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We review the progress in the last 20–30 years, duringwhichwe discovered that there aremany newphases ofmatter that are beyond
the traditional Landau symmetry breaking theory. We discuss new “topological” phenomena, such as topological degeneracy that
reveals the existence of those new phases—topologically ordered phases. Just like zero viscosity defines the superfluid order, the
new “topological” phenomena define the topological order at macroscopic level. More recently, we found that at the microscopical
level, topological order is due to long-range quantum entanglements. Long-range quantum entanglements lead to many amazing
emergent phenomena, such as fractional charges and fractional statistics. Long-range quantum entanglements can even provide
a unified origin of light and electrons; light is a fluctuation of long-range entanglements, and electrons are defects in long-range
entanglements.

1. Introduction

1.1. Phases of Matter and Landau Symmetry-Breaking Theory.
Although all matter is formed by only three kinds of particles:
electrons, protons, and neutrons, matter can have many
different properties and appear in many different forms, such
as solid, liquid, conductor, insulator, superfluid, and magnet.
According to the principle of emergence in condensedmatter
physics, the rich properties of materials originate from the
richways inwhich the particles are organized in thematerials.
Those different organizations of the particles are formally
called the orders in the materials.

For example, particles have a random distribution in a
liquid (see Figure 1(a)), so a liquid remains the same as we
displace it by an arbitrary distance. We say that a liquid has a
“continuous translation symmetry.” After a phase transition,
a liquid can turn into a crystal. In a crystal, particles organize
into a regular array (a lattice) (see Figure 1(b)). A lattice
remains unchanged only when we displace it by a particular
set of distances (integer times of lattice constant), so a crystal
has only “discrete translation symmetry.”Thephase transition
between a liquid and a crystal is a transition that reduces

the continuous translation symmetry of the liquid to the
discrete symmetry of the crystal. Such a change in symmetry
is called “spontaneous symmetry breaking.” We note that the
equation of motions that governs the dynamics of the parti-
cles respects the continuous translation symmetry for both
cases of liquid and crystal. However, in the case of crystal,
the stronger interaction makes the particles to prefer being
separated by a fixed distance and a fixed angle. This makes
particles to break the continuous translation symmetry down
to discrete translation symmetry “spontaneously” in order to
choose a low-energy configuration (see Figure 2). Therefore,
the essence of the difference between liquids and crystals is
that the organizations of particles have different symmetries
in the two phases.

Liquid and crystal are just two examples. In fact, particles
can organize in many ways which lead to many differ-
ent orders and many different types of materials. Landau
symmetry-breaking theory [1–3] provides a general and a
systematic understanding of these different orders. It points
out that different orders really correspond to different sym-
metries in the organizations of the constituent particles.
As a material changes from one order to another order
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Figure 1: (a) Particles in liquids do not have fixed relative positions. They fluctuate freely and have a random but uniform distribution. (b)
Particles in solids form a fixed regular lattice.

(i.e., as the material undergoes a phase transition), what hap-
pens is that the symmetry of the organization of the particles
changes. Landau symmetry-breaking theory is a very success-
ful theory. For a long time, physicists believed that Landau
symmetry-breaking theory describes all possible orders in
materials and all possible (continuous) phase transitions.

1.2. Quantum Phases of Matter. Quantum phases of matter
are phases of matter at zero temperature. So quantum phases
correspond to the ground states of the quantum Hamilto-
nians that govern the systems. In this paper, we will mainly
discuss those quantum phases of matter. Crystal, conductor,
insulator, superfluid, and magnets can exist at zero tempera-
ture and are examples of quantum phases of matter.

Again, physicists used to believe that Landau symmetry-
breaking theory also describes all possible quantum phases
of matter and all possible (continuous) quantum phase
transitions. (Quantumphase transitions are zero temperature
phase transitions.) For example, the superfluid is described by
a 𝑈(1) symmetry breaking.

It is interesting to compare a finite-temperature phase,
liquid, with a zero-temperature phase, superfluid. A liquid is
described as a random probability distributions of particles
(such as atoms), while a superfluid is described by a quantum
wave function which is the superposition of a set of random
particle configurations:

⌋∑
Random configurations

∣ΦSuperuid ⟩ ⟩= (1)

The superpositions of many different particle positions are
called quantum fluctuations in particle positions.

Since Landau symmetry-breaking theory suggests that
all quantum phases are described by symmetry breaking,
thus we can use group theory to classify all those symmetry-
breaking phases. All symmetry-breaking quantum phases are
classified by a pair of mathematical objects (𝐺

𝐻
, 𝐺
Φ
), where

𝐺
𝐻

is the symmetry group of the Hamiltonian and 𝐺
Φ
is

the symmetry group of the ground state. For example, a
boson superfluid is labeled by (𝑈(1), {1}), where 𝑈(1) is the
symmetry group of the boson Hamiltonian which conserves
the boson number and {1} is the trivial group that contains
only identity.

2. Topological Order

2.1. The Discovery of Topological Order. However, in late
1980s, it became clear that Landau symmetry-breaking theory
did not describe all possible phases. In an attempt to explain
high-temperature superconductivity, the chiral spin state was
introduced [4, 5]. At first, physicists still wanted to use
Landau symmetry-breaking theory to describe the chiral spin
state.They identified the chiral spin state as a state that breaks
the time reversal and parity symmetries, but not the spin rota-
tion symmetry [5]. This should be the end of story according
to Landau symmetry-breaking description of orders.

But, it was quickly realized that there are many different
chiral spin states that have exactly the same symmetry [6].
So symmetry alone was not enough to characterize and
distinguish different chiral spin states. This means that the
chiral spin states must contain a new kind of order that is
beyond the usual symmetry description. The proposed new
kind of order was named “topological order” [7]. (The name
“topological order” wasmotivated by the low-energy effective
theory of the chiral spin states which is a Chern-Simons
theory [5]—a topological quantum field theory (TQFT)
[8].) New quantum numbers (or new topological probes),
such as ground-state degeneracy [6, 9] and the non-Abelian
geometric phase of degenerate ground states [7, 10], were
introduced to characterize/define the different topological
orders in chiral spin states.

But experiments soon indicated that chiral spin states
do not describe high-temperature superconductors, and the
theory of topological order became a theory with no experi-
mental realization. However, the similarity [4] between chiral
spin states and fractional quantum Hall (FQH) states [11, 12]
allows one to use the theory of topological order to describe
different FQH states.

FQH states are gapped ground states of 2D electrons
under strong magnetic field. FQH states have a property
that a current density will induce an electric field in the
transverse direction: 𝐸

𝑦
= 𝑅
𝐻
𝑗
𝑥
(see Figure 3). It is an

amazing discovery that the Hall coefficient 𝑅
𝐻
of a FQH state

is precisely quantized as a rational number 𝑝/𝑞 if we measure
the Hall coefficient 𝑅

𝐻
in unit of (ℎ/𝑒2) : 𝑅

𝐻
= (𝑝/𝑞)(ℎ/𝑒

2
)

(see Figure 3) [11]. Different quantized 𝑅
𝐻

correspond to
different FQH states. Just like the chiral spin states, different
FQH states all have the same symmetry and cannot be
distinguished by symmetry breaking. So there is noway to use
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Figure 2: (a) Disordered states that do not break the symmetry. (b) Ordered states that spontaneously break the symmetry. The energy
function 𝜀

𝑔
(𝜙) has a symmetry 𝜙 → −𝜙 : 𝜀

𝑔
(𝜙)= 𝜀

𝑔
(−𝜙). However, as we change the parameter 𝑔, the minimal energy state (the ground

state) may respect the symmetry (a), or may not respect the symmetry (b). This is the essence of spontaneous symmetry breaking.
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Figure 3: 2D electrons in strong magnetic field may form FQH states. Each FQH state has a quantized Hall coefficient 𝑅
𝐻
.

different symmetry breaking to describe different FQH states,
and FQH states must contain new orders. One finds that the
new orders in quantum Hall states can indeed be described
by topological orders [9]. So, the topological order does have
experimental realizations.

We would like to point out that before the topological-
order understanding of FQH states, people have tried to
use the notions of off-diagonal long-range order and order
parameter from Ginzburg-Landau theory to describe FQH
states [13–16]. Such an effort leads to a Ginzburg-Landau
Chern-Simons effective theory for FQH states [15, 16]. At the
same time, it was also realized that the order parameter in the
Ginzburg-Landau Chern-Simons is not gauge invariant and
is not physical. This is consistent with the topological order
understanding of FQH states which suggests that FQH has
no off-diagonal long-range order and cannot be described
by local order parameters. So, we can use effective theories

without order parameters to describe FQH states, and such
effective theories are pure Chern-Simons effective theories
[9, 17–21]. The pure Chern-Simons effective theories lead
to a K-matrix classification [20] of all Abelian topologically
ordered states (which include all Abelian FQH states).

