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This paper is devoted to the qualitative analysis of a class of nonclassical parabolic equations 𝑢
𝑡

− 𝜀Δ𝑢
𝑡

− 𝜔Δ𝑢 + 𝑓(𝑢) = 𝑔(𝑥) with
critical nonlinearity, where 𝜀 ∈ [0, 1] and 𝜔 > 0 are two parameters. Firstly, we establish some uniform decay estimates for the
solutions of the problem for 𝑔(𝑥) ∈ 𝐻

−1
(Ω), which are independent of the parameter 𝜀. Secondly, some uniformly (with respect

to 𝜀 ∈ [0, 1]) asymptotic regularity about the solutions has been established for 𝑔(𝑥) ∈ 𝐿
2
(Ω), which shows that the solutions

are exponentially approaching a more regular, fixed subset uniformly (with respect to 𝜀 ∈ [0, 1]). Finally, as an application of this
regularity result, a family {E

𝜀
}

𝜀∈[0,1]
of finite dimensional exponential attractors has been constructed. Moreover, to characterize the

relation with the reaction diffusion equation (𝜀 = 0), the upper semicontinuity, at 𝜀 = 0, of the global attractors has been proved.

1. Introduction

Westudy the long-time behavior of the following class of non-
classical parabolic equations:

𝑢
𝑡

− 𝜀Δ𝑢
𝑡

− 𝜔Δ𝑢 + 𝑓 (𝑢) = 𝑔 (𝑥) , inΩ × R
+

,

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) ,

𝑢|
𝜕Ω

= 0,

(𝐸
𝜀
)

where Ω ⊂ R𝑁
(𝑁 ≥ 3) is a bounded domain with smooth

boundary 𝜕Ω, 𝜀 ∈ [0, 1] and 𝜔 > 0 are two parameters, the
external force 𝑔 is time independent, and the nonlinearity 𝑓

satisfies some specified conditions later.
When 𝜀 = 0 for the fixed constant 𝜔(> 0), equation

(𝐸
0
) is a usual reaction-diffusion equation, and its asymptotic

behavior has been studied extensively in terms of attractors by
many authors; see [1–5].

For each fixed 𝜀 = 𝜀
0

> 0, equation (𝐸
𝜀0

) is a nonclas-
sical reaction-diffusion equation, which arises as models to
describe physical phenomena such as non-Newtonian flow,
soil mechanics, heat conduction; see [6–8] and references
therein. Aifantis in [6] provided a quite, general approach
for obtaining these equations.The asymptotic behavior of the

solutions for this equation has been studied bymany authors;
see [9–16].

For the fixed constant 𝜔(>0), any 𝜀 ∈ [0, 1], and the long-
time behavior of the solutions of (𝐸

𝜀
) has been considered by

some researchers; see [10, 13]. In [10] the author proved the
existence of a class of attractors in 𝐻

2
∩ 𝐻

1

0
with initial data

𝑢
0

∈ 𝐻
2

∩ 𝐻
1

0
and the upper semicontinuity of attractors in

𝐻
1

0
under subcritical assumptions and 𝑔(𝑥) = 0 in the case of

𝑁 ≤ 3. In [13] similar results have been shown when 𝑁 ≥ 3

and 𝑔(𝑥) ∈ 𝐻
1

0
(Ω).

In this paper, inspired by the ideas in [17, 18] and
motivated by the dynamical results in [19–22], we study
the uniform (with respect to the parameter 𝜀 ∈ [0, 1])
qualitative analysis (a priori estimates) for the solutions of
the nonclassical parabolic equations (𝐸

𝜀
) and then give some

information about the relation between the solutions of (𝐸
0
)

and those of (𝐸
𝜀
). Ourmain difficulty comes from the critical

nonlinearity and the uniformness with respect to 𝜀 ∈ [0, 1].
This paper is organized as follows. In Section 2, we

introduce basic notations and state our main results. In
Section 3, we recall some abstract results that we will use
later. In Section 4, we present several dissipative estimates
about the solution of (𝐸

𝜀
) when 𝑔(𝑥) ∈ 𝐻

−1
(Ω), which

hold uniformly with respect to 𝜀 ∈ [0, 1]. The main results
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are proved for 𝑔(𝑥) ∈ 𝐿
2
(Ω) in Section 5. Moreover, in

Section 6, as an application, we construct a finite dimensional
exponential attractor and prove the upper semicontinuity of
the global attractor obtained in Section 5.

2. Main Results

Before presenting our main results, we first state the basic
mathematical assumptions for considering the long-time
behaviors of the nonclassical parabolic equations and then
introduce some notations that we will use throughout this
paper.

