Hindawi Publishing Corporation

ISRN Operations Research

Volume 2013, Article ID 203032, 10 pages
http://dx.doi.org/10.1155/2013/203032

Research Article

Hindawi

A New Formulation of the Set Covering Problem for

Metaheuristic Approaches

Nehme Bilal, Philippe Galinier, and Francois Guibault

Ecole Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC, Canada H3C 3A7

Correspondence should be addressed to Nehme Bilal; nehmebilal@gmail.com

Received 18 February 2013; Accepted 4 April 2013

Academic Editors: L. Buzna, P. Ekel, C. Mohan, and M. Wang

Copyright © 2013 Nehme Bilal et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Two difficulties arise when solving the set covering problem (SCP) with metaheuristic approaches: solution infeasibility and set
redundancy. In this paper, we first present a review and analysis of the heuristic approaches that have been used in the literature to
address these difficulties. We then present a new formulation that can be used to solve the SCP as an unconstrained optimization
problem and that eliminates the need to address the infeasibility and set redundancy issues. We show that all local optimums with
respect to the new formulation and a 1-flip neighbourhood structure are feasible and free of redundant sets. In addition, we adapt
an existing greedy heuristic for the SCP to the new formulation and compare the adapted heuristic to the original heuristic using
88 known test problems for the SCP. Computational results show that the adapted heuristic finds better results than the original
heuristic on most of the test problems in shorter computation times.

1. Introduction

The set covering problem (SCP) is a popular optimization
problem that has been applied to a wide range of industrial
applications, including scheduling, manufacturing, service
planning, and location problems [1-4]. The SCP is NP hard
in the strong sense [5]. The mathematical formulation of the
SCP is as follows. Let E = {ey,...,e,} be a universe of
elements, and let S = {s;,...,s,} be a collection of subsets
s; € E,where|Js; = E. Each sets; covers at least one element
of E and has an associated cost ¢; > 0. The objective is to find
a subcollection of sets X C S that covers all of the elements in
E at a minimal cost. The mathematical programming model
of the SCP is usually formulated as follows.

(i) Let A™" be a zero-one matrix where a;; = lifelement
i is covered by set j and a;; = 0 otherwise.

(ii) Let X = {xy, x5, ...,x,} where x;=1 if set j (with cost
¢; > 0) is part of the solution and x; = 0 otherwise.

Minimize

D.6%; @

i

subject to
1< ;X s i=1,....,m ()

x;€{0,1}. (3)

The objective function (1) drives the search toward
solutions at minimal cost. Constraint (2) (full coverage con-
straint) imposes the requirement that all the elements of the
universe E must be covered. If constraint (2) is not satisfied,
the solution is infeasible. If constraint (2) is satisfied and the
objective function is minimized, the solution will cover all
of the elements at the minimal cost (optimal solution). If
constraint (2) is relaxed, the objective function will drive the
search toward an empty solution because the empty solution
has the lowest cost (0). These observations show that the
objective function and the full coverage constraint of the SCP
guide the search in two opposite directions.

When solving the model with metaheuristic algorithms,
two issues arise: solution infeasibility and set redundancy. A
solution to the SCP is considered to be infeasible if one or
more of the elements of the universe E are uncovered. A set is
considered to be redundant if all the elements covered by the
set are also covered by other sets in the solution.



In this paper, we first review and analyze the literature to
highlight the difficulties in dealing with solution infeasibility
and set redundancy when solving the SCP with metaheuristic
algorithms (Section 2). We then present a new formulation
that can be used to solve the SCP as an unconstrained opti-
mization problem and that eliminates the need for addressing
the infeasibility and redundancy issues (Section 3). The
new formulation uses a maximization objective that can
replace both the cost minimization objective and the full
coverage constraint of the classical formulation. The new
formulation can also be seen as a new penalty approach that
has many advantages over the existing penalty approaches
(Section 3.2) for the SCP. Third, we present a simple descent
heuristic that is based on the new formulation and that uses a
simple 1-flip neighbourhood structure. The proposed descent
heuristic is an adaptation of an existing greedy heuristic for
the SCP. We show that all local optimums with respect to
the new formulation and the 1-flip neighbourhood structure
are feasible and free of redundant sets. Finally, the proposed
descent heuristic is compared to the original greedy heuristic
using 88 known set covering problems (Section 5).

