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We introduce the notion 𝜃-cluster points, investigate the relation between 𝜃-cluster points and limit points of sequences in the
topology induced by random 2-normed spaces, and prove some important results.

1. Introduction and Background

An interesting and important generalization of the notion of
metric space was introduced by Menger [1] under the name
of statistical metric space, which is now called probabilistic
metric space. In this theory, the notion of distance has a
probabilistic nature. Namely, the distance between two points
𝑥 and 𝑦 is represented by a distribution function 𝐹

𝑥𝑦
; and for

𝑡 > 0, the value 𝐹
𝑥𝑦
(𝑡) is interpreted as the probability that

the distance from 𝑥 to 𝑦 is less than 𝑡. In fact the probabilistic
theory has become an area of active research for the last forty
years. An important family of probabilistic metric spaces
are probabilistic normed spaces. The notion of probabilistic
normed spaces was introduced in [2] and further it was
extended to random/probabilistic 2-normed spaces by Goleţ
[3] using the concept of 2-norm of Gähler [4]. Applications
of this concept have been investigated by various authors, for
example, [5–7].

The concept of statistical convergence for sequences of
real number was introduced by Fast in [8] and Steinhaus in
[9] independently in the same year 1951. A lot of develop-
ments have been made in this area after the works of Salat
[10] and Fridy [11]. Recently, Mohiuddine and Aiyub [12]
studied lacunary statistical convergence as generalization of
the statistical convergence and introduced the concept 𝜃-
statistical convergence in random 2-normed space. In [13],
Mursaleen and Mohiuddine extended the idea of lacunary
statistical convergence with respect to the intuitionistic fuzzy
normed space. Also lacunary statistically convergent double
sequences in probabilistic normed space was studied by
Mohiuddine and Savaş in [14].

The aim of this work is to introduce and investigate the
relation between 𝜃-statistical cluster points, 𝜃-statistical limit
points, and ordinary limit points of sequence in random
2-normed spaces.

First, we recall some of the basic concepts that will be
used in this paper. All the concepts listed below are studied in
depth in the fundamental book by Schweizer and Sklar [2].

Let R denote the set of real numbers and R
+
= {𝑥 ∈ R :

𝑥 ≥ 0}. A mapping 𝑓 : R → R
+
is called a distribution

function if it is nondecreasing and left continuous with
inf
𝑡∈R𝑓(𝑡) = 0 and sup

𝑡∈R𝑓(𝑡) = 1.
We denote the set of all distribution functions by𝐷

+ such
that 𝑓(0) = 0. If 𝑎 ∈ R

+
, then𝐻

𝑎
∈ 𝐷
+, where

𝐻
𝑎
(𝑡) = {

1, if 𝑡 > 𝑎,

0, if 𝑡 ≤ 𝑎.
(1)

It is obvious that𝐻
0
≥ 𝑓 for all 𝑓 ∈ 𝐷

+.
A triangular norm (𝑡-norm) is a continuous mapping

∗ : [0, 1] × [0, 1] → [0, 1] such that ([0, 1], ∗) is an abelian
monoidwith unit one and 𝑐∗𝑑 ≤ 𝑎∗𝑏 if 𝑐 ≤ 𝑎 and𝑑 ≤ 𝑏 for all
𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1]. A triangle function 𝜏 is a binary operation
on 𝐷
+ which is commutative, associative and 𝜏(𝑓,𝐻

0
) = 𝑓

for every 𝑓 ∈ 𝐷
+.

The concept of 2-normed spaces was first introduced by
Gähler [4, 15].

Let 𝑋 be a real vector space of dimension 𝑑, where 2 ≤

𝑑 < ∞. A 2-norm on 𝑋 is a function ‖⋅, ⋅‖ : 𝑋 × 𝑋 → R

which satisfies (i) ‖𝑥, 𝑦‖ = 0 if and only if 𝑥 and 𝑦 are linearly
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dependent; (ii) ‖𝑥, 𝑦‖ = ‖𝑦, 𝑥‖; (iii) ‖𝛼𝑥, 𝑦‖ = |𝛼|‖𝑥, 𝑦‖, 𝛼 ∈

R; (iv) ‖𝑥, 𝑦 + 𝑧‖ ≤ ‖𝑥, 𝑦‖ + ‖𝑥, 𝑧‖. The pair (𝑋, ‖⋅, ⋅‖) is then
called a 2-normed space.