(i) 𝑓 ∈ C1
(R) with 𝑓(0) = 0 and satisfies the following

conditions:
󵄨
󵄨
󵄨
󵄨
󵄨
𝑓

󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶
0

(1 + |𝑠|
(𝑁+2)/(𝑁−2)−1

) , ∀𝑠 ∈ R, (1)

lim inf
|𝑠| → ∞

𝑓 (𝑠)

𝑠

> −𝜆
1
, (2)

where 𝐶
0
is a positive constant and 𝜆

1
is the first

eigenvalue of −Δ on 𝐻
1

0
. The number (𝑁 + 2)/(𝑁 −

2) − 1 is called the critical exponent. 𝑓 is not compact
in this case, and this is one of the essential difficulties
in studying the asymptotic regularity.

(ii) Assumption on the parameters 𝜀 ∈ [0, 1] and 𝜔 > 0.
From the work in [18, 19], we know that a very large
damping has the effect of freezing the system, if the
damping acts only on the velocity 𝑢

𝑡
, and this prevents

the squeezing of the component 𝑢. Therefore, the
most dissipative situation occurs in between, that is,
for a certain damping 𝜀

∗
, which depends on the other

coefficient of the equation.Therefore, in our frame,we
choose 𝜔 > 1 such that 1/𝜔 < 𝜀 as 𝜀 ∈ [0, 1] in order
to obtain the uniformly (with respect to 𝜀 ∈ [0, 1])
asymptotic regularity about the solutions of (𝐸

𝜀
).

(iii) 𝐴 = −Δ with domain 𝐷(𝐴) = 𝐻
2

∩ 𝐻
1

0
, and consider

the family of Hilbert space 𝐷(𝐴
𝑠/2

), 𝑠 ∈ R with the
standard inner products and norms, respectively,

⟨⋅, ⋅⟩
𝐷(𝐴
𝑠/2

)
= ⟨𝐴

𝑠/2
⋅, 𝐴

𝑠/2
⋅⟩ , ‖⋅‖

𝐷(𝐴
𝑠/2

)
=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝑠/2
⋅

󵄩
󵄩
󵄩
󵄩
󵄩

. (3)

In particular, ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ mean the 𝐿
2
(Ω) inner

product and norm, respectively.
(iv) H𝑠

= 𝐷(𝐴
1+𝑠/2

), 𝑠 ∈ [0, 1] with the usual norm

‖𝑢‖
2

H𝑠 =

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝑠)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

. (4)

In particular, we denote H = H0
= 𝐻

1

0
(Ω) and

‖ ⋅ ‖H = ‖ ⋅ ‖
𝐻
1

0

.
(v) For each 𝑢 ∈ H, we define ‖ ⋅ ‖H𝑠

𝜀

(𝜀, 𝑠 ∈ [0, 1]) as

‖𝑢‖
2

H𝑠
𝜀

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝑠/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(𝑠+1)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2 (5)

and defineH𝑠

𝜀
as

H
𝑠

𝜀
= cl

‖⋅‖H𝜀
(H

1
) . (6)

Then (H𝑠

𝜀
, ‖ ⋅ ‖H𝜀

) is a Banach Space for every 𝜀, 𝑠 ∈

[0, 1].
The global well-posedness of solutions and its asymp-

totic behavior for (𝐸
𝜀0

) have been studied extensively under
assumptions (1)-(2) bymany authors in [9–14] and references
therein in fact note that (H0

𝜀0
, ‖ ⋅ ‖H0

𝜀0

) ≅ (H, ‖ ⋅ ‖H) for each
fixed 𝜀

0
.

The main results of this paper are the following asymp-
totic regularity.

Theorem 1. Under assumptions (1), (2), and 𝜔 > 1, there exist
a positive constant ], a bounded (inH1) subsetB ⊂ H1, and a
continuous increasing function 𝑄(⋅) : [0, ∞) → [0, ∞) such
that, for any bounded (in H) subset 𝐵

0
⊂ H,

∀𝜀 ∈ [0, 1] , distH(𝑆
𝜀

(𝑡) 𝐵
0
,B) ≤ 𝑄 (‖𝐵‖H) 𝑒

−]𝑡

∀𝑡 ≥ 0,

(7)

where B, ], and 𝑄(⋅) are all independent of 𝜀, and {𝑆
𝜀
(𝑡)}

𝑡≥0
is

the semigroup generated by (𝐸
𝜀
) inH0

𝜀
.

This result says that asymptotically, for each (𝐸
𝜀
), the

solutions are exponentially approaching a more regular fixed
subset B uniformly (with respect to ∈ [0, 1]) for 𝜔 > 1.
Moreover, it implies the following results.