2. Literature Review

In general, metaheuristic algorithms can be divided into three
categories.

(i) Constructive metaheuristics: in each iteration, a new
local optimum is found by constructing a new solu-
tion from scratch. A level of randomness is added to
the construction step in order to avoid constructing
the same solution over and over.

(ii) Evolutionary algorithms: in each iteration, two or
more solutions are combined to create a new solution.

(iii) Local search: in each iteration, the current solution
is replaced by one of its immediate neighbors (the
solution is usually modified slightly).

In the following sections, we review the literature of
solving the SCP with metaheuristic approaches and analyze
how each category of metaheuristics addresses solution infea-
sibility and set redundancy.

2.1. Constructive Metaheuristics. When the SCP is solved
with constructive metaheuristics, the local optimums found
at the end of each constructive iteration are usually feasible.
In fact, the constructive iteration ends when all of the
elements are covered. For this reason, these metaheuristics
do not have to deal with the infeasibility issue. However, the
local optimums are not necessarily free of redundant sets,
and a redundancy removal heuristic is needed. Constructive
metaheuristics for the SCP includes ant colony optimization
[6-10], Meta-RaPS [11], and GRASP [12]. All of these meta-
heuristics use a dedicated redundancy removal operator that
removes redundant sets at the end of each iteration.

2.2. Evolutionary Algorithms. Evolutionary algorithms for
the SCP need to address both infeasibility and set redundancy
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issues. Most evolutionary algorithms that are used to solve
the SCP are based on the genetic algorithm (GA). Most of
the GAs use a binary string solution representation where
x; = 1if the set s; is part of the solution and x; = 0
otherwise. The infeasibility issue arises when the crossover
or mutation operator of the GA produces a child (solution)
that does not cover all of the elements. In fact, a simple bit
flip from 1 to 0 during crossover or mutation can produce an
infeasible solution. If a cost minimization objective function
is used, infeasible solutions will be preferred over feasible
ones because infeasible solutions are usually cheaper. Two
main approaches have been used in the literature to address
the infeasibility issue.

The first approach uses a repair heuristic to transform
infeasible solutions to feasible solutions before the evaluation
step of the GA. A greedy-like repair heuristic is usually
used [13-15]. In each iteration, the repair operator covers
an uncovered element by selecting a new set that covers
the element and adding it to the solution. In [15], all of the
solutions are repaired for evaluation, but only 5% of them
are replaced with the corresponding repaired versions. The
aim is to allow the search to explore infeasible regions of the
search space, which tend to be more effective than limiting
the search to only feasible regions. A simpler repair heuristic
is used in [16]. During the evaluation of a solution, a set is
added to the solution if it covers an uncovered element(s) and
is not already part of the solution. By adding new sets, repair
heuristics may introduce redundant sets into the solutions.
For this reason, genetic algorithms that use a repair operator
also use a redundancy removal procedure that is applied after
the repair and just before evaluation.

The second approach involves penalizing the objective
value of infeasible solutions to drive the search toward the
feasible region. A penalty term that makes infeasible solutions
less attractive than feasible ones is added to the objective
function. In [17], the same penalty M is added to the
objective value of all infeasible solutions. M is high enough
to guarantee that all feasible solutions have lower objective
values than all infeasible solutions (M = )’ c]-). A drawback
of using such an objective function is that infeasible solutions
cannot be compared to each other because the objective
function does not reflect the degree of infeasibility. Objective
functions that penalize infeasible solutions while reflecting
the degree of infeasibility are proposed in [16, 18]. In [18], the
penalty attributed to an infeasible solution is proportional to
the number of elements that are not covered in the solution.
In [16], the penalty is proportional to the minimum cost it
would take to cover all of the uncovered elements. In all
discussed penalty approaches, the penalties are high enough
to ensure that all infeasible solutions have higher objective
values than all feasible ones. An immediate disadvantage
of using such high penalties is that feasible solutions will
always be preferred over infeasible ones. As a result, infeasible
solutions will have low chances of surviving in the population,
and the infeasible region of the search space will not be
effectively explored.