FQH states were discovered in 1982 [11] before the
introduction of the concept of topological order. But FQH
states are not the first experimentally discovered topologically
ordered states. The real-life superconductors, having a 𝑍

2

topological order [22–24], were the first experimentally
discovered topologically ordered states. (Note that real-life
superconductivity can be described by the Ginzburg-Landau
theory with a dynamical 𝑈(1) gauge field, which becomes
a 𝑍
2
gauge theory at low energies, and a 𝑍

2
gauge theory

is an effective theory of 𝑍
2
topological order. In many

textbook, superconductivity is described by the Ginzburg-
Landau theorywithout the dynamical𝑈(1) gauge field, which



4 ISRN Condensed Matter Physics

Ferromagnet

(a)

Anti-ferromagnet

(b)

Superfluid of bosons

(c)

Superfluid of fermions

(d)

Figure 4: The dancing patterns for the symmetry-breaking orders.

fails to describe the real-life superconductors with dynamical
electromagnetic interaction. Such a textbook superconduc-
tivity is described by a 𝑈(1) symmetry breaking.) (Ironi-
cally, the Ginzburg-Landau symmetry-breaking theory was
developed to describe superconductors, though the real-
life superconductors are not symmetry-breaking states, but
topologically ordered states.)

2.2. Intuitive Pictures of Topological Order. Topological order
is a very new concept that describes quantum entanglements
in many body systems. Such a concept is very remote from
our daily experiences, and it is hard to have an intuition about
it. So, before we define topological order in general terms
(which can be abstract), let us first introduce and explain the
concept through some intuitive pictures.

We can use dancing to gain an intuitive picture of topo-
logical order. But before we do that, let us use dancing picture
to describe the old symmetry-breaking orders (see Figure 4).
In the symmetry-breaking orders, every particle/spin (or
every pair of particles/spins) dances by itself, and they all
dance in the sameway. (The “sameway” of dancing represents
a long-range order.) For example, in a ferromagnet, every
electron has a fixed position and the same spin direction. We
can describe an antiferromagnet by saying every pair of
electrons has a fixed position, and the two electrons in a
pair have opposite spin directions. In a boson superfluid,
each boson is moving around by itself and doing the same

dance, while in a fermion superfluid, fermions dance around
in pairs, and each pair is doing the same dance.

We can also understand topological orders through such
dancing pictures (see Figure 5). Unlike fermion super-
fluid where fermions dance in pairs, a topological order is
described by a global dance, where every particle (or spin) is
dancingwith every other particle (or spin) in a very organized
way. (a) All spins/particles dance following a set of local
dancing “rules” trying to lower the energy of a local Hamil-
tonian. (b) If all the spins/particles follow the local dancing
“rules,” then they will form a global dancing pattern, which
corresponds to the topological order. (c) Such a global pattern
of collective dancing is a pattern of quantum fluctuation
which corresponds to a pattern of long-range entanglements.

For example, in FQH liquid, the electrons dance following
the following local dancing rules.

(a) Electron always dances anticlockwise which implies
that the electron wave function only depends on the
electron coordinates (𝑥, 𝑦) via 𝑧 = 𝑥 + 𝑖𝑦.

(b) Each electron always takes exact three steps to dance
around any other electron, which implies that the
phase of the wave function changes by 6𝜋 as we move
an electron around any other electron.

The above two local dancing rules fix a global dance pat-
tern which corresponds to the Laughlin wave function [12]
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Figure 5: The dancing patterns for the topological orders.

Figure 6: The strings in a spin-1/2 model. In the background of up-
spins, the down-spins form closed strings.

Figure 7: In the string liquid, strings can move freely, including
reconnecting the strings.

ΦFQH = ∏(𝑧𝑖−𝑧𝑗)
3. Such a collective dancing gives rise to the

topological order (or long-range entanglements) in the FQH
state.

In addition to FQH states, some spin liquids also contain
topological orders [5, 23, 25–27]. (Spin liquids refer to
ground states of quantum spin systems that do not break
the spin rotation and the translation symmetries in the
spin Hamiltonians.) In those spin liquids, the spins “dance”
following the following local dancing rules:

(a) down-spins form closed strings with no ends in the
background of up-spins (see Figure 6);

(b) strings can otherwise move freely, including recon-
necting freely (see Figure 7).

The global dance formed by the spins following the above
dancing rules gives us a quantum spin liquid which is
a superposition of all closed-string configurations [28]:
|Φstring⟩ = ∑all string pattern

⟩⌊ . Such a state is called a string

or string-net condensed state [29]. The collective dancing
gives rise to a nontrivial topological order and a pattern of
long-range entanglements in the spin-liquid state.

3. What Is the Significance of
Topological Order?

The above descriptions of topological order are intuitive and
not concrete. It is not clear if the topological order (the
global dancing pattern or the long-range entanglement) has
any experimental significance. In order for the topological
order to be a useful concept, it must have new experimental
properties that are different from any symmetry-breaking
states.Those new experimental properties should indicate the
nontrivialness of the topological order. In fact, the concept of
topological order should be defined by the collection of those
new experimental properties.

Indeed, topological order does have new characteristic
properties. Those properties of topological orders reflect the
significance of topological order.

(1) Topological orders produce new kind of waves (i.e.,
the collective excitations above the topologically
ordered ground states) [30–38]. The new kind of
waves can be probed/studied in practical experi-
ments, such as neutron scattering experiments [34].

(2) The finite-energy defects of topological order (i.e.,
the quasiparticles) can carry fractional statistics [39,
40] (including non-Abelian statistics [41, 42]) and
fractional charges [12, 43] (if there is a symmetry).
Such a property allows us to use topologically ordered
states as a medium for topological quantum memory
[44] and topological quantum computations [28].

(3) Some topological orders have topologically protected
gapless boundary excitations [45–47]. Such gapless
boundary excitations are topologically protected,
which lead to perfect conducting boundary channels
even with magnetic impurities [48]. This property
may lead to device applications.

In the following, we will study some examples of topolog-
ical orders and reveal their amazing topological properties.
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Figure 8: Liquids only have a compression wave—a wave of density
fluctuations.

4. Examples of Topological Order: A Quantum
Liquid of Oriented Strings and a Unification
of Gauge Interactions and Fermi Statistics

Our first example is a quantum liquid of oriented strings. We
will discuss its new topological properties (1) and (2).We find
that the new kind of waves and the emergent statistics are so
profound, that they may change our view of universe. Let us
start by explaining a basic notion—“principle of emergence”.

4.1. Principle of Emergence. Typically, one thinks that the
properties of a material should be determined by the compo-
nents that form the material. However, this simple intuition
is incorrect, since all the materials are made of same compo-
nents: electrons, protons, and neutrons. So, we cannot use the
richness of the components to understand the richness of the
materials. In fact, the various properties of different materials
originate from various ways in which the particles are
organized. Different orders (the organizations of particles)
give rise to different physical properties of a material. It is the
richness of the orders that gives rise to the richness ofmaterial
world.

Let us use the origin of mechanical properties and the
origin of waves to explain, in amore concrete way, how orders
determine the physics properties of a material. We know
that a deformation in a material can propagate just like the
ripple on the surface of water. The propagating deformation
corresponds to a wave traveling through the material. Since
liquids can resist only compression deformation, so liquids
can only support a single kind of wave—compression wave
(see Figure 8). (Compression wave is also called longitudinal
wave.) Mathematically, the motion of the compression wave
is governed by the Euler equation

𝜕
2
𝜌

𝜕𝑡2
− V
2 𝜕
2
𝜌

𝜕𝑥2
= 0, (2)

where 𝜌 is the density of the liquid.
Solid can resist both compression and shear deforma-

tions. As a result, solids can support both compression wave
and transverse wave. The transverse wave corresponds to the
propagation of shear deformations. In fact, there are two
transverse waves corresponding to two directions of shear
deformations. The propagation of the compression wave and

Figure 9: Drawing a grid on a sold helps us to see the deformation
of the solid.The vector 𝑢𝑖 in (3) is the displacement of a vertex in the
grid. In addition to the compression wave (i.e., the density wave), a
solid also supports transverse wave (wave of shear deformation) as
shown in the above figure.

the two transverse waves in solids are described by the
elasticity equation

𝜕
2
𝑢
𝑖

𝜕𝑡2
− 𝑇
𝑖𝑘𝑙

𝑗

𝜕
2
𝑢
𝑗

𝜕𝑥𝑘𝜕𝑥𝑙
= 0, (3)

where the vector field 𝑢𝑖(x, 𝑡) describes the local displacement
of the solid (see Figure 9).

We would like to point out that the elasticity equation
and the Euler equations not only describe the propagation of
waves, but also they actually describe all small deformations
in solids and liquids. Thus, the two equations represent a
complete mathematical description of the mechanical prop-
erties of solids and liquids.