(1) For each 𝜀 ∈ [0, 1], {𝑆
𝜀
(𝑡)}

𝑡≥0
has a global attractorA

𝜀

inH, and

⋃

𝜀∈[0,1]

A
𝜀

⊂ clH1 (B) . (8)

(2) Based on Theorem 1, applying the abstract result
devised in [23, 24], for each 𝜀 ∈ [0, 1]we can prove the
existence of a finite dimensional exponential attractor
E

𝜀
in H. Moreover, our attraction is uniform (with

respect to 𝜀 ∈ [0, 1]) under the H-norm (not only
with theH0

𝜀
-norm); see Lemma 19.

(3) Since the global attractor A
𝜀

⊂ E
𝜀
, it also implies

that the fractal dimension of the global attractorA
𝜀
is

finite. Moreover, in line withTheorem 1, we prove the
upper semicontinuity ofA

𝜀
at 𝜀 = 0; see Lemma 20.

For the proof of Theorem 1, the main difficulty comes
from the critical nonlinearity and the uniformness with
respect to 𝜀 ∈ [0, 1].

Hereafter, we will also use the following notation: denote
by J the space of continuous increasing functions 𝐽 :

[0, ∞) → [0, ∞) and by D the space of continuous
decreasing functions 𝛽 : [0, ∞) → [0, ∞) such that 𝛽(∞) <

1. Moreover, 𝐶, 𝐶
𝑖
, and 𝑐

𝑖
are the generic constants, and𝑄(⋅),

𝑄
𝑖
(⋅) ∈ J are generic functions, which are all independent of

𝜀; otherwise we will point out clearly.

3. Preliminaries

In this section, we recall some results used in the main part
of the paper.

The first result comes from [17], which will be used to
prove the asymptotic regularity for the case 𝑔(𝑥) ∈ 𝐿

2
(Ω).
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Lemma 2 (see [17]). Let 𝑋 and 𝑉 be two Banach spaces and
{𝑇(𝑡)}

𝑡≥0
a 𝐶

0-semigroup on 𝑋 with a bounded absorbing set
𝐵 ⊂ 𝑋. For every 𝑥 ∈ 𝐵, assume that there exist two solution
operators 𝑉

𝑥
(𝑡) on 𝑋 and 𝑈

𝑥
(𝑡) on 𝑉 satisfying the following

properties.

(i) For any two vectors 𝑦 ∈ 𝑋 and 𝑧 ∈ 𝑉 satisfying 𝑦 + 𝑧 =

𝑥,

𝑇 (𝑡) 𝑥 = 𝑉
𝑥

(𝑇) 𝑦 + 𝑈
𝑥

(𝑡) 𝑧 ∀𝑡 ≥ 0. (9)

(ii) There exists 𝛼 ∈ D such that

sup
𝑥∈𝐵

󵄩
󵄩
󵄩
󵄩
𝑉

𝑥
(𝑡) 𝑦

󵄩
󵄩
󵄩
󵄩𝑋

≤ 𝛼 (𝑡)
󵄩
󵄩
󵄩
󵄩
𝑦

󵄩
󵄩
󵄩
󵄩𝑋

, ∀𝑦 ∈ 𝐵. (10)

(iii) There are 𝛽 ∈ D and 𝐽 ∈ J such that

sup
𝑥∈𝐵

󵄩
󵄩
󵄩
󵄩
𝑈

𝑥
(𝑡) 𝑧

󵄩
󵄩
󵄩
󵄩𝑉

≤ 𝛽 (𝑡) ‖𝑧‖
𝑉

+ 𝐽 (𝑡) , ∀𝑧 ∈ 𝑉. (11)

Then, there exist positive constants 𝜌, 𝐾, and 𝜗 such that

dist
𝑋

(𝑇 (𝑡) 𝐵, 𝐵
𝑉

(𝜌)) ≤ 𝐾𝑒
−𝜗𝑡

, ∀𝑡 ≥ 0, (12)

where 𝐵
𝑉

(𝜌) = {𝑧 ∈ 𝑉 : ‖𝑧‖
𝑉

≤ 𝜌}.

Next, we recall a criterion for the upper semicontinuity of
attractors.