2.3. Local Search. The feasibility constraint makes designing
an effective local search metaheuristic for the SCP a difficult
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task. For this reason, few-local-search only heuristics have
been developed for the SCP [8, 19]. Instead, most of the local
search algorithms have combined local search with other
techniques such as Lagrangian relaxation, subgradient opti-
mization, group theory, and linear programming [1, 20-24].
In [25], after noting the difficulty of defining a good neigh-
bourhood to solve the unicost set covering problem with
local search, the authors proposed that the problem could be
transformed to an equivalent satisfiability problem (SAT') that
can be solved more adequately with local search.

Most local search algorithms for the SCP use a simple
1-flip neighbourhood structure defined by moves that only
add (remove) one set at a time to (from) the solution. When a
local optimum is reached, which is usually a feasible solution,
it is difficult to decide in which direction to continue the
search. Two cases arise.

(i) If the search space is restricted to the feasible region,
only redundant sets are allowed to be removed. If
no redundant sets exist in the solution, at least one
redundant set must be added before a remove move
is allowed to be performed. As a result, the infeasible
region of the search space will not be explored and
the search will tend to fall into local optimums and
cycles. A more complex neighbourhood called 3-flip
is used in [8] to make the search in the feasible
region more effective. The 3-flip neighbourhood of a
given solution consists of all of the solutions that can
be obtained by adding (removing) at most 3 sets to
(from) the solution. Eventhough the proposed heuris-
tic is more effective than a simple 1-flip heuristic, it is
not sufficient to avoid local optimums and cycles and
it is significantly slower than the 1-flip heuristics.

(ii) If the search space is not restricted to the feasible
region, the cost minimization objective drives the
search toward the infeasible region, by removing
sets from the current configuration (to minimize the
cost), and it is unclear when to restore feasibility. In
such situations, penalty approaches are usually used
to penalize infeasible solutions.

If the penalty weights are too high, neighbors in the fea-
sible region will be preferred over neighbors in the infeasible
region, making the infeasible region unreachable. Lower or
dynamic penalty weights are usually used to make the search
more effective by allowing it to reach infeasible regions.

If the penalty weights are too low, the final solution found
is not guaranteed to be feasible. A tabu search heuristic that
uses such low penalties is proposed in [19] for the unicost set
covering problem. A simple 1-flip neighbourhood structure
is used. The objective is to minimize (C + E) where C is the
number of sets used in the solution and E is the number
of uncovered elements. If a set covers only one uncovered
element, adding (removing) it to (from) the solution will not
have any effect on the objective function. As a result, this
set might be left out of the solution, making it infeasible.
To overcome the fact that this objective function does not
guarantee feasibility, the neighbourhood is restricted such
that if a set is removed during one iteration, one or more

sets must be added in the next iteration to restore feasibility.
Eventhough such a low penalty approach allows the search
to reach the infeasible region, additional neighbourhood
restrictions are used to restore feasibility, and the infeasible
region is only scratched.

Dynamic penalty approaches, in which the penalty
weights are repeatedly adjusted, are used to balance the
search between the feasible and infeasible regions without
using a repair operator or neighbourhood restrictions [1, 20-
22, 26]. The most frequent dynamic penalty approaches that
have been used in the literature are based on Lagrangian
relaxation [27] and subgradient optimization [28]. Dynamic
penalty approaches can be very effective but are difficult to be
designed and implemented.

3. Proposed Formulation

In this work, we propose a new formulation of the SCP with a
maximization objective. The aim of the proposed formulation
is to express the real objective of the SCP in the objective
function which is to cover all elements at a minimal cost.
We view covering an element as collecting a gain at a given
cost. In this perspective, we attribute a gain to each element.
Because all elements must be covered, the gain attributed to
each element must be higher than the cost of at least one
of the sets that covers the element; otherwise, there is no
benefit of covering that element. Let ¢,,;,, (¢;) be the cost of the
cheapest set among the sets that cover the element ¢;. A gain
gi = Cmin(e;) + € is attributed to each element e; where € is a
small positive constant.

(i) Let A™" be a zero-one matrix where a;j = 1if element
e; is covered by set j and a;; = 0 otherwise.

(ii) Let X = {x,,x5,...,x,} where x; =1 if set s; (with
cost ¢; > 0) is part of the solution and x; = 0
otherwise.

