ(𝛾) ≡ 𝑔(𝜆) − 𝛼𝐹(𝜆) are those
values of 𝜆 for which a nonzero solution of the problem P
exists. The following assertion gives us sufficient conditions
for the existence of zeros of the function Φ.

Let us consider the question about existence of solutions
of the linear problem 𝑔(𝜆) = 0.

This equation can be rewritten in the form

𝐺
𝑘
(𝑅, 𝑅; 𝜆) = −

𝐾
1
(




𝑘
1





𝑅)





𝑘
1





𝑅𝐾
0
(




𝑘
1





𝑅) + 𝐾

1
(




𝑘
1





𝑅)

. (45)

From expression 𝐺
𝑘
(𝑅, 𝑅; 𝜆) = −V2

𝑖
(𝑅)/(𝜆 − 𝜆

𝑖
) +

𝐺
1
(𝑅, 𝑅; 𝜆), it follows that 𝐺

𝑘
(𝑅, 𝑅; 𝜆) continuously varies

from −∞ to +∞ when 𝜆 varies from 𝜆
𝑖
to 𝜆
𝑖+1

.
As value 𝐾

1
(|𝑘
1
|𝑅)/(|𝑘

1
|𝑅𝐾
0
(|𝑘
1
|𝑅) + 𝐾

1
(|𝑘
1
|𝑅)) is

bounded, then there is at least one root of equation 𝑔(𝜆) = 0,
and this root lies between 𝜆

𝑖
and 𝜆

𝑖+1
.

Finally it is necessary to prove that term V
𝑖
(𝑅) does

not vanish in expression 𝐺
𝑘
(𝑅, 𝑅; 𝜆). We prove this fact by

contradiction. Let V
𝑖
(𝑅) = 0. Consider a Cauchy problem

for equation 𝜌V
𝑖
+ V
𝑖
+ (𝑘
2

2
(𝜌)𝜌 − 1/𝜌)V

𝑖
= 𝜆
𝑖
𝜌V
𝑖
with

initial conditions V
𝑖
|
𝜌=𝑅
= V
𝑖
|
𝜌=𝑅
= 0 as 𝜌 ∈ [𝛿, 𝑅], where

𝛿 > 0. From the general theory of ordinary differential
equations (see, e.g., [34]) it is known that solution V

𝑖
(𝜌) of

consideredCauchy problem exists and is unique as 𝜌 ∈ [𝛿, 𝑅].
In this case, this solution coincides with function V

𝑖
(𝑅) as

𝜌 ∈ [𝛿, 𝑅]. Function V
𝑖
(𝑅) is the function, which is contained

in Green’s function representation (27). On the other hand,
a solution of the Cauchy problem for a linear equation with
zero initial condition is the trivial solution. This contradicts
with representation (27) ofGreen’s function𝐺

𝑘
(𝜌, 𝜌
0
; 𝜆) in the

vicinity of 𝜆 = 𝜆
𝑖
.

Consider nonlinear problem. Let inequalities

𝜀
1
< 𝜆
0
< 𝜆
1
< ⋅ ⋅ ⋅ < 𝜆

𝑘−1
< 𝜆
𝑘
< 𝜀
2 (46)

hold, where 𝑘 ≥ 1 and 𝜀
2
= min

𝜌∈[0,𝑅]
𝜀
2
(𝜌).

We can choose sufficiently small 𝛿
𝑖
> 0 such that the

Green function 𝐺
𝑘
(𝜌, 𝜌
0
; 𝜆) exists and is continuous on Γ :=

⋃
𝑘

𝑖=1
Γ
𝑖
, where

Γ
𝑖
:= [√𝜆

𝑖−1
+ 𝛿
𝑖−1
, √𝜆
𝑖
− 𝛿
𝑖
] , 𝑖 = 1, 𝑘 (47)

and the following inequality 𝑔(√𝜆
𝑖−1
+ 𝛿
𝑖−1
)𝑔(√𝜆

𝑖
− 𝛿
𝑖
) < 0

is satisfied.
It follows from the choice of 𝛿

𝑖
that 𝐹(𝜆) is bounded.

Moreover, product 𝛼𝐹(𝜆) can be made sufficiently small by
choosing appropriate 𝛼 (the estimation is given at the end of
this section). Let us consider DE Φ(𝜆) = 0. As it is shown
before function 𝑔(𝜆) is continuous, and reverse sign when 𝜆
varies from 𝜆

𝑖−1
+𝛿
𝑖−1

to 𝜆
𝑖
−𝛿
𝑖
. As function 𝐹(𝜆) is bounded

then it is clear that equation Φ(𝜆) = 0 has at least 𝑘 roots ̃𝜆
𝑖
,

𝑖 = 1, 𝑘 if we choose appropriate 𝛼. Here ̃𝜆
𝑖
∈ (𝜆
𝑖−1
+𝛿
𝑖−1
, 𝜆
𝑖
−

𝛿
𝑖
), 𝑖 = 1, 𝑘.
On the basis of previous consideration, we can formulate

the main result of this paper.