Lemma 3 (see [25, 26]). Let {𝑇
𝜆
(𝑡)}

𝑡≥0
be a family of semi-

groups defined on the Banach space 𝑋, and for each 𝜆 ∈ Λ, let
{𝑇

𝜆
(𝑡)}

𝑡≥0
have a global attractor A

𝜆
. Assume further that 𝜆

0

is a nonisolated point of Λ and that there exist 𝑠 > 0, 𝑡
0

> 0,
and a compact set 𝐾 ⊂ 𝑋 such that

⋃

𝜆∈N𝜆(𝜆0 ,𝑠)

A
𝜆

⊂ 𝐾, (13)

if 𝜆
𝑛

󳨀→ 𝜆
0

𝑎𝑛𝑑 𝑥
𝑛

󳨀→ 𝑥
0

(𝑥
𝑛

∈ A 𝑎𝑠 𝑛 ̸= 0) ,

𝑡ℎ𝑒𝑛 𝑇
𝜆𝑛

(𝑡
0
) 𝑥

𝑛
󳨀→ 𝑇

𝜆0
(𝑡

0
) 𝑥

0
.

(14)

Then the global attractors A
𝜆
are upper semicontinuous on Λ

at 𝜆 = 𝜆
0
; that is,

lim
Λ∋𝜆 → 𝜆0

dist
𝑋

(A
𝜆
,A

𝜆0
) = 0. (15)

Lemma 4 (see [27]). Let Φ be an absolutely continuous pos-
itive function on R+, which satisfies for some 𝜖 > 0 the dif-
ferential inequality

𝑑

𝑑𝑡

Φ (𝑡) + 2𝜖Φ (𝑡) ≤ ℎ
1

(𝑡) Φ (𝑡) + ℎ
2

(𝑡) , (16)

for almost every 𝑡 ∈ R+, where ℎ
1
and ℎ

2
are functions on R+

such that

∫

𝑡

𝜏

󵄨
󵄨
󵄨
󵄨
ℎ

1
(𝑦)

󵄨
󵄨
󵄨
󵄨

≤ 𝑚
1

(1 + (𝑡 − 𝜏)
𝜇
) , ∀𝑡 ≥ 𝜏 ≥ 0, (17)

for some 𝑚
1

≥ 0 and 𝜇 ∈ [0, 1], and

sup
𝑡≥0

∫

𝑡+1

𝑡

󵄨
󵄨
󵄨
󵄨
ℎ

2
(𝑦)

󵄨
󵄨
󵄨
󵄨
𝑑𝑦 ≤ 𝑚

2
, (18)

for some 𝑚
2

≥ 0. Then

Φ (𝑡) ≤ 𝜌
1
Φ (0) 𝑒

−𝜖𝑡
+ 𝜌

2
, ∀𝑡 ∈ R

+
, (19)

for some 𝜌
1

= 𝜌
1
(𝑚

1
, 𝜇) ≥ 1 and

𝜌
2

=

𝜌
1
𝑚

2
𝑒

𝜖

1 − 𝑒
−𝜖

. (20)

For the proof, we refer the reader to [27, Lemma 2.2].
A standard Gronwall-type lemma will also be needed.

Lemma 5. Let Ψ be an absolutely continuous positive function
onR+, which satisfies for someΨ > 0 the differential inequality

𝑑

𝑑𝑡

Ψ (𝑡) + 𝜖Φ (𝑡) ≤ 𝜅𝑒
−𝜄𝑡

Ψ (𝑡) + 𝐽 (𝑡) (21)

for some 𝜖, 𝜅, 𝜄 > 0 and some 𝐽 ∈ J. Then,

Ψ (𝑡) ≤ 𝑒
𝜅/𝜄

𝑒
−𝜖𝑡

Ψ (0) + 𝜖
−1

𝑒
𝜅/𝜄

𝐽 (𝑡) . (22)

4. Uniformly Decaying Estimates in H

In this section, we always assume that (1), (2), and 𝜔 > 1

such that 1/𝜔 < 𝜀 as 𝜀 ∈ [0, 1] hold and 𝑔(𝑥) only belongs
to 𝐻

−1
(Ω), so all results in this section certainly hold for the

case 𝑔(𝑥) ∈ 𝐿
2
(Ω).

The main purpose of this section is to deduce some
dissipative estimates about the semigroups {𝑆

𝜀
(𝑡)}

𝑡≥0
(𝜀 ∈

[0, 1]) associated with (𝐸
𝜀
) in H. Here, using the method

in [19, 20, 22] for a strongly damped wave equation and a
semilinear secondorder evolution equation,wewill show that
the radius of the absorbing set of {𝑆

𝜀
(𝑡)}

𝑡≥0
associated with

(𝐸
𝜀
) inH can be chosen to be independent of 𝜀 ∈ [0, 1].