(iii) Let Y = {y,, ¥5,..., ¥,,} where y; = 1 if element ¢;
(with gain g; > 0) is covered in the solutionand y; = 0

otherwise.
Maximize
m n
Zgiyi - chxj (4)
i=1 j=1
subject to
n
yiSZaijxj, i=1,....,m (5)
=1
xj¥; € {0,1}. (6)

Constraint (5) is a relaxation of constraint (2) because
it does not impose coverage of all the elements; its only
purpose is to keep track of which elements of E are part
of the cover. Constraint (6) is the integrity constraint in
mathematical programming. Constraints (5) and (6) do not
need to be addressed as constraints in heuristic approaches
but are presented for completeness of the mathematical
programming formulation.



Claim 1. The optimal solution of the proposed formulation is
a feasible solution (covers all elements).

Proof. Suppose that the optimal solution does not cover all
of the elements and has an objective value P. Let ¢; be an
uncovered element. By the definition of the gain g;, we know
that there is at least a set s; that covers element e; and has
acost ¢; = pin(e;) = g; — €. If the set s; is added to the

cover, the new objective value is P’ = P + (g; — ¢) =
P + (g; — (g; + €)) =P + € > P. Thus, P is not optimal. By
contradiction, we conclude that the optimal solution covers
all of the elements. O

Claim 2. The optimal solution of the proposed formulation
covers all elements at a minimal cost.

Proof. We proved in Claim 1 that the optimal solution covers
all of the elements. Hence, the first term of the objective
function (4) is a constant in the optimal solution (Y, g;y; =
K). The objective function becomes

n n
Maximize | K — chxj = Maximize —Zc]-xj
j=1 j=1
(7)
n
= Minimize chx -
j=1

Thus, the optimal solution of the proposed formulation is the
cheapest feasible solution, which is the objective of the SCP.
O

From heuristic algorithms perspective, we replaced a
constrained optimization problem with an unconstrained
optimization problem that has the same optimal solutions.
Unconstrained optimization problems are known to be much
easier to solve with heuristic algorithms than constrained
optimization problems.

3.1. Comparison to Penalty Approaches. Eventhough the
proposed formulation is a full mathematical programming
formulation for the SCP, it is similar to the existing penalty
approaches but with some important differences. The objec-
tive function presented in (4) can be rewritten as

n m
Minimize chxj + zgiﬁ’ (8)
j=1 i=1

where y; = 1 if element e; is uncovered and y; = 0 otherwise.
The value of the gain g; can be seen as the penalty associated
with not covering the element e;.

The proposed approach is different from high-penalty
approaches because some infeasible solutions might have a
better objective value than some feasible ones. For instance,
letU = {s;,s,,83}, 51 = {e}, 65,63}, 5, = {eg, €,}, and 53 = {e5}.
The costs of the sets are ¢; = 10, ¢, = 2, and ¢; = 1. The
cheapest set that covers the element e, is s, with a cost ¢, = 2.
Thus, by definition of the gain, g, isequaltoc, + € = 2 + €.
Similarly, we find that g, = 2+eand g; = 1 +€. Let X = {s;}
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be a feasible solution, and let X, = {s,} be an infeasible one.
Using the objective function (8), the objective value of X, is
10 and the objective value of X, is (¢, + e5) = (3 + €). Thus,
the infeasible solution X, has a lower (better) objective value
than the feasible solution X, which does not occur with high-
penalty approaches.

The proposed approach is different from low-penalty
approaches because the penalties are high enough to drive the
search toward the feasible region. We showed that the optimal
solutions with respect to the new formulation are guaranteed
to be feasible. The proof of feasibility of the optimal solution
also shows that any infeasible solution can be transformed
to a feasible one with a better objective value. For instance,
in the previous example, the infeasible solution X, can be
transformed to a feasible solution X5 = {s,,s;} (by adding
the set s; to X,) with an objective value of 3, which is lower
(better) than the objective value of X, (3 + €).

The proposed penalty approach is different from dynamic
penalty approaches because the penalty weights are static and
no adjustment is needed.

When high-penalty approaches are used, the search
process of a heuristic algorithm is disturbed by the high
penalties and driven immediately to the feasible region. On
the other hand, low penalties do not disturb the search but
cannot ensure feasibility. The aim of our approach is to choose
the lowest possible penalties that avoid disturbing the search
process while ensuring feasibility. Ensuring feasibility means
that any infeasible solution can be transformed to a feasible
one with a better objective value.