As an example of a 2-normed space we may take 𝑋 = R2

being equipped with the 2-norm ‖𝑥, 𝑦‖ := the area of the
parallelogram spanned by the vectors 𝑥 and 𝑦, which may be
given explicitly by the formula

󵄩󵄩󵄩󵄩𝑥, 𝑦
󵄩󵄩󵄩󵄩 =

󵄨󵄨󵄨󵄨𝑥1𝑦2 − 𝑥
2
𝑦
1

󵄨󵄨󵄨󵄨 , 𝑥 = (𝑥
1
, 𝑥
2
) , 𝑦 = (𝑦

1
, 𝑦
2
) .

(2)

In 2006, Goleţ [3] introduced the notion of random
2-normed space.

Let 𝑋 be a linear space of dimension greater than one,
𝜏 a triangle, and 𝐹 : 𝑋 × 𝑋 → 𝐷

+. Then 𝐹 is called a
probabilistic 2-norm and (𝑋, 𝐹, 𝜏) a probabilistic 2-normed
space if the following conditions are satisfied:

(i) 𝐹(𝑥, 𝑦; 𝑡) = 𝐻
0
(𝑡) if 𝑥 and 𝑦 are linearly dependent,

where 𝐹(𝑥, 𝑦; 𝑡) denotes the value of 𝐹(𝑥, 𝑦) at 𝑡 ∈ R,
(ii) 𝐹(𝑥, 𝑦; 𝑡) ̸=𝐻

0
(𝑡) if 𝑥 and 𝑦 are linearly independent,

(iii) 𝐹(𝑥, 𝑦; 𝑡) = 𝐹(𝑦, 𝑥; 𝑡) for all 𝑥, 𝑦 ∈ 𝑋,
(iv) 𝐹(𝛼𝑥, 𝑦; 𝑡) = 𝐹(𝑥, 𝑦; 𝑡/|𝛼| ) for every 𝑡 > 0, 𝛼 ̸= 0 and

𝑥, 𝑦 ∈ 𝑋,
(v) 𝐹(𝑥 + 𝑦, 𝑧; 𝑡) ≥ 𝜏(𝐹(𝑥, 𝑧; 𝑡), 𝐹(𝑦, 𝑧; 𝑡)) whenever 𝑥, 𝑦,

𝑧 ∈ 𝑋.
If (v) is replaced by
(v)󸀠 𝐹(𝑥 + 𝑦, 𝑧; 𝑡

1
+ 𝑡
2
) ≥ 𝐹(𝑥, 𝑧; 𝑡

1
) ∗ 𝐹(𝑦, 𝑧; 𝑡

2
) for all

𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡
1
, 𝑡
2
∈ R
+
, then (𝑋, 𝐹, ∗) is called a

random 2-normed space (for short, RTN space).

Remark 1. Note that every 2-normed space (𝑋, ‖⋅, ⋅‖) can be
made a random 2-normed space in a natural way, by setting

𝐹 (𝑥, 𝑦; 𝑡) = 𝐻
0
(𝑡 −

󵄩󵄩󵄩󵄩𝑥, 𝑦
󵄩󵄩󵄩󵄩) , (3)

for every 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0 and 𝑎 ∗ 𝑏 = min{𝑎, 𝑏}, 𝑎, 𝑏 ∈ [0, 1].

Let (𝑋, 𝐹, ∗) be a RTN space. Since ∗ is a continuous
𝑡-norm, the system of (𝜀, 𝜆)-neighborhoods of 𝜃 (the null
vector in𝑋)

{N
𝜃,𝑧

(𝜀, 𝜂) : 𝜀 > 0, 𝜂 ∈ (0, 1) , 𝑧 ∈ 𝑋} , (4)

where

N
𝜃,𝑧

(𝜀, 𝜂) = {𝑥, 𝑧 ∈ 𝑋 × 𝑋 : 𝐹
𝑥,𝑧

(𝜀) > 1 − 𝜂} (5)

determines a first countable Hausdorff topology on 𝑋 × 𝑋,
called the 𝐹-topology. Thus, the 𝐹-topology can be com-
pletely specified by means of 𝐹-convergence of sequences. It
is clear that 𝑥 − 𝑦 ∈ N

𝜃,𝑧
means 𝑦 ∈ N

𝑥,𝑧
and vice versa.