Lemma 6. There exists a positive constant 𝑀, which depends
only on 𝜔, ‖𝑔‖

𝐻
−1 , and coefficients of (1)-(2), satisfying that for

any 𝜀 ∈ [0, 1] and any bounded (inH0

𝜀
) subset 𝐵 ∈ H0

𝜀
, there

is a 𝑡
𝐵

= 𝑡(‖𝐵‖H0
𝜀

) > 0 (which depends only on the bound of
‖𝐵‖H0

𝜀

) such that

󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝑢

󵄩
󵄩
󵄩
󵄩H

≤ 𝑀, ∀𝑡 ≥ 𝑡
𝐵

, ∀𝑢 ∈ 𝐵, (23)

where both 𝑡
𝐵
and 𝑀 are independent of 𝜀 ∈ [0, 1].

Proof. Throughout the proof, the generic constants𝐶, 𝐶
𝑗

(𝑗 =

1, 2, . . .) are independent of 𝜀. For clarity, we separate the
proof into three claims.

Claim 1. There exists an 𝑀
1
which depends on 𝜔, |Ω|, ‖𝑔‖

𝐻
−1

(but independent of 𝐵 and 𝜀) such that

∀𝜀 ∈ [0, 1] ,
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝐵

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

≤ 𝑀
1
, as 𝑡 ≥ 𝑇

1𝐵
, (24)

where 𝑇
1𝐵

= 𝑇
1
(‖𝐵‖H0

𝜀

) depends on ‖𝐵‖H0
𝜀

but not on 𝜀.
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Multiplying (𝐸
𝜀
) by 𝑢, we have

𝑑

𝑑𝑡

(‖𝑢‖
2

+ 𝜀‖∇𝑢‖
2
) + 2𝜔‖∇𝑢‖

2
+ 2 ⟨𝑓 (𝑢) , 𝑢⟩ = 2 ⟨𝑔, 𝑢⟩ .

(25)

By virtue of (2), we conclude that there exists 0 < 𝜆 < 𝜆
1
,

𝐶
1

> 0 such that

2 ⟨𝑓 (𝑢) , 𝑢⟩ = 2 ∫

Ω

𝑓 (𝑢) 𝑢 𝑑𝑥 ≥ −2𝜆‖𝑢‖
2

− 2𝐶
1
. (26)

At the same time, by the Hölder inequality, we get

2 ⟨𝑔, 𝑢⟩ ≤

1

𝜔

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

𝐻
−1 + 𝜔‖∇𝑢‖

2
. (27)

Substituting (26) and (27) into (25) and noticing 1/𝜔 < 𝜀

as 𝜔 > 1, we obtain

𝑑

𝑑𝑡

(‖𝑢‖
2

+ 𝜀‖∇𝑢‖
2
)

+ 𝜀
0

(‖𝑢‖
2

+ 𝜀‖∇𝑢‖
2
)

≤ 𝜁 (‖𝑢‖
2

+ 𝜀‖∇𝑢‖
2
) + 𝐶 (1 +

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

𝐻
−1) ,

(28)

where 𝜁 = max{2𝜆 − 𝜀
0
, 𝜀

0
} and 𝜀

0
is a small positive constant

such that 𝜆 > 𝜀
0
/2.

And then applying Lemma 4 to above inequality, it
follows that

‖𝑢‖
2

+ 𝜀‖∇𝑢‖
2

≤ 𝜌
1

[‖𝑢 (0)‖
2

+ 𝜀‖∇𝑢 (0)‖
2
] 𝑒

−(𝜀0/2)𝑡
+ 𝜌

2
,

(29)

where 𝜌
1

= 𝜌
1
(𝜁), 𝜌

2
= 𝜌

1
𝐶

‖𝑔‖
2

𝐻
−1

𝑒
𝜀0/2

/(1 − 𝑒
−(𝜀0/2)

).
Then, Claim 1 follows from (29) immediately.

Claim 2. There exists an 𝑀
2
which depends on 𝜔, |Ω|, and

‖𝑔‖
𝐻
−1 (but is independent of 𝐵 and 𝜀) such that

∀𝜀 ∈ [0, 1] , ∫

∞

𝑇1𝐵

‖∇𝑢 (𝑠)‖ 𝑑𝑠 ≤ 𝑀
2
, (30)

where 𝑇
1𝐵

is given in Claim 1.
Noting (25) and taking 𝜆 = (1/2)𝜆

1
in (26), it yields

𝑑

𝑑𝑡

(‖𝑢‖
2

+ 𝜀‖∇𝑢‖
2
) + (𝜔 − 1) ‖∇𝑢‖

2
≤ 𝐶 (1 +

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

𝐻
−1) .