But why do solids and liquids behave so differently?
What makes a solid to have a shape and a liquid to have
no shape? What are the origins of elasticity equation and
Euler equations? The answer to those questions has to wait
until the discovery of atoms in 19th century. Since then, we
realized that both solids and liquids are formed by collections
of atoms. The main difference between the solids and liquids
is that the atoms are organized very differently. In liquids,
the positions of atoms fluctuate randomly (see Figure 1(a)),
while in solids, atoms organize into a regular fixed array
(see Figure 1(b)). (The solids here should be more accurately
referred as crystals.) It is the different organizations of atoms
that lead to the different mechanical properties of liquids
and solids. In other words, it is the different organizations of
atoms that make liquids to be able to flow freely and solids to
be able to retain their shape.

How can different organizations of atoms affect mechani-
cal properties of materials? In solids, both the compression
deformation (see Figure 10(a)) and the shear deformation
(see Figure 10(b)) lead to real physical changes of the atomic
configurations. Such changes cost energies. As a result, solids
can resist both kinds of deformations and can retain their
shapes. This is why we have both the compression wave and
the transverse wave in solids.

In contrast, a shear deformation of atoms in liquids does
not result in a new configuration since the atoms still have
uniformly random positions. So, the shear deformation is
a do-nothing operation for liquids. Only the compression
deformationwhich changes the density of the atoms results in
a new atomic configuration and costs energies (see Figure 11).
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(a) (b)

Figure 10: The atomic picture of (a) the compression wave and (b) the transverse wave in a crystal.

Figure 11: The atomic picture of the compression wave in liquids.

As a result, liquids can only resist compression and have only
compression wave. Since shear deformations do not cost any
energy for liquids, liquids can flow freely.

We see that the properties of the propagating wave are
entirely determined by how the atoms are organized in the
materials. Different organizations lead to different kinds of
waves and different kinds of mechanical laws. Such a point
of view of different kinds of waves/laws originated from
different organizations of particles is a central theme in
condensed matter physics. This point of view is called the
principle of emergence.

4.2. String-Net Liquid Unifies Light and Electrons. The elastic-
ity equation and the Euler equation are two very important
equations. They lay the foundation of many branches of sci-
ence, such as mechanical engineering and aerodynamic engi-
neering. But, we have a more important equation, Maxwell
equation, that describes light waves in vacuum. When
Maxwell equationwas first introduced, people firmly believed
that any wave must correspond to motion of something. So,
people want to find out what is the origin of the Maxwell
equation? The motion of what gives rise to electromagnetic
wave?

First, one may wonder, can Maxwell equation comes
from a certain symmetry-breaking order? Based on Landau
symmetry-breaking theory, the different symmetry-breaking
orders can indeed lead to different waves satisfying different
wave equations. So, maybe a certain symmetry-breaking
order can give rise to a wave that satisfies Maxwell equation.
But people have been searching for ether—a medium that
supports light wave—for over 100 years and could not find
any symmetry-breaking states that can give rise to waves
satisfying the Maxwell equation. This is one of the reasons
why people give up the idea of ether as the origin of light and
Maxwell equation.

However, the discovery of topological order [6, 7] sug-
gests that Landau symmetry-breaking theory does not

describe all possible organizations of bosons/spins.This gives
us a new hope; Maxwell equation may arise from a new kind
of organizations of bosons/spins that have nontrivial topolog-
ical orders.

In addition to the Maxwell equation, there is an even
stranger equation, Dirac equation, that describes wave of
electrons (and other fermions). Electrons have Fermi statis-
tics. They are fundamentally different from the quanta of
other familiar waves, such as photons and phonons, since
those quanta all have Bose statistics. To describe the electron
wave, the amplitude of the wave must be anticommuting
Grassmann numbers, so that the wave quanta will have Fermi
statistics. Since electrons are so strange, few people regard
electrons and the electron waves as collective motions of
something. People accept without questioning that electrons
are fundamental particles, one of the building blocks of all
that exist.

However, from a condensed matter physics point of view,
all low-energy excitations are collectivemotion of something.
If we try to regard photons as collective modes, why cannot
we regard electrons as collective modes as well? So, maybe
Dirac equation and the associated fermions can also arise
from a new kind of organizations of bosons/spins that have
nontrivial topological orders.

A recent study provides a positive answer to the above
questions [29, 36, 37]. We find that if bosons/spins form
large oriented strings and if those strings form a quantum
liquid state, then the collective motion of such organized
bosons/spins will correspond to waves described by Maxwell
equation and Dirac equation. The strings in the string liquid
are free to join and cross each other. As a result, the strings
look more like a network (see Figure 12). For this reason, the
string liquid is actually a liquid of string-nets, which is called
string-net condensed state.

But why does the waving of strings produce waves des-
cribed by the Maxwell equation? We know that the particles
in a liquid have a random but uniform distribution. A
deformation of such a distribution corresponds to a density
fluctuation, which can be described by a scaler field 𝜌(x, 𝑡).
Thus, the waves in a liquid are described by the scaler field
𝜌(x, 𝑡), which satisfy the Euler equation (2). Similarly, the
strings in a string-net liquid also have a random but uniform
distribution (see Figure 13). A deformation of string-net
liquid corresponds to a change of the density of the strings
(see Figure 14). However, since strings have an orientation,
the “density” fluctuations are described by a vector field
E(x, 𝑡), which indicates that there are more strings in the E
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Figure 12: A quantum ether: the fluctuation of oriented strings gives
rise to electromagnetic waves (or light). The ends of strings give rise
to electrons. Note that oriented strings have directions which should
be described by curves with arrow. For ease of drawing, the arrows
on the curves are omitted in the above plot.

Figure 13: The fluctuating strings in a string liquid.

Figure 14: A “density” wave of oriented strings in a string liquid.
The wave propagates in 𝑥-direction.The “density” vector E points in
𝑦-direction. For ease of drawing, the arrows on the oriented strings
are omitted in the above plot.

direction on average. The oriented strings can be regarded
as flux lines. The vector field E(x, 𝑡) describes the smeared
average flux. Since strings are continuous (i.e., they cannot
end), the flux is conserved: 𝜕 ⋅ E(x, 𝑡) = 0. The vector
density E(x, 𝑡) of strings cannot change in the direction
along the strings (i.e., along the E(x, 𝑡) direction). E(x, 𝑡) can
change only in the direction perpendicular to E(x, 𝑡). Since
the direction of the propagation is the same as the direction
in which E(x, 𝑡) varies, thus the waves described by E(x, 𝑡)
must be transverse waves; E(x, 𝑡) is always perpendicular to
the direction of the propagation. Therefore, the waves in the
string liquid have a very special property; the waves have only
transverse modes and no longitudinal mode. This is exactly
the property of the light waves described by the Maxwell
equation. We see that “density” fluctuations of strings (which
are described by a transverse vector field) naturally give rise

to the light (or electromagnetic) waves and the Maxwell
equation [32–37].

It is interesting to compare solid, liquid, and string-net
liquid. We know that the particles in a solid organized into a
regular lattice pattern.Thewaving of such organized particles
produces a compression wave and two transverse waves. The
particles in a liquid have a more random organization. As
a result, the waves in liquids lost two transverse modes and
contained only a single compression mode. The particles in
a string-net liquid also have a random organization, but in a
different way. The particles first form string-nets, and string-
nets then form a random liquid state. Due to this different
kind of randomness, the waves in string-net condensed state
lost the compression mode and contained two transverse
modes. Such a wave (having only two transverse modes) is
exactly the electromagnetic wave.

To understand how electrons appear from string-nets, we
would like to point out that if we only want photons and no
other particles, the strings must be closed strings with no
ends.Thefluctuations of closed strings produce only photons.
If strings have open ends, those open ends can move around
and just behave like independent particles. Those particles
are not photons. In fact, the ends of strings are nothing but
electrons.

How do we know that ends of strings behave like elec-
trons? First, since the waving of string-nets is an electromag-
netic wave, a deformation of string-nets corresponds to an
electromagnetic field. So, we can study how an end of a string
interacts with a deformation of string-nets. We find that such
an interaction is just like the interaction between a charged
electron and an electromagnetic field. Also electrons have a
subtle but very important property—Fermi statistics, which is
a property that exists only in quantum theory. Amazingly, the
ends of strings can reproduce this subtle quantumproperty of
Fermi statistics [29, 49]. Actually, string-net liquids explain
why Fermi statistics should exist.

We see that string-nets naturally explain both light and
electrons (gauge interactions and Fermi statistics). In other
words, string-net theory provides a way to unify light and
electrons [36, 37]. So, the fact that our vacuum contains both
light and electronsmay not be amere accident. Itmay actually
suggest that the vacuum is indeed a string-net liquid.