A sequence 𝑥 = (𝑥
𝑛
) in 𝑋 is said to be 𝐹-convergence to

𝐿 ∈ 𝑋 if for every 𝜀 > 0, 𝜂 ∈ (0, 1) and for each nonzero 𝑧 ∈ 𝑋

there exists a positive integer𝑁 such that

𝑥
𝑛
, 𝑧 − 𝐿 ∈ N

𝜃,𝑧
(𝜀, 𝜂) for each 𝑛 ≥ 𝑁 (6)

or equivalently,

𝑥
𝑛
, 𝑧 ∈ N

𝐿,𝑧
(𝜀, 𝜂) for each 𝑛 ≥ 𝑁. (7)

In this case we write 𝐹-lim𝑥
𝑛
, 𝑧 = 𝐿.

2. The Main Results

It is known (see [16]) that statistical cluster Γ
𝑥
and statistical

limit points setΛ
𝑥
of a given sequence (𝑥

𝑛
) are not altered by

changing the values of a subsequence, the index set of which
has density zero. Moreover, there is a strong connection
between 𝜃-statistical cluster points and ordinary limit points
of a given sequence.Wewill prove that these facts are satisfied
for 𝜃-statistical cluster points and 𝜃-statistical limit point
sets of a given sequence in the topology induced by random
2-normed spaces.

The notion of statistical convergence depends on the
density of subsets of N, the set of natural numbers.

Definition 2 (see [8, 11]). Let 𝐾 be a subset of N. Then
the asymptotic density of 𝐾 denoted by 𝛿(𝐾) :=

lim
𝑛→∞

(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}|, where the vertical bars
denote the cardinality of the enclosed set. A number
sequence 𝑥 = (𝑥

𝑘
)
𝑘∈N is said to be statistically convergent to

𝐿 if for every 𝜀 > 0, 𝛿({𝑘 ∈ N : |𝑥
𝑘
− 𝐿| ≥ 𝜀}) = 0. If (𝑥

𝑘
)
𝑘∈N

is statistically convergent to 𝐿, we write 𝑠𝑡-lim𝑥
𝑘
= 𝐿.

By a lacunary sequence we mean an increasing integer
sequence 𝜃 = (𝑘

𝑟
) such that 𝑘

0
= 0 and ℎ

𝑟
:= 𝑘
𝑟
− 𝑘
𝑟−1

→ ∞

as 𝑟 → ∞. Throughout this paper the intervals determined
by 𝜃 will be denoted by 𝐼

𝑟
:= (𝑘
𝑟−1

, 𝑘
𝑟
], and the ratio 𝑘

𝑟
/𝑘
𝑟−1

will be abbreviated by 𝑞
𝑟
. Let 𝐾 ⊆ N. The number

𝛿
𝜃
(𝐾) = lim

𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼
𝑟
: 𝑘 ∈ 𝐾}

󵄨󵄨󵄨󵄨 (8)

is said to be the 𝜃-density of 𝐾, provided the limit exists
(see [17]).

Definition 3 (see [17]). Let 𝜃 be a lacunary sequence. Then a
sequence 𝑥 = (𝑥

𝑘
) is said to be 𝑆

𝜃
-convergent to the number

𝐿 if for every 𝜀 > 0 the set 𝐾(𝜀) has 𝜃-density zero, where
𝐾 (𝜀) := {𝑘 ∈ N :

󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿
󵄨󵄨󵄨󵄨 ≥ 𝜀} . (9)

In this case we write 𝑆
𝜃
-lim𝑥 = 𝐿 or 𝑥

𝑘
→ 𝐿(𝑆

𝜃
).