(31)

Then, for any 𝑡 ≥ 𝑇
1𝐵
, integrating (31) over [𝑇

1𝐵
, 𝑡] and

using Claim 1, we can complete this claim immediately.

Claim 3.Multiplying (𝐸
𝜀
) by 𝑢

𝑡
, we find

𝑑

𝑑𝑡

(‖∇𝑢‖
2

+

2

𝜔

∫

Ω

𝐹 (𝑢) 𝑑𝑥 −

2

𝜔

⟨𝑔, 𝑢⟩)

+

2

𝜔

󵄩
󵄩
󵄩
󵄩
𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

+

2𝜀

𝜔

󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

= 0;

(32)

furthermore,

𝑑

𝑑𝑡

(‖∇𝑢‖
2

+

2

𝜔

∫

Ω

𝐹 (𝑢) 𝑑𝑥 −

2

𝜔

⟨𝑔, 𝑢⟩) ≤ 0. (33)

Then, from assumptions (1)-(2), Claim 1, and using
Hölder inequality, there holds

‖∇𝑢‖
2

+

2

𝜔

∫

Ω

𝐹 (𝑢) 𝑑𝑥 −

2

𝜔

⟨𝑔, 𝑢⟩

≥

1

2

‖∇𝑢‖
2

−

𝐶
1

𝜔

(1 + ‖∇𝑢‖
2𝑁/(𝑁−2)

+
󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

𝐻
−1)

≥

1

2

‖∇𝑢‖
2

−

𝐶
1

𝜔
2

(1 + 𝑀
𝑁/(𝑁−2)

1
+

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

𝐻
−1) ;

(34)

‖∇𝑢‖
2

+

2

𝜔

∫

Ω

𝐹 (𝑢) 𝑑𝑥 −

2

𝜔

⟨𝑔, 𝑢⟩

≤ 2‖∇𝑢‖
2

+

𝐶
1

𝜔
2

(1 + 𝑀
𝑁/(𝑁−2)

1
+

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

𝐻
−1) .

(35)

On the other hand, from Claim 2 we know that for each
𝑢

0
∈ 𝐵 there is a time 𝑡

0
∈ [𝑇

1𝐵
, 𝑇

1𝐵
+ 1] such that

󵄩
󵄩
󵄩
󵄩
∇𝑢 (𝑡

0
)
󵄩
󵄩
󵄩
󵄩

≤ 𝑀
2
, (36)

where 𝑡
0
depends on 𝑢

0
.

When 𝑡 ≥ 𝑇
1𝐵

+ 1, for each 𝑢
0

∈ 𝐵, integrating (33) over
[𝑡

0
, 𝑡] and applying (34)–(36), we obtain that

‖∇𝑢‖ ≤ 4𝑀
2

+

2 (𝐶
1

+ 𝐶
2
)

𝜔
2

(1 + 𝑀
𝑁/(𝑁−2)

+
󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

𝐻
−1) .

(37)

Now, taking 𝑀 = 4𝑀
2

+ (2(𝐶
1

+ 𝐶
2
)/𝜔

2
) (1 + 𝑀

𝑁/(𝑁−2)
+

‖𝑔‖
2

𝐻
−1) (is independent of 𝜀 ∈ [0, 1]), we can complete our

proof.

Remark 7. Observing that above process of proof, we can also
deduce that, for any 𝜀 ∈ [0, 1] and any 𝐵 ⊂ H0

𝜀
,

󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝐵

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

≤ 𝑄 (𝜔, ‖𝐵‖H0
𝜀

) , ∀𝑡 ≥ 0, (38)

where 𝑄(⋅) ∈ J is independent of 𝐵 and 𝜀.
Moreover, if 𝐵 is bounded inH, then we can obtain

𝜀 ∈ [0, 1] ,
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝐵

󵄩
󵄩
󵄩
󵄩

2

H
≤ 𝐶

𝜔,‖𝐵‖H
, ∀𝑡 ≥ 0 (39)

for some constant 𝐶
𝜔,‖𝐵‖H

which depends on 𝜔, ‖𝐵‖H.
Indeed, from the fact that there is a constant 𝑐

1
such that

‖ ⋅ ‖H0
𝜀

≤ 𝑐
1
‖ ⋅ ‖H for any 𝜀 ∈ [0, 1], (39) can be obtained just

by repeating the proof of Lemma 6 and taking 𝑡
0

= 0 in (35)
since 𝐵 is bounded inH.