4.3. More General String-Net Liquid and Emergence of Non-
Abelian Gauge Theory. Here, we would like to point out that
there are many different kinds of string-net liquids. The
strings in different liquids may have different numbers of
types. The strings may also join in different ways. For a
general string-net liquid, the waving of the strings may not
correspond to light, and the ends of strings may not be
electrons. Only one kind of string-net liquids gives rise to
light and electrons. On the other hand, the fact that there
are many different kinds of string-net liquids allows us to
explain more than just light and electrons. We can design a
particular type of string-net liquids which not only gives
rise to electrons and photons, but also gives rise to quarks
and gluons [29, 33]. The waving of such type of string-
nets corresponds to photons (light) and gluons. The ends of
different types of strings correspond to electrons and quarks.
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It would be interesting to see if it is possible to design a string-
net liquid that produces all elementary particles! If this is
possible, the ether formed by such string-nets can provide an
origin of all elementary particles. (So far we can use string-
net to produce almost all elementary particles, expect for
the graviton that is responsible for the gravity. Also, we are
unable to produce the chiral coupling between the 𝑆𝑈(2)
gauge boson and the fermions within the string-net picture.)

We like to stress that the string-nets are formed by qubits.
So, in the string-net picture, both the Maxwell equation and
Dirac equation emerge from local qubit model, as long as the
qubits are from a long-range entangled state (i.e., a string-net
liquid). In other words, light and electrons are unified by the
long-range entanglements of qubits!

The electric field and the magnetic field in the Maxwell
equation are called gauge fields. The fields in the Dirac
equation are Grassmann-number valued field. (Grassmann
numbers are anticommuting numbers. For a long time, we
thought that we have to use gauge fields to describe light
waves that have only two transverse modes, and we thought
that we have to use Grassmann-number valued fields to
describe electrons and quarks that have Fermi statistics. So,
gauge fields and Grassmann-number valued fields became
the fundamental build blocks of quantum field theory that
describes our world. The string-net liquids demonstrate that
we do not have to introduce gauge fields and Grassmann-
number valued fields to describe photons, gluons, electrons,
and quarks. It demonstrates how gauge fields and Grassmann
fields emerge from local qubit models that contain only
complex scaler fields at the cut-off scale.

Our attempt to understand light has a long and evolving
history. We first thought light to be a beam of particles.
AfterMaxwell, we understand light as electromagnetic waves.
After Einstein’s theory of general relativity, where gravity is
viewed as curvature in space-time, Weyl and others try to
view electromagnetic field as curvatures in the “unit system”
that we used tomeasure complex phases. It leads to the notion
of gauge theory. The general relativity and the gauge theory
are two corner stones of modern physics. They provide a
unified understanding of all four interactions in terms of a
beautiful mathematical framework; all interactions can be
understood geometrically as curvatures in space-time and in
“unit systems” (ormore precisely, as curvatures in the tangent
bundle and other vector bundles in space-time).

Later, people in high-energy physics and in condensed
matter physics have found another way in which gauge field
can emerge [50–53]; one first cut a particle (such as an
electron) into two partons by writing the field of the particle
as the product of the two fields of the two partons. Then
one introduces a gauge field to glue the two partons back to
the original particle. Such a “glue picture” of gauge fields
(instead of the fiber bundle picture of gauge fields) allows us
to understand the emergence of gauge fields in models that
originally contain no gauge field at the cut-off scale.

A string picture represents the third way to understand
gauge theory. String operators appear in the Wilson-loop
characterization [54] of gauge theory. The Hamiltonian and
the duality description of lattice gauge theory also reveal
string structures [55–58]. Lattice gauge theories are not local

bosonic models, and the strings are unbreakable in lattice
gauge theories. String-net theory points out that even break-
able strings can give rise to gauge fields [59]. So, we do
not really need strings. Qubits themselves are capable of
generating gauge fields and the associated Maxwell equation.
This phenomenon was discovered in several qubit models
[30, 35, 52, 60, 61] before realizing their connection to the
string-net liquids [32]. Since gauge field can emerge from
local qubit models, the string picture evolves into the entan-
glement picture—the fourth way to understand gauge field;
gauge fields are fluctuations of long-range entanglements. I
feel that the entanglement picture captures the essence of
gauge theory. Despite the beauty of the geometric picture,
the essence of gauge theory is not the curved fiber bundles.
In fact, we can view gauge theory as a theory for long-range
entanglements, although the gauge theory is discovered long
before the notion of long-range entanglements.The evolution
of our understanding of light and gauge interaction: particle
beam → wave → electromagnetic wave → curvature in
fiber bundle → glue of partons → wave in string-net
liquid → wave in long-range entanglements represents 200
year’s effort of human race to unveil the mystery of universe.

Viewing gauge field (and the associated gauge bosons)
as fluctuations of long-range entanglements has an added
bonus; we can understand the origin of Fermi statistics in
the same way; fermions emerge as defects of long-range
entanglements, even though the original model is purely
bosonic. Previously, there are two ways to obtain emergent
fermions from purely bosonic model: by binding gauge
charge and gauge flux in (2 + 1)𝐷 [62, 63] and by binding the
charge and the monopole in a 𝑈(1) gauge theory in (3 + 1)𝐷
[64–68]. Using long-range entanglements and their string-
net realization, we can obtain the simultaneous emergence
of both gauge bosons and fermions in any dimensions and
for any gauge group [29, 33, 36, 49]. This result gives us
hope that maybe every elementary particle is emergent and
can be unified using local qubit models. Thus, long-range
entanglements offer us a new option to view our world;
maybe our vacuum is a long-range entangled state. It is
the pattern of the long-range entanglement in the vacuum
that determines the content and the structures of observed
elementary particles. Such a picture has an experimental
prediction that will be described in the next Section 4.4.

We like to point out that the string-net unification of
gauge bosons and fermions is very different from the super-
string theory for gauge bosons and fermions. In the string-
net theory, gauge bosons and fermions come from the qubits
that form the space, and “string-net” is simply the name
that describes how qubits are organized in the ground state.
So string-net is not a thing, but a pattern of qubits. In the
string-net theory, the gauge bosons are waves of collective
fluctuations of the string-nets, and a fermion corresponds to
one end of string. In contrast, gauge bosons and fermions
come from strings in the superstring theory. Both gauge
bosons and fermions correspond to small pieces of strings.
Different vibrations of the small pieces of strings give rise to
different kind of particles. The fermions in the superstring
theory are put in by hand through the introduction of
Grassmann fields.
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4.4. A Falsifiable Prediction of String-Net Unification of Gauge
Interactions and Fermi Statistics. In the string-net unification
of light and electrons [36, 37], we assume that the space is
formed by a collection of qubits, and the qubits form a string-
net condensed state. Light waves are collective motions of
the string-nets, and an electron corresponds to one end of
string. Such a string-net unification of light and electrons has
a falsifiable prediction; all fermionic excitations must carry
some gauge charges [29, 49].

The𝑈(1)× 𝑆𝑈(2)× 𝑆𝑈(3) standard model for elementary
particles contains fermionic excitations (such as neutrons and
neutrinos) that do not carry any𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3) gauge
charge. So, according to the string-net theory, the 𝑈(1) ×
𝑆𝑈(2) × 𝑆𝑈(3) standard model is incomplete. According to
the string-net theory, our universe not only has𝑈(1)×𝑆𝑈(2)×
𝑆𝑈(3) gauge theory, but it must also contain other gauge
theories. Those additional gauge theories may have a gauge
group of 𝑍

2
or other discrete groups. Those extra discrete

gauge theories will lead to new cosmic strings which will
appear in very early universe.

5. Examples of Topological Order:
Quantum Liquid of Unoriented Strings and
Emergence of Statistics

In the above, we discussed how light and electronsmay emer-
ge from a quantum liquid of orientable strings. We like to
point out that quantum liquids of orientable strings are not
the simplest topologically ordered state. Quantum liquids of
unoriented strings are simpler topologically ordered states. In
this section, we will discuss quantum liquids of unoriented
strings and their topological properties. Using those simpler
examples, we will discuss in detail how can ends of strings
become fermions, or even anyons.

5.1. Quantum Liquids of Unoriented Strings and the Local
“Dancing” Rules. The strings in quantum liquids of unori-
ented strings can be realized in a spin-1/2 model. We can
view up-spins as background and lines of down-spins as the
strings (see Figure 6). Clearly, such string is unoriented. The
simplest topologically ordered state in such spin-1/2 system is
given by the equal-weight superposition of all closed strings
[28]: |Φ

𝑍
2

⟩ = ∑all closed strings
⟩⌊ . Such a wave function

represents a global dancing pattern that corresponds to a
nontrivial topological order.