Theorem 4. Let the values 𝜀
1
, 𝜀
2
= min

𝜌∈[0,𝑅]
𝜀
2
(𝜌), 𝛼 satisfy

condition 𝜀
2
> 𝜀
1
> 0, and let the following inequalities

𝜀
1
< 𝜆
0
< 𝜆
1
< ⋅ ⋅ ⋅ < 𝜆

𝑘−1
< 𝜆
𝑘
< 𝜀
2
hold, where 𝑘 ≥ 1 is

an integer.Then there is a value 𝛼
0
> 0 such that for any 𝛼 ≤ 𝛼

0

at least 𝑘 values 𝛾
𝑖
, 𝑖 = 1, 𝑘 exist such that the problem P has a

nonzero solution and 𝛾
𝑖
∈ (√𝜆

𝑖−1
+ 𝛿
𝑖−1
, √𝜆
𝑖
− 𝛿
𝑖
).

Proof. The Green function exists for all 𝛾 ∈ Γ. It is also clear
that function 𝐴(𝛾) = 2/3‖𝑓(𝛾)‖√3‖𝑁

1
(𝛾)‖ is continuous as

𝛾 ∈ Γ. Let 𝐴
1
= min

𝛾∈Γ
𝐴(𝛾) and 𝛼 < 𝐴2

1
. In accordance

with Proposition 1, there is a unique solution 𝑢 = 𝑢(𝛾) of
(36) for any 𝛾 ∈ Γ. This solution is continuous and ‖𝑢‖ ≤
𝑟
∗
= 𝑟
∗
(𝛾). Let 𝑟

00
= max

𝛾∈Γ
𝑟
∗
(𝛾). The following estimation

|𝐹(𝜆)| ≤ 𝐶𝑟
3

00
is valid, where 𝐶 is a constant.

Function 𝑔(𝛾) is continuous and equation 𝑔(𝛾) = 0 has at
least one root 𝛾

𝑖
inside segment Γ

𝑖
, that is,√𝜆

𝑖−1
+ 𝛿
𝑖−1
< 𝛾
𝑖
<

√𝜆
𝑖
− 𝛿
𝑖
. Let us denote𝑀

1
= min

0≤i≤𝑘−1|𝑔(√𝜆𝑖 + 𝛿𝑖)|,𝑀2 =
min
1≤𝑖≤𝑘
|𝑔(√𝜆

𝑖
− 𝛿
𝑖
)|. Value �̃� = min{𝑀

1
,𝑀
2
} is positive

and does not depend on 𝛼.
If 𝛼 ≤ �̃�/𝐶𝑟3

00
, then

(𝑔(√𝜆
𝑖−1
+ 𝛿
𝑖−1
) − 𝛼𝐹(√𝜆

𝑖−1
+ 𝛿
𝑖−1
))

× (𝑔(√𝜆
𝑖
− 𝛿
𝑖
) − 𝛼𝐹(√𝜆

𝑖
− 𝛿
𝑖
)) < 0.

(48)

As 𝑔(𝜆) − 𝛼𝐹(𝜆) is continuous, it follows that equation
𝑔(𝜆)−𝛼𝐹(𝜆) = 0 has a root 𝛾

𝑖
inside Γ

𝑖
, that is√𝜆

𝑖
+𝛿
𝑖
< 𝛾
𝑖
<

√𝜆
𝑖+1
− 𝛿
𝑖+1

. We can choose 𝛼
0
= min{𝐴2

1
, �̃�/𝐶𝑟

3

00
}.

From Theorem 4, it follows that, under the previous
assumptions, there exist axially symmetrical propagating TE
waves in cylindrical dielectric waveguides of circular cross-
section filled with a nonmagnetic isotropic inhomogeneous
medium with Kerr nonlinearity. This result generalizes the
well-known similar statement for dielectric waveguides of
circular cross-section filled with a linearmedium (i.e., 𝛼 = 0).

It should be noticed that the value 𝛼
0
can be effectively

estimated.

6. Conclusion

In this study, we suggest and develop a method to inves-
tigate the problem of existence of electromagnetic waves
that propagate along axis of an inhomogeneous nonlinear
cylindrical waveguide.The nonlinearity inside the waveguide
is described by the Kerr law; the inhomogeneity is described
by a function that depends on radius of the waveguide.

Here we show that the integral equation approach allows
us to investigate quite general problem for nonlinear inhomo-
geneous waveguides.

We should say that this method can be used to prove
existence of guided waves in a nonlinear inhomogeneous
waveguide for TM waves.

Numerical results can be obtained with the help of
iteration procedure from Section 4.

A separate paper will be devoted to development of a
couple of numerical methods for this problem.
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