Definition 4 (see [12]). Let (𝑋, 𝐹, ∗) be a RTN space and
let 𝜃 be a lacunary sequence. A sequence 𝑥 = (𝑥

𝑘
) in a

random 2-normed spaces (𝑋, 𝐹, ∗) is said to be 𝜃-statistically
convergent or 𝑆

𝜃
-convergent to 𝐿 ∈ 𝑋 with respect to 𝐹 if for

every 𝜀 > 0, 𝜂 ∈ (0, 1) and nonzero 𝑧 ∈ 𝑋 such that
𝛿
𝜃
({𝑘 ∈ N : 𝑥

𝑘
, 𝑧 ∉ N

𝐿,𝑧
(𝜀, 𝜂)}) = 0 (10)

or equivalently
𝛿
𝜃
({𝑘 ∈ N : 𝑥

𝑘
, 𝑧 ∈ N

𝐿,𝑧
(𝜀, 𝜂)}) = 1. (11)

In this case we write 𝑆
RTN
𝜃

-lim𝑥, 𝑧 = 𝐿 or 𝑥
𝑘

→ 𝐿(𝑆
RTN
𝜃

).

Now we define some concepts in RTN-space.

Definition 5. Let (𝑋, 𝐹, ∗) be a RTN space and let 𝜃 be a
lacunary sequence. Let (𝑥

𝑘(𝑗)
) be a subsequence of 𝑥 = (𝑥

𝑘
) ∈

𝑋 and𝐾 = {𝑘(𝑗) : 𝑗 ∈ N} then one denotes (𝑥
𝑘(𝑗)

) by (𝑥)
𝐾
. If

lim
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 (𝑗) ∈ 𝐼
𝑟
: 𝑗 ∈ N}

󵄨󵄨󵄨󵄨 = 0, (12)
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then (𝑥)
𝐾
is called a 𝜃-thin sequence. On the other hand, (𝑥)

𝐾

is a 𝜃-nonthin subsequence of 𝑥 provided that

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 (𝑗) ∈ 𝐼
𝑟
: 𝑗 ∈ N}

󵄨󵄨󵄨󵄨 > 0. (13)

Definition 6. Let (𝑋, 𝐹, ∗) be a RTN space and 𝜃 be a lacunary
sequence. 𝐴 ∈ 𝑋 is called a 𝜃-statistical limit point of a
sequence 𝑥 = (𝑥

𝑘
) ∈ 𝑋 provided that there is a 𝜃-nonthin

subsequence of 𝑥 that converges to 𝐴. Let ΛRTN
𝜃,𝑥

denotes the
set of all 𝑆RTN

𝜃
-limit points.

Definition 7. Let (𝑋, 𝐹, ∗) be a RTN space and let 𝜃 be a
lacunary sequence. 𝐵 ∈ 𝑋 is called a 𝜃-statistical cluster point
of a sequence 𝑥 = (𝑥

𝑘
) ∈ 𝑋 provided that, for every 𝜀 > 0,

𝜂 ∈ (0, 1) and nonzero 𝑧 ∈ 𝑋

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼
𝑟
: 𝑥
𝑘
, 𝑧 ∈ N

𝐿,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨 > 0. (14)

Let Γ
RTN
𝜃,𝑥

denote the set of 𝜃-statistical cluster point of the
sequence 𝑥 = (𝑥

𝑘
).

Theorem 8. Let (𝑋, 𝐹, ∗) be a RTN space and let 𝜃 be a lacu-
nary sequence. If 𝑥 = (𝑥

𝑘
) and 𝑦 = (𝑦

𝑘
) are sequences in 𝑋

such that

lim
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼
𝑟
: 𝑥
𝑘

̸= 𝑦
𝑘
}
󵄨󵄨󵄨󵄨 = 0, (15)

then Λ
𝑅𝑇𝑁

𝜃,𝑥
= Λ
𝑅𝑇𝑁

𝜃,𝑦
and Γ

𝑅𝑇𝑁

𝜃,𝑥
= Γ
𝑅𝑇𝑁

𝜃,𝑦
.

Proof. Assume that lim
𝑟
(1/ℎ
𝑟
)|{𝑘 ∈ 𝐼

𝑟
: 𝑥
𝑘

̸= 𝑦
𝑘
}| = 0 and𝐴 ∈

Λ
RTN
𝜃,𝑦

; say (𝑦)
𝐾
is a 𝜃-nonthin sequence of 𝑦 that converges to

𝐴. Since

lim
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼
𝑟
: 𝑘 ∈ 𝐾 and𝑥

𝑘
̸= 𝑦
𝑘
}
󵄨󵄨󵄨󵄨 = 0, (16)

it follows that

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼
𝑟
: 𝑘 ∈ 𝐾 and𝑥

𝑘
= 𝑦
𝑘
}
󵄨󵄨󵄨󵄨 ̸= 0. (17)