As we have mentioned before, the global dancing pattern
is determined by local dancing rules. What are those local
rules that give rise to the global dancing pattern |Φ

𝑍
2

⟩ =

∑all closed strings
?∣ ⟩ Thefirst rule is that, in the ground state,

the down-spins are always connected with no open ends. To
describe the second rule, we need to introduce the amplitudes
of close strings in the ground state: ( )Φ . The ground state
is given by

(∑
all closed strings

⟩.⌊)Φ (4)

Figure 15: The orientable strings in a spin-1 model. In the back-
ground of 𝑆

𝑧
= 0 spins (the white dots), the 𝑆

𝑧
= 1 spins (the red

dots) and the 𝑆
𝑧
= −1 spins (the blue dots) form closed strings.

Then, the second rule relates the amplitudes of close strings
in the ground state as we change the strings locally:

(Φ ( Φ (( ).), )) = Φ = Φ (5)

In other words, if we locally deform/reconnect the strings as
in Figure 7, the amplitude (or the ground state wave function)
does not change.

The first rule tells us that the amplitude of a string
configuration only depends on the topology of the string
configuration. Starting from a single loop, using the local
deformation and the local reconnection in Figure 7, we can
generate all closed string configurations with any number of
loops. So all those closed string configurations have the same
amplitude. Therefore, the local dancing rule fixes the wave
function to be the equal-weight superposition of all closed
strings: |Φ

𝑍
2

⟩ = ∑all closed strings
⟩⌊ . In other words, the

local dancing rule fixes the global dancing pattern.
If we choose another local dancing rule, then we will

get a different global dancing pattern that corresponds to a
different topological order.One of the new choices is obtained
by just modifying the sign in (5):

Φ (Φ( Φ(( ).), ))= = −Φ (6)

We note that each local reconnection operation changes the
number of loops by 1. Thus the new local dancing rules
give rise to a wave function which has a form |ΦSemi⟩ =

∑all closed strings(−)
𝑁loops ⟩⌊ , where 𝑁loops is the number of

loops. The wave function |ΦSemi⟩ corresponds to a different
global dance and a different topological order.

In the above, we constructed two quantum liquids of
unoriented strings in a spin-1/2 model. Using a similar con-
struction, we can also obtain a quantum liquid of orientable
strings which gives rise to waves satisfying Maxwell equation
as discussed before. To obtain quantum liquid of orientable
strings, we need to start with a spin-1 model, where spins live
on the links of honeycomb lattice (see Figure 15). Since the
honeycomb lattice is bipartite, each link has an orientation
from the A-sublattice to the B-sublattice (see Figure 15). The
orientable strings are formed by alternating 𝑆

𝑧
= ±1 spins on

the background of 𝑆
𝑧
= 0 spins.The string orientation is given

by the orientation of the links under the 𝑆
𝑧
= 1 spins (see

Figure 15). The superposition of the orientable strings gives
rise to quantum liquid of orientable strings.
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5.2. Topological Properties of Quantum Liquids of Unori-
ented Strings. Why do the two wave functions of unori-
ented strings, |Φ

𝑍
2

⟩ and |ΦSemi⟩, have nontrivial topological
orders? This is because the two wave functions give rise to
nontrivial topological properties. The two wave functions
correspond to different topological orders, since they give rise
to different topological properties. In this section, we will
discuss two topological properties: emergence of fractional
statistics and topological degeneracy on compact spaces.

5.2.1. Emergence of Fermi and Fractional Statistics. The two
topological states in two dimensions contain only closed
strings, which represent the ground states. If the wave
functions contain open strings (i.e., have nonzero amplitudes
for open string states), then the ends of the open strings will
correspond to point-like topological excitations above the
ground states. Although an open string is an extended object,
its middle part merges with the strings already in the ground
states and is unobservable. Only its two ends carry energies
and correspond to two point-like particles.

We note that such a point-like particle from an end
of string cannot be created alone. Thus, an end of string
corresponds to a topological point defect, which may carry
fractional quantum numbers. This is because an open string
as a whole always carries nonfractionalized quantum num-
bers. But an open string corresponds to two topological point
defects from the two ends. So, we cannot say that each end
of string carries nonfractionalized quantum numbers. Some
times, they do carry fractionalized quantum numbers.

Let us first consider the defects in the |Φ
𝑍
2

⟩ state. To
understand the fractionalization, let us first consider the spin
of such a defect to see if the spin is fractionalized or not
[69, 70]. An end of string can be represented by

∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ +++ · · ·def = (7)

which is an equal-weight superposition of all string states
obtained from the deformations and the reconnections of .

Under a 360∘ rotation, the end of string is changed to
| ⟩def , which is an equal-weight superposition of all string
states obtained from the deformations and the reconnections
of . Since ∣ ⟩def and | ⟩def are always different, ∣ ⟩def is not an
eigenstate of 360∘ rotation and does not carry a definite spin.

To construct the eigenstates of 360∘ rotation, let us make
a 360∘ rotation to | ⟩def . To do that, we first use the string
reconnection move in Figure 7 to show that | ⟩def = ∣ ⟩def . A
360
∘ rotation on ∣ ⟩def gives us ∣ ⟩def.
We see that the 360∘ rotation exchanges ∣ ⟩def and | ⟩def .

Thus, the eigenstates of 360∘ rotation are given by ∣ ⟩def + | ⟩def

with eigenvalue 1 and by ∣ ⟩def − | ⟩def with eigenvalue −1. So,
the particle ∣ ⟩def + | ⟩def has a spin 0 (mod 1), and the particle
∣ ⟩def − | ⟩def has a spin 1/2 (mod 1).

If one believes in the spin-statistics theorem, one may
guess that the particle ∣ ⟩def + | ⟩def is a boson and the particle
∣ ⟩def − | ⟩def is a fermion.This guessing is indeed correct. From

(a) (b) (c) (d) (e)

Figure 16: Deformation of strings and two reconnection moves,
plus an exchange of two ends of strings and a 360∘ rotation of one
of the ends of the string, change the configuration (a) back to itself.
Note that from (a) to (b) we exchange the two ends of strings, and
from (d) to (e) we rotate one of the ends of the string by 360∘. The
combination of those moves does not generate any phase.

Figure 16, we see that we can use deformation of strings and
two reconnectionmoves to generate an exchange of two ends
of strings and a 360∘ rotation of one of the ends of the string.
Such operations allow us to show that Figures 16(a) and 16(e)
have the same amplitude, which means that an exchange of
two ends of strings followed by a 360∘ rotation of one of the
ends of the string does not generate any phase.This is nothing
but the spin-statistics theorem.

The emergence of Fermi statistics in the |Φ
𝑍
2

⟩ state of
a purely bosonic spin-1/2 model indicates that the state is a
topologically ordered state. We also see that the |Φ

𝑍
2

⟩ state

has a bosonic quasiparticle ∣ ⟩def + | ⟩def , and a fermionic quasi-
particle ∣ ⟩def − | ⟩def .The bound state of the above two particles
is a boson (not a fermion) due to their mutual semion
statistics. Such quasiparticle content agrees exactly with the
𝑍
2
gauge theory which also has three types of nontrivial

quasiparticles excitations, two bosons and one fermion. In
fact, the low-energy effective theory of the topologically
ordered state |Φ

𝑍
2

⟩ is the 𝑍
2
gauge theory, and we will call

|Φ
𝑍
2

⟩ a 𝑍
2
topologically ordered state.

Next, let us consider the defects in the |ΦSemi⟩ state. Now
we show that

∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ +−+ · · ·def = (8)

and a similar expression for | ⟩def , due to a change of the local
dancing rule for reconnecting the strings (see (6)). Using the
string reconnection move in Figure 7, we find that | ⟩def =−
∣ ⟩def . So, a 360∘ rotation changes (∣ ⟩def, | ⟩def) to (| ⟩def , − ∣ ⟩def).
We find that ∣ ⟩def + 𝑖 | ⟩def is the eigenstate of the 360∘ rotation
with eigenvalue −𝑖, and ∣ ⟩def −𝑖 | ⟩def is the other eigenstate of
the 360∘ rotation with eigenvalue 𝑖. So, the particle ∣ ⟩def + 𝑖
| ⟩def has a spin −1/4, and the particle ∣ ⟩def −𝑖 | ⟩def has a spin
1/4. The spin-statistics theorem is still valid for |ΦSemi⟩def

state, as one can see from Figure 16. So, the particle ∣ ⟩def + 𝑖
| ⟩def and particle ∣ ⟩def −𝑖 | ⟩def have fractional statistics with
statistical angles of semion: ±𝜋/2. Thus, the |ΦSemi⟩ state
contains a nontrivial topological order. We will call such a
topological order a double-semion topological order.

It is amazing to see that the long-range quantumentangle-
ments in string liquid can give rise to fractional spin and frac-
tional statistics, even from a purely bosonicmodel. Fractional
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Figure 17: On a torus, the closed string configurations can be divid-
ed into four sectors, depending on even or odd number of strings
crossing the 𝑥- or 𝑦-axes.

spin and Fermi statistics are two of the most mysterious phe-
nomena in nature. Now, we can understand them as merely
a phenomenon of long-range quantum entanglements. They
are no longer mysterious.