On the other hand, from the proof of Claim 3 as follows,
we can get further estimates about 𝑢

𝑡

∀𝜀 ∈ [0, 1] , ∫

∞

𝑇1𝐵+1

(
󵄩
󵄩
󵄩
󵄩
𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

) ≤ 𝑀,

∀𝑡 ≥ 0, 𝑢
0

∈ 𝐵.

(40)



ISRN Applied Mathematics 5

Lemma 8. There exists a positive constant 𝑀
3
such that for

any 𝜀 ∈ [0, 1] and any bounded (inH0

𝜀
) subset 𝐵 ∈ H0

𝜀
,

󵄩
󵄩
󵄩
󵄩
𝑢

𝑡
(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜔 ∫

𝑡

𝑇1𝐵+2

󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡
(𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠 ≤ 𝑀
3
,

∀𝑡 ≥ 𝑇
1𝐵

+ 2,

(41)

where 𝑢(𝑡) = 𝑆
𝜀
(𝑡)𝑢

0
, 𝑢

0
∈ 𝐵, 𝑇

1𝐵
is the time given in Claim 1,

and 𝑀
3
only depends on 𝜔 but is independent of 𝐵 and 𝜀.

Proof. By differentiation of (𝐸
𝜀
), we can obtain the following

equation:

𝑢
𝑡𝑡

− 𝜀Δ𝑢
𝑡𝑡

− 𝜔Δ𝑢
𝑡

+ 𝑓
󸀠

(𝑢) 𝑢
𝑡

= 0. (42)

Multiplying (42) by 𝑢
𝑡
, we have

𝑑

𝑑𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

) + 2𝜔
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

= −2 ⟨𝑓
󸀠

(𝑢) 𝑢
𝑡
, 𝑢

𝑡
⟩ .

(43)

When 𝑡 ≥ 𝑇
1𝐵

+ 1, using Lemma 6, there holds

󵄨
󵄨
󵄨
󵄨
󵄨
−2 ⟨𝑓

󸀠
(𝑢) 𝑢

𝑡
, 𝑢

𝑡
⟩

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶 (1 + ‖∇𝑢‖
4/(𝑁−2)

)
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

≤

𝐶

4𝜔

(1 + ‖∇𝑢‖
8/(𝑁−2)

)
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜔
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶
𝑀,𝜔

(
󵄩
󵄩
󵄩
󵄩
𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

) + 𝜔
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

.

(44)

So, we obtain

𝑑

𝑑𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

) + 𝜔
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶
𝑀,𝜔

(
󵄩
󵄩
󵄩
󵄩
𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

) .

(45)

Therefore, as 𝑡 ≥ 𝑇
1𝐵

+ 2, for 𝑢
0

∈ 𝐵, integrating (45) over
[𝑇

1𝐵
+ 2, 𝑡] and substituting (40), we can complete our proof

at once.

For later applications, we present someHölder continuity
of {𝑆

𝜀
(𝑡)}

𝑡≥0
inH0

𝜀
.

Lemma 9. For any bounded (H0

𝜀
) subset 𝐵 ⊂ H0

𝜀
, there exists

a constant 𝐶
𝜔,‖𝐵‖

H0𝜀

which depends only on 𝜔 and ‖𝐵‖H0
𝜀

such
that

󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝑢

1
− 𝑆

𝜀
(𝑡) 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

≤ 𝑒

𝐶𝜔,‖𝐵‖
H0𝜀

𝑡
󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

,

∀𝑡 ≥ 0, 𝑢
𝑖

∈ 𝐵;

(46)

󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝑢

1
− 𝑆

𝜀
(𝑡) 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

≤ 𝑒

𝐶𝜔,‖𝐵‖
H0𝜀

𝑡
󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩

1

2

H0
𝜀

,

∀𝑡 ≥ 𝑇
1𝐵

+ 2, 𝑢
𝑖

∈ 𝐵.

(47)

Proof. Let 𝑢
1 and 𝑢

2 be the solutions of (𝐸
𝜀
) corresponding

to the initial data 𝑢
1
and 𝑢

2
. Then the difference 𝑢 = 𝑢

1
− 𝑢

2

satisfies

𝑢
𝑡

− 𝜀Δ𝑢
𝑡

− 𝜔Δ𝑢 + 𝑓 (𝑢
1
) − 𝑓 (𝑢

2
) = 0, (48)

with initial data 𝑢(0) = 𝑢
1

− 𝑢
2
.