Therefore, the latter set yields a 𝜃-nonthin subsequence (𝑥)
𝐾
󸀠

of (𝑥)
𝐾
that converges to 𝐴. Hence 𝐴 ∈ Λ

RTN
𝜃,𝑥

and Λ
RTN
𝜃,𝑦

⊆

Λ
RTN
𝜃,𝑥

. By symmetry we see that ΛRTN
𝜃,𝑥

⊆ Λ
RTN
𝜃,𝑦

; hence Λ
RTN
𝜃,𝑥

=

Λ
RTN
𝜃,𝑦

. Now let 𝐵 ∈ Γ
RTN
𝜃,𝑥

and let lim
𝑟
(1/ℎ
𝑟
)|{𝑘 ∈𝐼

𝑟
: 𝑥
𝑘

̸=𝑦
𝑘
}| =

0. Since 𝐵 ∈ Γ
RTN
𝜃,𝑥

, we can write

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼
𝑟
: 𝑥
𝑘
, 𝑧 ∈ N

𝐵,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨 ̸= 0 (18)

for every 𝜀 > 0, 𝜂 ∈ (0, 1), and nonzero 𝑧 ∈ 𝑋. Since 𝑥
𝑘
= 𝑦
𝑘

for almost all 𝑘,

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼
𝑟
: 𝑦
𝑘
, 𝑧 ∈ N

𝐵,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨 ̸= 0 (19)

for every 𝜀 > 0, 𝜂 ∈ (0, 1), and nonzero 𝑧 ∈ 𝑋. Hence, 𝐵 ∈

Γ
RTN
𝜃,𝑦

and Γ
RTN
𝜃,𝑥

⊆ Γ
RTN
𝜃,𝑦

. By symmetrywe see that ΓRTN
𝜃,𝑦

⊆ Γ
RTN
𝜃,𝑥

;
hence Γ

RTN
𝜃,𝑥

= Γ
RTN
𝜃,𝑦

.

Theorem 9. Let (𝑋, 𝐹, ∗) be a RTN space and let 𝜃 be
a lacunary sequence. For any sequence 𝑥 = (𝑥

𝑘
) ∈ 𝑋, one has

Λ
𝑅𝑇𝑁

𝜃,𝑥
⊆ Γ
𝑅𝑇𝑁

𝜃,𝑥
.

Proof. Suppose 𝐴 ∈ Λ
RTN
𝜃,𝑥

; then there is a 𝜃-nonthin sub-
sequence (𝑥

𝑘(𝑗)
) of 𝑥 that converges to 𝐴, that is,

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 (𝑗) ∈ 𝐼
𝑟
: 𝑗 ∈ N}

󵄨󵄨󵄨󵄨 = 𝑑 > 0. (20)

Since

{𝑘 ∈ N : 𝑥
𝑘
, 𝑧 ∈ N

𝐴,𝑧
(𝜀, 𝜂)}

⊇ {𝑘 (𝑗) ∈ N : 𝑥
𝑘(𝑗)

, 𝑧 ∈ N
𝐴,𝑧

(𝜀, 𝜂)}

(21)

for every 𝜀 > 0, 𝜂 ∈ (0, 1), and nonzero 𝑧 ∈ 𝑋, we have

{𝑘 ∈ N : 𝑥
𝑘
, 𝑧 ∈ N

𝐴,𝑧
(𝜀, 𝜂)}

⊇ {𝑘 (𝑗) ∈ N : 𝑗 ∈ N} \ {𝑘 (𝑗) ∈ N : 𝑥
𝑘(𝑗)

, 𝑧 ∉ N
𝐴,𝑧

(𝜀, 𝜂)} .