5.2.2. Topological Degeneracy. The𝑍
2
and the double-semion

topological states (as well as many other topological states)
have another important topological property: topological
degeneracy [6, 7]. Topological degeneracy is the ground-state
degeneracy of a gapped many-body system that is robust
against any local perturbations as long as the system size is
large.

Topological degeneracy can be used as protected qubits
which allow us to perform topological quantum computation
[28]. It is believed that the appearance of the topological
degeneracy implies the topological order (or long-range
entanglements) in the ground state [6, 7]. Many-body states
with topological degeneracy are described by topological
quantum field theory at low energies [8].

The simplest topological degeneracy appears when we
put topologically ordered states on compact spaces with no
boundary. We can use the global dancing pattern to under-
stand the topological degeneracy. We know that the local
dancing rules determine the global dancing pattern. On a
sphere, the local dancing rules determine a unique global
dancing pattern. So, the ground state is nondegenerate. How-
ever, on other compact spaces, there can be several global
dancing patterns that all satisfy the local dancing rules. In this
case, the ground state is degenerate.

For the 𝑍
2
topological state on torus, the local dancing

rule relates the amplitudes of the string configurations that
differ by a string reconnection operation in Figure 7. On a
torus, the closed string configurations can be divided into
four sectors (see Figure 17), depending on even or odd
number of strings crossing the 𝑥- or 𝑦-axes.The string recon-
nection move only connect the string configurations among
each sector. So, the superposition of the string configurations
in each sector represents a different global dancing pattern
and a different degenerate ground state. Therefore, the local
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Figure 18: A X-ray diffraction pattern defines/probes the crystal
order.

dancing rule for the𝑍
2
topological order gives rise to fourfold

degenerate ground state on torus [23].
Similarly, the double-semion topological order also gives

rise to fourfold degenerate ground state on torus.

6. A Macroscopic Definition and
the Characterization of Topological Order

So far in this paper, we discussed topological order using an
intuitive dancing picture. Then, we discussed a few simple
examples. In the rest of this paper, we will give a more
rigorous description and a systematic understanding of topo-
logical order and its essence [6, 7]. Historically, the more
rigorous description of topological order was obtained before
the intuitive dancing picture and the simple examples of
topological order discussed in the previous part of the paper.

First, we would like to give a physical definition of
topological order (at least in 2 + 1 dimensions). Here, we
like to point out that to define a physical concept is to
design experiments or numerical calculations that allow us to
probe and characterize the concept. For example, the concept
of superfluid order is defined by zero viscosity and the
quantization of vorticity, and the concept of crystal order is
defined by X-ray diffraction experiment (see Figure 18).

The experiments that we use to define/characterize
superfluid order and crystal order are linear responses.
Linear responses are easily accessible in experiments and
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Table 1: Symmetry-breaking orders can be probed/defined through
linear responses. But topological order cannot be probed/defined
through linear responses. We need topological probes to define
topological orders.

Order Experiment
Crystal order X-ray diffraction
Ferromagnetic order Magnetization
Antiferromagnetic order Neutron scattering
Superuid order Zero viscosity and vorticity quantization
Topological order Topological degeneracy
(Global dancing pattern) non-Abelian geometric phase

Deg. = 𝐷1 Deg. = 𝐷2Deg. = 1

𝑔 = 0
𝑔 = 1 𝑔 = 2

Figure 19: The topological ground state degeneracies of topologi-
cally ordered states depend on the topology of the space, such as the
genus 𝑔 of two-dimensional closed surfaces.

the symmetry-breaking order that they define are easy to
understand (see Table 1). However, topological order is such
a new and elusive order that it cannot be probed/defined by
any linear responses. To probe/define topological order we
need to use very unusual “topological” probes. In 1990, we
conjectured that topological order can be completely defined/
characterized by using only two topological properties (at
least in 2 + 1 dimensions) [7]:

(1) topological ground-state degeneracies on closed
spaces of various topologies (see Figure 19) [6],

(2) non-Abelian geometric phases [71] of those degen-
erate ground states from deforming the spaces (see
Figure 20) [7, 10].

It was through such topological probes that we introduce the
concept of topological order. Just like zero viscosity and the
quantization of vorticity define the concept of superfluid order,
the topological degeneracy and the non-Abelian geometric
phases of the degenerate ground states define the concept of
topological order.

6.1. What Is “Topological Ground-State Degeneracy”? Topo-
logical ground state degeneracy, or simply, topological degen-
eracy is a phenomenon of quantummany-body systems, that
the ground state of a gapped many-body system become
degenerate in the large system size limit, and that such a
degeneracy cannot be lifted by any local perturbations as long
as the system size is large [6, 9, 59, 72]. The topological
degeneracy for a given system is usually different for different
topologies of space [73]. For example, for the𝑍

2
topologically

ordered state in two dimensions [5], the topological degener-
acy is𝐷

𝑔
= 4
𝑔 on genus 𝑔 Riemann surface (see Figure 19).

People usually attribute the ground-state degeneracy to
symmetry. But topological degeneracy, being robust against

=

(a)

(b)

Figure 20: (a) The shear deformation of a torus generates a
(projective) non-Abelian geometric phase 𝑇, which is a generator of
a projective representation modular transformation. The last shear-
deformed torus is the same as the original torus after a coordinate
transformation: 𝑥 → 𝑥+𝑦, 𝑦 → 𝑦. (b)The squeezing deformation
of a torus generates a (projective) non-Abelian geometric phase 𝑆,
which is the other generator of a projective representation modular
transformation. The last squeeze-deformed torus is the same as the
original torus after a coordinate transformation: 𝑥 → 𝑦, 𝑦 → −𝑥.

any local perturbations, is not due to symmetry. So, the
very existence of topological degeneracy is a surprising
and amazing phenomenon. Such an amazing phenomenon
defines the notion of topological order. As a comparison, we
know that the existence of zero viscosity is also an amazing
phenomenon, and such an amazing phenomenon defines
the notion of superfluid order. So, topological degeneracy,
playing the role of zero viscosity in superfluid order, implies
the existence of a new kind of quantum phase—topologically
ordered phases.

6.2. What Is “Non-Abelian Geometric Phase of Topologically
Degenerate States”? However, the ground-state degeneracy
is not enough to completely characterize/define topological
order. Two different topological orders may have exactly the
same topological degeneracy on space of any topology. We
would like to find, as many as possible, quantum numbers
associated with the degenerate ground states, so that by
measuring these quantum numbers, we can completely char-
acterize/define topological order.The non-Abelian geometric
phases of topologically degenerate states are such quantum
numbers [7, 10].

The non-Abelian geometric phase is a unitary matrix
𝑈 that can be calculated from an one parameter family of
gapped Hamiltonians𝐻

𝑔
, 𝑔 ∈ [0, 1], provided that𝐻

0
= 𝐻
1

[71]. 𝑈 is a one by one matrix if there is only one ground
state below the gap. 𝑈 is 𝑛 dimensional if the ground-state
degeneracy is 𝑛 for all 𝑔 ∈ [0, 1].

To use non-Abelian geometric phases to character-
ize/define topological order, let us put themany-body state on
a torus [7, 10, 74, 75] and perform a “shear” deformation of the
torus to obtain a one parameter family of gapped Hamiltoni-
ans that form a loop (i.e., 𝐻

0
= 𝐻
1
) (see Figure 20(a)). The

non-Abelian geometric phase obtained this way is denoted
as 𝑇. Similarly, a “squeezing” deformation of the torus gives
rise to another non-Abelian geometric phase 𝑆. Both 𝑆 and
𝑇 are 𝐷

1
dimensional unitary matrices, where 𝐷

1
is the

topological degeneracy on torus. For different deformation
paths that realize the loops in Figure 20, 𝑆 and 𝑇 may be
different. However, because the ground-state degeneracy is
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robust, the difference is only in the total phase factors. Since
the two deformations in Figure 20 generate the modular
transformations, thus 𝑆 and 𝑇 generate a projective repre-
sentation of the modular transformations. It was conjectured
that 𝑆 and 𝑇 (or the projective representation of the modular
transformations) provide a complete characterization and
definition of topological orders in 2 + 1 dimensions [7, 10].

6.3. The Essence of Topological Orders. Yang once asked; the
microscopic theory of fermionic superfluid and supercon-
ductor, BCS theory, captures the essence of the superfluid
and superconductor, but what is this essence? This question
led him to develop the theory of off-diagonal long-range
order, [76] which reveals the essence of superfluid and
superconductor. In fact, long-range order is the essence of any
symmetry-breaking order.