3.2. Benefits of the New Formulation with respect to Meta-
heuristics. The new formulation eliminates all issues related
to solution infeasibility and set redundancy that were dis-
cussed in the literature review (Section 2). Because the
objective function naturally penalizes redundant sets, the
use of a redundancy removal operator is not needed. The
objective function also penalizes infeasible solutions. As a
result, the use of a repair or penalty approaches in evolution-
ary algorithms and the use of neighbourhood restrictions in
local search algorithms are not needed. Finally, because no
constraints are involved and the only driver of the search is
the objective function proposed with the new formulation,
designing a good neighbourhood and local search algorithm
is quite simple. Such a simple neighbourhood is presented in
Section 4.

4. Proposed Descent Heuristic (DH)

In this section, we present a simple descent heuristic that
is based on the new formulation and that uses a I-flip
neighbourhood structure. We also show that all local opti-
mums with respect to the new formulation and the 1-flip
neighbourhood are feasible and free of redundant sets.

The proposed descent heuristic (DH) is an adaptation
of the classical greedy heuristic that has been used in the
literature for the SCP [29]. In this greedy heuristic, the set
S; with the minimum ratio % ;=6 /card j(X ) is added to the
solution in each iteration. The term card j(X ) is the number
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sol « empty solution;
loop
find the set s; with the maximum ratio R;;
if (Rj > 0) then
flip bit x I
else
stop;
end if
end loop

AvrGoriTHM 1: DH().

of elements that are covered by s; and are not covered by the
current configuration X. Once all of the elements are covered,
redundant sets are removed in decreasing order of cost. In
DH, the term card;(X) of the classical greedy heuristic is
replaced with &, where §; is the variation in the objective
function associated with adding (removing) the set s;.

DH starts from a given configuration and performs a
sequence of moves on it until the solution is locally optimal.
It uses a simple 1-flip neighbourhood structure with two
types of moves: add and remove moves. add(j) adds the
set s; to the configuration (flips x; from 0 to 1), while
remove(j) removes the set s ; from the configuration. In each
iteration, the set s. with the maximum ratio R. = (Sj/cj
is added (removed) to (from) the solution. The algorithm
stops when the current configuration is better than all of its
neighbors (R; < 0 forall j). The outline of DH is presented
in Algorithm 1.

4.1. Redundancy Removal. In contrast to the classical greedy
heuristic, DH automatically removes the redundant sets from
the solution. Let X be a configuration where the set s; is
redundant. The ratio R ; associated with removing s; from X is
equal to (cj - 0)/cj = 1. Because R; > 0, the move remove(})
will be performed and the redundant sets will be removed. As
a result, any solution that is improved with DH is necessarily
free of redundant sets. The redundant sets are removed at any
time during the progress of DH and not only at the end.

4.2. Feasibility. Consider X to be a configuration where ¢; is
not covered. Let s' . be the cheapest set that covers e;, and
let ¢’ . be its associated cost. The gain g; associated with e; is
equal to ¢’ .+ e. If ¢; is the only uncovered element covered
bys . . ' - associated with
adding the set Sinin to X is equal to (¢, + € — ¢y) /cr’m'n =
€/c,,;,- Because R . > 0 (for all € > 0), the move add(s; )
will be performed and the solution will be feasible. As a result,
any solution that is improved with DH is feasible.

in
(worst case scenario), the ratio R

4.3. Discussion. We showed that all of the solutions that are
found with DH are feasible and free of redundant sets. With
respect to the new formulation and the 1-flip neighbourhood
structure, these solutions are local optimums. This is also
true for all solutions obtained with any descent heuristic that
is based on the new formulation and that uses the same

neighbourhood structure. As a result, all local optimums with
respect to the new formulation and the 1-flip neighbourhood
structure are feasible and free of redundant sets.