(22)

Since (𝑥
𝑘(𝑗)

) converges to 𝐴, the set

{𝑘 (𝑗) ∈ N : 𝑥
𝑘(𝑗)

, 𝑧 ∉ N
𝐴,𝑧

(𝜀, 𝜂)} (23)

is finite for any 𝜀 > 0, 𝜂 ∈ (0, 1), and nonzero 𝑧 ∈ 𝑋. There-
fore,

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 (𝑗) ∈ 𝐼
𝑟
: 𝑥
𝑘
, 𝑧 ∈ N

𝐴,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨

≥ lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 (𝑗) ∈ 𝐼
𝑟
: 𝑗 ∈ N}

󵄨󵄨󵄨󵄨

− lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 (𝑗) ∈ 𝐼

𝑟
: 𝑥
𝑘(𝑗)

, 𝑧 ∉ N
𝐴,𝑧

(𝜀, 𝜂)}
󵄨󵄨󵄨󵄨󵄨

≥ lim
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 (𝑗) ∈ 𝐼
𝑟
: 𝑗 ∈ N}

󵄨󵄨󵄨󵄨 = 𝑑 > 0.

(24)

Hence,

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 (𝑗) ∈ 𝐼
𝑟
: 𝑥
𝑘
, 𝑧 ∈ N

𝐴,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨 > 0 (25)

which means that 𝐴 ∈ Γ
RTN
𝜃,𝑥

.

Theorem 10. Let (𝑋, 𝐹, ∗) be a RTN space and let 𝜃 be a lacu-
nary sequence. Let 𝐿RTN

𝑥
be the set of ordinary limit points of 𝑥

and for any sequence 𝑥 = (𝑥
𝑘
) ∈ 𝑋, ΓRTN

𝜃,𝑥
⊆ 𝐿

RTN
𝑥

.

Proof. Assume that 𝐵 ∈ Γ
RTN
𝜃,𝑥

; then

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼
𝑟
: 𝑥
𝑘
, 𝑧 ∈ N

𝐵,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨 > 0 (26)

for every 𝜀 > 0, 𝜂 ∈ (0, 1), and nonzero 𝑧 ∈ 𝑋. We set (𝑥)
𝐾
a

𝜃-nonthin subsequence of 𝑥 such that

𝐾 = {𝑘 (𝑗) ∈ N : 𝑥
𝑘(𝑗)

, 𝑧 ∈ N
𝐵,𝑧

(𝜀, 𝜂)} (27)
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for every 𝜀 > 0, 𝜂 ∈ (0, 1), and nonzero 𝑧 ∈ 𝑋, and
lim sup

𝑟
(1/ℎ
𝑟
)|𝐾| > 0. Since there are infinitely many ele-

ments in 𝐾, 𝐵 ∈ 𝐿
RTN
𝑥

.
The converse of the theorem does not hold.

Theorem 11. Let (𝑋, 𝐹, ∗) be a RTN space and let 𝜃 be a lacu-
nary sequence. If for sequence𝑥 = (𝑥

𝑘
) ∈ 𝑋, 𝑆

𝑅𝑇𝑁

𝜃
-lim𝑥

𝑘
= 𝑥
0
,

then Λ
𝑅𝑇𝑁

𝜃,𝑥
= Γ
𝑅𝑇𝑁

𝜃,𝑥
= {𝑥
0
}.

Proof. First, we show that ΛRTN
𝜃,𝑥

= {𝑥
0
}. Fix 𝜀 > 0, 𝜂 ∈ (0, 1),

and nonzero 𝑧 ∈ 𝑋. Assume that Λ
RTN
𝜃,𝑥

= {𝑥
0
, 𝑦
0
} such

that 𝑥
0
, 𝑧 ∉ N

𝑦
0
,𝑧
(2𝜀, 𝜂). In this case, there exist (𝑥

𝑘(𝑗)
) and

(𝑥
𝑙(𝑖)

) 𝜃-nonthin subsequences of 𝑥 = (𝑥
𝑘
) that converge to

𝑥
0
and 𝑦

0
, respectively. Since (𝑥

𝑙(𝑖)
) converges to 𝑦

0
, we have

{𝑙 (𝑖) ∈ N : 𝑥
𝑙(𝑖)

, 𝑧 ∉ N
𝑦
0
,𝑧
(𝜀, 𝜂)} (28)

which is a finite set. Consider that
{𝑙 (𝑖) ∈ N : 𝑖 ∈ N}

= {𝑙 (𝑖) ∈ N : 𝑥
𝑙(𝑖)

, 𝑧 ∈ N
𝑦
0
,𝑧
(𝜀, 𝜂)}

∪ {𝑙 (𝑖) ∈ N : 𝑥
𝑙(𝑖)

, 𝑧 ∉ N
𝑦
0
,𝑧
(𝜀, 𝜂)}

(29)

implies

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨{𝑙 (𝑖) ∈ 𝐼
𝑟
: 𝑖 ∈ N}

󵄨󵄨󵄨󵄨

= lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑙 (𝑖) ∈ 𝐼

𝑟
: 𝑥
𝑙(𝑖)

, 𝑧 ∈ N
𝑦
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨

+ lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑙 (𝑖) ∈ 𝐼

𝑟
: 𝑥
𝑙(𝑖)

, 𝑧 ∉ N
𝑦
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨
.