Similarly, we may ask; Laughlin’s theory for FQH effect
captures the essence of the FQH effect, but what is this
essence? Our answer is that the topological order defined by
the topological ground-state degeneracy and the non-Abelian
geometric phases of those degenerate ground states is the
essence of FQH effect.

One may disagree with the above statement by pointing
out that the essence of FQH effect should be the quantized
Hall conductance. However, such an opinion is not quite
correct, since even after we break the particle number
conservation (which breaks the quantizedHall conductance),
an FQH state is still a nontrivial state with a quantized
thermal Hall conductance [77]. The nontrivialness of FQH
state does not rely on any symmetry (except the conservation
of energy). In fact, the topological degeneracy and the non-
Abelian geometric phases discussed above are the essence of
FQH states which can be defined evenwithout any symmetry.
They provide a characterization and definition of topological
order that does not rely on any symmetry. We would like
to point out that the topological entanglement entropy is
another way to characterize the topological order without any
symmetry [78, 79].

7. The Microscopic Description of
Topological Order

After the experimental discovery of superconducting order
via zero resistance andMeissner effect [80, 81], it took 40 years
to obtain the microscopic understanding of superconducting
order through the condensation of fermion pairs [82]. How-
ever, we are luckier for topological orders. After the theoreti-
cal discovery of topological order via the topological degener-
acy and the non-Abelian geometric phases of the degenerate
ground states [7], it took only 20 years to obtain the micro-
scopic understanding of topological order; topological order
is due to long-range entanglements, and topological order is
simply a pattern of long-range entanglements [83]. In this
section, we will explain such a microscopic understanding.

7.1. Local Unitary Transformations. The long-range entangle-
ments are defined through local unitary (LU) transforma-
tions. LU transformation is an important concept which is

(a)

Ui

1 12 · · ·

(b)

Figure 21: (a) A graphic representation of a quantum circuit, which
is formed by (b) unitary operations on blocks of finite size 𝑙. The
green shading represents a causal structure.

directly related to the definition of quantum phases [83]. In
this section, we will give a short review of LU transformation
[29, 83–85].

Let us first introduce local unitary evolution. An LU
evolution is defined as the following unitary operator that acts
on the degrees of freedom in a quantum system:

T [𝑒
−𝑖 ∫
1

0
𝑑𝑔𝐻̃(𝑔)

] , (9)

whereT is the path-ordering operator and 𝐻̃(𝑔) = ∑
𝑖
𝑂
𝑖
(𝑔)

is a sum of local Hermitian operators. Two gapped quantum
states belong to the same phase if and only if they are related
by an LU evolution [59, 83, 86].

The LU evolution is closely related to quantum circuits
with finite depth. To define quantum circuits, let us introduce
piecewise local unitary operators. A piecewise local unitary
operator has a form

𝑈pwl = ∏
𝑖

𝑈
𝑖
, (10)

where {𝑈𝑖} is a set of unitary operators that act on nonover-
lapping regions. The size of each region is less than some
finite number 𝑙.The unitary operator𝑈pwl defined in this way
is called a piecewise local unitary operator with range 𝑙. A
quantum circuit with depth𝑀 is given by the product of𝑀
piecewise local unitary operators(see Figure 21):

𝑈
𝑀

circ = 𝑈
(1)

pwl𝑈
(2)

pwl ⋅ ⋅ ⋅ 𝑈
(𝑀)

pwl . (11)

We will call 𝑈𝑀circ an LU transformation. In quantum infor-
mation theory, it is known that finite time unitary evolution
with local Hamiltonian (LU evolution defined above) can be
simulated with constant depth quantum circuit (i.e., an LU
transformation) and vice versa:

T [𝑒
−𝑖 ∫
1

0
𝑑𝑔𝐻̃(𝑔)

] = 𝑈
𝑀

circ. (12)

So, two gapped quantum states belong to the same phase if
and only if they are related by an LU transformation.

7.2. Topological Orders and Long-Range Entanglements. The
notion of LU transformations leads to the following more
general and more systematic picture of phases and phase
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transitions (see Figure 22) [83]. For gapped quantum systems
without any symmetry, their quantum phases can be divided
into two classes: short-range entangled (SRE) states and long-
range entangled (LRE) states.

SRE states are states that can be transformed into direct
product states via LU transformations. All SRE states can be
transformed into each other via LU transformations. So, all
SRE states belong to the same phase (see Figure 22).

LRE states are states that cannot be transformed into
direct product states via LU transformations. It turns out that
many LRE states also cannot be transformed into each other.
The LRE states that are not connected via LU transformations
belong to different classes and represent different quantum
phases. Those different quantum phases are nothing but
the topologically ordered phases. So, topological order is a
pattern of long-range entanglements.

Such understanding of topological order in terms of long-
range entanglements leads to a systematic description of
boundary-gapped (BG) topological orders in 2+1dimensions
[29, 83, 87, 88], in terms of spherical fusion category [70].
(Here, a BG topological order is a long-range entangled
phase which can have a gapped edge or gapped entanglement
spectrum [89].)

In (2 + 1)𝐷, BG topological orders can be viewed as
string-net liquids, where the global dancing patterns (i.e.,
topological orders or patterns of long-range entanglements)
can be determined by local dancing rules that are similar to
(5) and (6). For thosemore general BG topological orders, the
strings in the string-net liquid may have several types labeled
by 𝑖, 𝑗, . . . = 0, 1, . . . , 𝑁, and they may join to form a string-
net.The local dancing rules relate the amplitudes of string-net
configurations that only differ by small local transformations.
To write down a set of local rules, one first chooses a real
tensor 𝑑

𝑖
and a complex tensor 𝐹𝑖𝑗𝑚

𝑘𝑙𝑛
where the indices 𝑖, 𝑗,

𝑘, 𝑙, 𝑚, and 𝑛 run over the different string types 0, 1, . . . , 𝑁.
The local dancing rules are then given by

Φ Φ𝑖 𝑖
𝑖 Φ

Φ

( ) (
(

),
),

),

),

=
Φ (
Φ (

)=
) k(

(

=

Φ ( )= Φ

𝑑𝑖
𝑘𝑖
𝑖

𝑖
𝑖

𝑙 𝑙
𝑙 𝑙
𝑗 𝑗

𝑗𝑗 𝑘 𝑘𝑚 𝑛

𝛿𝑖𝑗
𝐹𝑖𝑗𝑚𝑘𝑙𝑛𝑁∑𝑛=0

(13)

where the shaded areas represent other parts of string-nets
that are not changed. Here, the type-0 string is interpreted
as the no-string state. We would like to mention that we
have drawn the first local rule somewhat schematically. The
more precise statement of this rule is that any two string-net
configurations that can be continuously deformed into each
other have the same amplitude. In other words, the string-
net wave function Φ only depends on the topologies of the
graphs; it only depends on how the strings are connected (see
Figure 12).

By applying the local rules in (13) multiple times, one
can compute the amplitude of any string-net configuration in

LRE 2LRE 1

SRE

Intrinsic topo. order

g1

g2

(tensor category
Topological orders

theory, . . .)

Figure 22: The possible gapped phases for a class of Hamiltonians
𝐻(𝑔
1
, 𝑔
2
) without any symmetry restriction. Each phase is labeled

by its entanglement properties. SRE stands for short-range entan-
glement and LRE for long-range entanglement which correspond to
topologically ordered phases.

terms of the amplitude of the no-string configuration. Thus,
(13) determines the string-net wave functionΦ.

However, an arbitrary choice of (𝑑
𝑖
, 𝐹
𝑖𝑗𝑘

𝑙𝑚𝑛
) does not lead

to a well-definedΦ. This is because two string-net configura-
tionsmay be related bymore than one sequence of local rules.
We need to choose the (𝑑

𝑖
, 𝐹
𝑖𝑗𝑘

𝑙𝑚𝑛
) carefully so that different

sequences of local rules produce the same results. That is, we
need to choose (𝑑

𝑖
, 𝐹
𝑖𝑗𝑘

𝑙𝑚𝑛
), so that the rules are self-consistent.

Finding these special tensors is the subject of tensor category
theory [90, 91]. It has been shown that only those that satisfy
[29]

𝐹
𝑖𝑗𝑘

𝑗
∗
𝑖
∗
0
=

V
𝑘

V
𝑖
V
𝑗

𝛿
𝑖𝑗𝑘
,

𝐹
𝑖𝑗𝑚

𝑘𝑙𝑛
= 𝐹
𝑙𝑘𝑚
∗

𝑗𝑖𝑛
= 𝐹
𝑗𝑖𝑚

𝑙𝑘𝑛
∗ = 𝐹
𝑖𝑚𝑗

𝑘
∗
𝑛𝑙

V
𝑚
V
𝑛

V
𝑗
V
𝑙

,

𝑁

∑

𝑛=0

𝐹
𝑚𝑙𝑞

𝑘𝑝𝑛
𝐹
𝑗𝑖𝑝

𝑚𝑛𝑠
𝐹
𝑗𝑠𝑛

𝑙𝑘𝑟
= 𝐹
𝑗𝑖𝑝

𝑞𝑘𝑟
𝐹
𝑟𝑖𝑞

𝑚𝑙𝑠

(14)

will result in self-consistent rules and a well-defined string-
net wave functionΦ. Such a wave function describes a string-
net condensed state. Here, we have introduced some new
notation; V

𝑖
is defined by V

𝑖
= V
𝑖
∗ = √𝑑

𝑖
while 𝛿

𝑖𝑗𝑘
is given

by

𝛿
𝑖𝑗𝑘
= {
1, if 𝑖, 𝑗, 𝑘 strings can join,
0, otherwise.