5. Experimental Analysis

In this section, we present computational experiments with
the proposed descent heuristic that is based on the new for-
mulation. Although we showed in the previous sections that
the new formulation provides many advantages over the clas-
sical formulation, the final performance of any metaheuristic
algorithm depends on the implementation, the tuning of the
parameters, and the sophistication of the approach. We do
not assume that any metaheuristic approach that is based
on the new formulation will outperform all metaheuristic
approaches that are based on the classical formulation. In
addition, experimenting with all classes of metaheuristics
will not prove (or disprove) the superiority of the proposed
formulation. Instead, we compare our descent heuristic to
the original greedy heuristic that is based on the classical
formulation. The aim is to compare the two formulations
using similar algorithms. Since greedy heuristics are used
for intensification in most of the metaheuristic approaches
for the SCP, evaluating the effectiveness of a new descent
heuristic that can replace these greedy heuristics provides a
good indication of how suitable is the new formulation to
metaheuristic approaches.

We compare DH to the classical greedy heuristic (GH)
[29] on three classes of the known set covering problems.

(i) OR-Library benchmarks: this class includes 65 small
and medium size randomly generated problems that
were frequently used in the literature. Most meta-
heuristic approaches for the SCP have been tested on
these problems. They are available in OR-Library [30]
and are described in Table 1.

(ii) Airline and bus scheduling problems: this class includes
fourteen real-world airline scheduling problems (AA
instances) and two bus driver scheduling problems
(bus instances). These problems were obtained from
[31] and are described in Table 2.

(iii) Railway scheduling problems: this class includes seven
large-scale railway crew scheduling problems from
Italian railways and are available in OR-Library [30].
These problems are described in Table 3.

Most metaheuristic approaches for the SCP have been
exclusively tested on OR-Library benchmarks. Because these
benchmarks are relatively small, we experimented with larger
problems that have been less frequently used in the literature.

In all presented tables, the name of each instance is given
in the first column, the size of each instance is given in the
second column (number of elements x number of sets), and
the density of each instance is given in the third column. The
density is the percentage of ones in the A™" matrix described
in Section 1). The optimal or best-known solution of each
instance is given in the fourth column. The solutions obtained
with each heuristic are presented in columns 5 and 6. The last
two columns contain the number of iterations performed by
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TaBLE 1: OR-Library benchmarks.

Characteristics Cost Number of moves
Instance Size Density Best known DH GH DH GH
4.1 200 x 1000 2% 429 433 434 77 93
4.2 200 x 1000 2% 512 523 552 75 94
4.3 200 x 1000 2% 516 531 546 79 96
44 200 x 1000 2% 494 503 507 70 93
4.5 200 x 1000 2% 512 515 518 72 95
4.6 200 x 1000 2% 560 575 597 78 83
4.7 200 x 1000 2% 430 444 449 74 77
4.8 200 x 1000 2% 492 493 525 70 77
4.9 200 x 1000 2% 641 672 672 82 99
4.10 200 x 1000 2% 514 519 528 71 86
5.1 200 x 2000 2% 253 265 273 76 88
5.2 200 x 2000 2% 302 314 335 71 82
5.3 200 x 2000 2% 226 230 230 66 82
5.4 200 x 2000 2% 242 246 254 69 86
5.5 200 x 2000 2% 211 214 215 73 87
5.6 200 x 2000 2% 213 216 227 69 85
5.7 200 x 2000 2% 293 297 305 76 84
5.8 200 x 2000 2% 288 297 304 77 85
5.9 200 x 2000 2% 279 281 290 68 84
5.10 200 x 2000 2% 265 271 274 74 81
6.1 200 x 1000 5% 138 149 143 39 56
6.2 200 x 1000 5% 146 156 154 44 53
6.3 200 x 1000 5% 145 149 157 43 46
6.4 200 x 1000 5% 131 134 140 46 51
6.5 200 x 1000 5% 161 180 182 47 50
Al 300 x 3000 2% 253 258 269 82 97
A2 300 x 3000 2% 252 262 268 78 93
A3 300 x 3000 2% 232 243 248 80 105
A4 300 x 3000 2% 234 240 243 84 107
A5 300 x 3000 2% 236 240 246 79 107
B.1 300 x 3000 5% 69 72 71 41 45
B.2 300 x 3000 5% 76 79 78 44 50
B.3 300 x 3000 5% 80 84 84 47 46
B.4 300 x 3000 5% 79 84 88 44 50
B.5 300 x 3000 5% 72 72 75 46 48
Cl 400 x 4000 2% 227 237 252 102 110
C.2 400 x 4000 2% 219 230 225 93 128
C3 400 x 4000 2% 243 249 258 89 102
C4 400 x 4000 2% 219 229 239 94 115
C.S5 400 x 4000 2% 215 222 222 93 106
D.1 400 x 4000 5% 60 64 66 49 54
D.2 400 x 4000 5% 66 68 69 52 50
D3 400 x 4000 5% 72 77 80 54 59
D.4 400 x 4000 5% 62 62 66 52 54

D.5 400 x 4000 5% 61 65 67 49 61
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TaBLE 1: Continued.