(30)

Hence,

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑙 (𝑖) ∈ 𝐼

𝑟
: 𝑥
𝑙(𝑖)

, 𝑧 ∈ N
𝑦
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨
> 0.

(31)

Since 𝑆
RTN
𝜃

-lim𝑥
𝑘
= 𝑥
0
,

lim
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑥
𝑘
, 𝑧 ∉ N

𝑥
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨
= 0. (32)

Therefore, we can write

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑥
𝑘
, 𝑧 ∈ N

𝑥
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨
> 0. (33)

For every 𝑥
0
, 𝑧 ∉ N

𝑦
0
,𝑧
(2𝜀, 𝜂) > 0,

{𝑙 (𝑖) ∈ N : 𝑥
𝑙(𝑖)

, 𝑧 ∈ N
𝑦
0
,𝑧
(𝜀, 𝜂)}

∩ {𝑘 ∈ N : 𝑥
𝑘
, 𝑧 ∈ N

𝑥
0
,𝑧
(𝜀, 𝜂)} = 0.

(34)

Hence,

{𝑙 (𝑖) ∈ N : 𝑥
𝑙(𝑖)

, 𝑧 ∈ N
𝑦
0
,𝑧
(𝜀, 𝜂)}

⊆ {𝑘 ∈ N : 𝑥
𝑘
, 𝑧 ∉ N

𝑥
0
,𝑧
(𝜀, 𝜂)} .

(35)

Therefore,

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑙 (𝑖) ∈ 𝐼

𝑟
: 𝑥
𝑙(𝑖)

, 𝑧 ∈ N
𝑦
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨

≤ lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑥
𝑘
, 𝑧 ∉ N

𝑥
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨
= 0.

(36)

This contradicts (31). Hence, ΛRTN
𝜃,𝑥

= {𝑥
0
}.

Now we assume that ΓRTN
𝜃,𝑥

= {𝑥
0
, 𝑧
0
} such that 𝑥

0
, 𝑧 ∉

N
𝑧
0
,𝑧
(2𝜀, 𝜂) for some 𝜀 > 0, 𝜂 ∈ (0, 1), and nonzero 𝑧 ∈ 𝑋.

Then

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑥
𝑘
, 𝑧 ∈ N

𝑧
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨
> 0.

(37)

Since

{𝑘 ∈ N : 𝑥
𝑘
, 𝑧 ∈ N

𝑥
0
,𝑧
(𝜀, 𝜂)}

∩ {𝑘 ∈ N : 𝑥
𝑘
, 𝑧 ∈ N

𝑧
0
,𝑧
(𝜀, 𝜂)} = 0,

(38)

for every 𝑥
0
, 𝑧 ∉ N

𝑧
0
,𝑧
(2𝜀, 𝜂),

{𝑘 ∈ N : 𝑥
𝑘
, 𝑧 ∉ N

𝑥
0
,𝑧
(𝜀, 𝜂)}⊇{𝑘 ∈ N : 𝑥

𝑘
, 𝑧 ∈ N

𝑧
0
,𝑧
(𝜀, 𝜂)} .

(39)

Therefore

lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑥
𝑘
, 𝑧 ∉ N

𝑥
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨

≥ lim sup
𝑟

1

ℎ
𝑟

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼

𝑟
: 𝑥
𝑘
, 𝑧 ∈ N

𝑧
0
,𝑧
(𝜀, 𝜂)}

󵄨󵄨󵄨󵄨󵄨
.

(40)

From (37), the right side of (40) is greater than zero and from
(32), the left side of (40) equals to zero.This is a contradiction.
Hence, ΓRTN

𝜃,𝑥
= {𝑥
0
}.
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