(15)

The solutions (𝑑
𝑖
, 𝐹
𝑖𝑗𝑘

𝑙𝑚𝑛
) give us a quantitative description of

topological orders (or pattern of long-range entanglements),
in terms of local dancing rules. From the data (𝑑

𝑖
, 𝐹
𝑖𝑗𝑘

𝑙𝑚𝑛
), we

can compute the topological properties of the corresponding
topological phases, such as ground-state degeneracy and
quasiparticle statistics [29, 69, 83, 87, 91, 92]. The above
approach can also be used to systematically describe BG
topological orders in 3 + 1 dimensions [29, 36, 93].
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We know that group theory is the mathematical foun-
dation of symmetry-breaking theory of phases and phase
transitions. The above systematic description of (2 + 1)𝐷
BG topological order strongly suggests that tensor category
theory is the mathematical foundation of topological order
and long-range entanglements. Because of symmetry, group
theory become very important in physics. Because of quan-
tum entanglements, tensor category theory will become very
important in physics.

8. Where to Find Long-Range Entangled
Quantum Matter?

In this paper, we described the world of quantum phases.
We pointed out that there are symmetry-breaking quantum
phases and there are topologically ordered quantum phases.
The topologically ordered quantum phases are a totally
new kind of phases which cannot be understood using the
conventional concepts (such as symmetry breaking, long-
range order, and order parameter) and conventional math-
ematical framework (such as group theory and Ginzburg-
Landau theory). The main goal of this paper is to introduce
new concepts and pictures to describe the new topologically
ordered quantum phases.

In particular, we described how to use global dancing
pattern to gain an intuitive picture of topological order
(which is a pattern of long-range entanglements). We further
point out that we can use local dancing rules to quantitatively
describe the global dancing pattern (or topological order).
Such an approach leads to a systematic description of BG
topological order in terms of string-net (or spherical fusion
category theory) [29, 83, 87, 88] and systematic description of
2D chiral topological order in terms of pattern of zeros [94–
102] (which is a generalization of “CDW” description of FQH
states [103–110]).

The local-dancing-rule approach also leads to concrete
and explicit Hamiltonians that allow us to realize each string-
net state and each FQH state described by pattern of zeros.
However, those Hamiltonians usually contain three-body or
more complicated interactions and are hard to realize in real
materials. So, here we would like to ask; can topological order
be realized by some simple Hamiltonians and real materials?

Of cause, nontrivial topological orders—FQH states—
can be realized by 2D electron gas under very strongmagnetic
fields and very low temperatures [11, 12]. Recently, it was
proposed that FQH states might appear even at room tem-
peratures with no magnetic field in flat-band materials with
spin-orbital coupling and spin polarization [111–115]. Finding
such materials and realizing FQH states at high temperatures
will be an amazing discovery. Using flat-band materials, we
may even realize non-Abelian fractional quantum Hall states
[41, 42, 116, 117] at high temperatures.

Apart from the FQH effects, nontrivial topological order
may also appear in quantum spin systems. In fact, the concept
of topological order was first introduced [6] to describe a
chiral spin liquid [4, 5], which breaks time reversal and parity
symmetry. Soon after, time reversal and parity symmetric
topological order was proposed in 1991 [23, 25–27], which
had spin-charge separation and emergent fermions. The new

topological spin liquid is called 𝑍
2
spin liquid or 𝑍

2
topolog-

ical order, since the low-energy effective theory is a 𝑍
2
gauge

theory. In 1997, an exactly soluble model [28] (that breaks
the spin-rotation symmetry) was obtained that realizes the
𝑍
2
topological order. Since then, the𝑍

2
topological order has

become widely accepted.
More recently, extensive new numerical calculations indi-

cated that the Heisenberg model on Kagome lattice [118–122]

𝐻 = ∑

n.n.
𝐽S
𝑖
⋅ S
𝑗 (16)

and the 𝐽
1
-𝐽
2
model on square lattice [123–125]

𝐻 = ∑

n.n.
𝐽
1
S
𝑖
⋅ S
𝑗
+ ∑

n.n.n.
𝐽
2
S
𝑖
⋅ S
𝑗
,
𝐽
2

𝐽
1

∼ 0.5 (17)

may have gapped spin liquid ground states, and such spin
liquids are very likely to be 𝑍

2
spin liquids. However, with

spin rotation, time reversal, and lattice symmetry, there are
many 𝑍

2
spin liquids [126–129]. It is not clear which 𝑍

2
spin

liquids are realized by the Heisenberg model on Kagome
lattice and the 𝐽

1
-𝐽
2
model on square lattice.

The Heisenberg model on Kagome lattice can be realized
in Herbertsmithite ZnCu

3
(OH)
6
Cl
2
[130, 131]. Although 𝐽

is as large as 150K, no spin ordering and other finite
temperature phase transitions are found down to 50mK. So,
Herbertsmithite may realize a 2D spin-liquid state. However,
experimentally, it is not clear if the spin liquid is a gapped
spin liquid or a gapless spin liquid. Theoretically, both a
gapped 𝑍

2
spin liquid [121, 122, 129, 132] and a gapless 𝑈(1)

spin liquid [133–135] are proposed for the Heisenberg model
on Kagome lattice. The theoretical study suggests that the
spin-liquid state in Herbertsmithite may have some very
interesting characteristic properties. A magnetic field in 𝑧-
direction may induce a spin order in 𝑥𝑦-plane [136], and an
electron (or hole) doping may induce a charge 4𝑒 topological
superconductor [137].

To summarize, topological order and long-range entan-
glements give rise to new states of quantum matter. Topo-
logical order has many new emergent phenomena, such as
emergent gauge theory, fractional charge, fractional statistics,
non-Abelian statistics, and perfect conducting boundary. In
particular, if we can realize a quantum liquid of oriented
strings in certain materials, it will allow us to make artificial
elementary particles (such as artificial photons and artificial
electrons). So, we can actually create an artificial vacuum,
and an artificial world for that matter, by making an oriented
string-net liquid. This would be a fun experiment to do!

9. A New Chapter in Physics

Our world is rich and complex. When we discover the inner
working of our world and try to describe it, we often find that
we need to invent new mathematical language to describe
our understanding and insight. For example, when Newton
discovered his law of mechanics, the proper mathematical
language was not invented yet. Newton (and Leibniz) had to
develop calculus in order to formulate the law of mechanics.
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For a long time, we tried to use the theory of mechanics and
calculus to understand everything in our world.

As another example, when Einstein discovered the gen-
eral equivalence principle to describe gravity, he needed a
mathematical language to describe his theory. In this case, the
neededmathematics, Riemannian geometry, had been devel-
oped, which leaded to the theory of general relativity. Follow-
ing the idea of general relativity, we developed the gauge the-
ory. Both general relativity and gauge theory can be described
by the mathematics of fiber bundles. Those advances led to
a beautiful geometric understanding of our world based on
quantum field theory, and we tried to understand everything
in our world in terms of quantum field theory.

Now, I feel that we are at another turning point. In a study
of quantum matter, we find that long-range entanglements
can give rise to many new quantum phases. So long-range
entanglements are natural phenomena that can happen in
ourworld.They greatly expand our understanding of possible
quantum phases and bring the research of quantum matter
to a whole new level. To gain a systematic understanding
of new quantum phases and long-range entanglements, we
like to know what mathematical language should we use to
describe long-range entanglements?The answer is not totally
clear. But early studies suggest that tensor category and group
cohomology should be a part of the mathematical frame-
work that describes long-range entanglements. The further
progresses in this direction will lead to a comprehensive
understanding of long-range entanglements and topological
quantum matter.

However, what is really exciting in the study of quantum
matter is that it might lead to a whole new point of view
of our world. This is because long-range entanglements can
give rise to both gauge interactions and Fermi statistics. In
contrast, the geometric point of view can only lead to gauge
interactions. So,maybe we should not use geometric pictures,
based on fields and fiber bundles, to understand our world.
Maybe we should use entanglement pictures to understand
our world. This way, we can get both gauge interactions and
fermions from a single origin—qubits. We may live in a truly
quantum world. So, quantum entanglements represent a new
chapter in physics.
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