Characteristics Cost Number of moves
Instance Size Density Best known DH GH DH GH
E.l 500 x 5000 10% 29 30 30 30 35
E.2 500 x 5000 10% 30 33 35 31 37
E.3 500 x 5000 10% 27 29 31 29 31
E.4 500 x 5000 10% 28 32 31 32 33
E.5 500 x 5000 10% 28 30 30 30 32
E1l 500 x 5000 20% 14 16 17 16 17
E2 500 x 5000 20% 15 16 16 15 16
E3 500 x 5000 20% 14 17 15 17 17
E4 500 x 5000 20% 14 17 15 17 14
E5 500 x 5000 20% 13 15 15 17 15
G.1 1000 x 10000 2% 176 186 191 132 146
G.2 1000 x 10000 2% 154 166 176 115 139
G3 1000 x 10000 2% 166 178 182 126 147
G4 1000 x 10000 2% 168 178 179 128 138
G.S5 1000 x 10000 2% 168 179 182 127 131
H.1 1000 x 10000 5% 63 69 69 68 65
H.2 1000 x 10000 5% 63 70 72 62 67
H.3 1000 x 10000 5% 59 63 66 62 62
H.A4 1000 x 10000 5% 58 65 64 65 61
H.5 1000 x 10000 5% 55 60 61 61 60

TABLE 2: Airline and bus driver crew scheduling problems.

Characteristics Cost Number of moves
Instance Size Density Best known DH GH DH GH
AAO03 106 x 8661 4.05% 33155 34637 35642 48 61
AA04 106 x 8002 4.05% 34573 36153 36749 45 62
AA05 105 x 7435 4.05% 31623 32249 32995 45 65
AA06 105 x 6951 4.11% 37464 38043 39422 43 70
AAIl 271 x 4413 2.53% 35478 36965 39054 76 90
AA12 272 x 4208 2.52% 30815 33663 34044 77 85
AA13 265 x 4025 2.60% 33211 36337 37345 77 91
AAl4 266 x 3868 2.50% 33219 36048 36530 77 95
AAl15 267 x 3701 2.58% 34409 36269 37996 73 94
AAl6 265 x 3558 2.63% 32752 36185 37160 79 85
AAl17 264 x 3425 2.61% 31612 34326 36484 69 91
AAI18 271 x 3314 2.55% 36782 39594 40603 84 101
AA19 263 x 3202 2.63% 32317 34749 36093 71 92
AA20 269 x 3095 2.58% 34912 37047 37744 82 86
BUSI1 454 x 2241 1.89% 27947 28871 29673 88 100
BUS2 681 x 9524 0.51% 67760 69685 70606 282 280

each heuristic for each instance. The percentage deviations  performed. Thus, the algorithmic complexity of each iteration
from the best-known solutions are presented in Figures 1,2,  is similar in both heuristics. In practice, the computation
3 and 4. times are highly dependent on the implementation and the

In both DH and GH, each iteration involves finding  characteristics of the problem solved (size and density). For
the best set to be added (removed) to (from) the solution instance, finding the best move to be performed in each itera-
and updating the underlying data structure after a move is  tion can be implemented using a loop that iterates over all sets
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TABLE 3: Railway crew scheduling problems.
Characteristics Cost Number of moves
Instance Size Density Best known DH GH DH GH
RAIL507 507 x 63009 1.2% 174 205 212 150 169
RAIL516 516 x 47311 1.3% 182 202 202 181 186
RAIL582 582 x 55515 1.2% 211 243 251 191 212
RAIL2586 2586 x 920683 0.4% 948 1102 1185 770 917
RAIL2536 2536 x 1081841 0.4% 691 828 891 581 660
RAIL4284 4284 x 1092610 0.2% 1065 1303 1385 997 1091
RAIL4872 4872 x 968672 0.2% 1534 1802 1900 1339 1521

14

12 =

10 H

o (%)

[\S] > [o)} o}
T

FIGURE 1: Percentage deviation from the best-known solution: OR-
Library benchmarks 4.1 to 6.5.

or using a priority-queue-based data structure. Preliminary
testing showed that choosing one way or another greatly
affects the speed comparison of the discussed heuristics.
To avoid an implementation-dependent comparison, and
because these aspects of the implementation are out of the
scope of this work, we recorded the number of iterations
instead.

Both heuristics are deterministic, and only one run is
required. The value of € used in all DH runs is equal to 1 xe .
Smaller values of epsilon have caused numerical problems for
some instances.

Our descent heuristic performed better than GH by
finding better solutions for most of the test problems. For
OR-Library benchmarks, DH found better solutions than GH
for 47 instances, equal solutions for 10 instances, and worse
solutions for 9 instances. For the airline, bus, and railway
scheduling problems, DH found better solutions than GH for
all problems except one (equal solutions for RAIL516). The
percentage deviations presented in Figures 1, 2, 3 and 4 and
the average percentage deviation presented in Table 4 show
that the solutions found by DH are also significantly better in
quality than those found by GH (up to 7.41% better for OR-
Library, up to 6.83% better for airline and bus problems, and
up to 9.12% better for railway problems).

DH also performed fewer iterations than GH for most
of the test problems. For OR-Library benchmarks, DH

performed fewer iterations than GH for 56 instances, equal
number of iterations for seven instances, and more iterations
for only two instances. For the airline, bus, and railway
scheduling problems, DH performed fewer iterations than
GH for all problems except one (more iterations for BUS2).
The average number of iterations performed by DH and GH
is presented in Table 4. The average number of iterations
shows that the number of iterations performed by DH is
significantly smaller than the number of iterations performed
by GH. Thus, DH is theoretically faster than GH.

Asaresult, the proposed descent heuristic that is based on
the new formulation performs better than the corresponding
greedy heuristic that is based on the classical formulation
by finding better results for most of the test problems using
fewer iterations, which can lead to shorter computation
times.

6. Conclusions and Future Work

In this paper, we identified two issues that arise when
solving the SCP with metaheuristic approaches: solution
infeasibility and set redundancy. We highlighted the difficul-
ties of addressing these issues when solving the SCP with
the different classes of metaheuristics and proposed a new
formulation that overcomes these difficulties. We showed that
this formulation is, in fact, a new penalty approach that uses
static penalty weights that are low enough to avoid disturbing
the search but high enough to ensure the feasibility of the
final solution. We also showed that all local optimums with
respect to the new formulation and the 1-flip neighbourhood
structure are feasible and free of redundant sets. As a result,
building metaheuristic approaches for the SCP using the new
formulation is straightforward.

To provide a first computational experience using the
new formulation, we adapted a known greedy heuristic for
the SCP to the new formulation and compared the adapted
version to the original version using 88 set covering problems.
The adapted version that is based on the new formulation
found better solutions than the original version that is based
on the classical formulation for 69 tests problems, equal
solutions for ten problems, and worse solutions for nine
problems. In addition, the adapted version performed fewer
iterations than the original version for 78 test problems, equal
number of iterations for two problems, and more iterations
for eight problems. Thus the adapted version finds better
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FIGURE 2: Percentage deviation from the best-known solution: OR-Library benchmarks A.1 to H.5.
TABLE 4: Average number of iterations and percentage deviations.
Problems Average number of iterations Average percentage deviation
DH GH DH GH
OR-Library benchmarks 64.89 74.51 5.46 731
Airline and bus problems 82.25 96.75 5.99 9.14
Railway problems 601.29 679.43 1712 22.81
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FIGURE 3: Percentage deviation from the best-known solution:
airline and bus scheduling problems.

solutions than the original version in potentially shorter
computation times. Moreover, the adapted version was easier
to implement because we did not need to handle feasibility
and set redundancy.

Most current metaheuristic approaches for the SCP incor-
porate a descent or greedy heuristic that is responsible for
the intensification part of the search. Thus, having a more
effective descent heuristic can lead to better metaheuristic
approaches.

FIGURE 4: Percentage deviation from the best-known solution:
railway scheduling problems.
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