For (46), multiplying (48) by 𝑢, we have

𝑑

𝑑𝑡

(‖𝑢‖
2

+ 𝜀‖∇𝑢‖
2
) + 2𝜔‖∇𝑢‖

2

= −2 ⟨𝑓 (𝑢
1
) − 𝑓 (𝑢

2
) , 𝑢⟩

≤ 𝐶 ∫

Ω

(1 +

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢

1󵄨
󵄨
󵄨
󵄨
󵄨

4/(𝑁−2)

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢

2󵄨
󵄨
󵄨
󵄨
󵄨

4/(𝑁−2)

) |𝑢| |𝑢| 𝑑𝑥

≤ 𝐶 (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

1󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

2󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

𝐿
2𝑁/(𝑁−2)

) ‖𝑢‖
𝐿
2𝑁/(𝑁−2)‖𝑢‖

𝐿
2𝑁/(𝑁−2)

≤ 𝐶
𝑀

𝜀‖𝑢‖
2

+ 2𝜔‖𝑢‖
2
,

(49)

where we used (38). Then, when applying Gronwall lemma,
we can obtain (46).

For (47), when 𝑡 ≥ 𝑇
1𝐵

+ 2, multiplying (48) by 𝑢 and
combining with Lemma 8, we have

𝜔‖∇𝑢‖
2

= − ⟨𝑢
𝑡
, 𝑢⟩ + 𝜀 ⟨Δ𝑢

𝑡
, 𝑢⟩ − ⟨𝑓 (𝑢

1
) − 𝑓 (𝑢

1
) , 𝑢⟩

≤ √𝑀
3

(‖𝑢‖ + √𝜀 ‖∇𝑢‖) + 𝜀𝐶
𝑀

‖∇𝑢‖
2

+

𝜔

2

‖∇𝑢‖
2
.

(50)

Hence, by (47) we complete the proof.

Hereafter, we denote the uniformly (with respect to 𝜀 ∈

[0, 1]) bounded absorbing set obtained inLemma 6 as𝐵
0
, that

is,

𝐵
0

= {𝑢 ∈ H : ‖𝑢‖
2

H ≤ 𝑀} , (51)

and denote the time by Λ
0
such that Lemmas 6 and 8 hold

for 𝐵
0
; that is,

󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝐵

0

󵄩
󵄩
󵄩
󵄩

2

H
+

󵄩
󵄩
󵄩
󵄩
𝑢

𝑡
(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡
(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ 𝜔 ∫

𝑡

𝑇1𝐵+2

󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡
(𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠

≤ 𝑀 = 𝑀 + 𝑀
3
,

(52)

holds for any 𝜀 ∈ [0, 1] and all 𝑡 ≥ Λ
0
. Moreover, similar to

Remark 7, noting now that 𝐵
0
is bounded inH, we have

∀𝜀 ∈ [0, 1] ,
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝐵

0

󵄩
󵄩
󵄩
󵄩

2

H
≤ 𝐶

𝑀
, ∀𝑡 ≥ 0. (53)

5. Proof of the Main Results

Throughout this section, we always assume that (1), (2), and
𝜔 > 1 hold for 𝑔(𝑥) ∈ 𝐿

2
(Ω).
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5.1. Decomposition of the Equation. For the nonlinear func-
tion 𝑓 satisfying (1)-(2), from [12, 17, 19, 22] for our situation
we know that 𝑓 allows the following decomposition 𝑓 =

𝑓
0

+ 𝑓
1
, where 𝑓

0
, 𝑓

1
∈ C1

(R) and satisfy
󵄨
󵄨
󵄨
󵄨
𝑓

0
(𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶|𝑢|
(𝑁+2)/(𝑁−2)

, ∀𝑢 ∈ R, (54)

𝑓
0

(𝑢) 𝑢 ≥ 0, ∀𝑢 ∈ R, (55)

󵄨
󵄨
󵄨
󵄨
𝑓

1
(𝑢)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶 (1 + |𝑢|
𝛾
) with some 𝛾 <

𝑁 + 2

𝑁 − 2

, ∀𝑢 ∈ R,

(56)

lim inf
|𝑢| → ∞

𝑓
1

(𝑢)

𝑢

> −𝜆
1
. (57)

Now, decomposing the solution 𝑆
𝜀
(𝑡)𝑢

0
= 𝑢 into the sum

𝑆
𝜀

(𝑡) 𝑢
0

= 𝐷
𝜀

(𝑡) 𝑢
0

+ 𝐾
𝜀

(𝑡) 𝑢
0
, (58)

for any 𝑡 ≥ 0 and any 𝑢
0

∈ H, where 𝐷
𝜀
(𝑡)𝑢

0
= V(𝑡) and

𝐾
𝜀
(𝑡)𝑢

0
= 𝑤(𝑡) are the solutions of the following equations:

V
𝑡

− 𝜀ΔV
𝑡

− 𝜔ΔV + 𝑓
0

(V) = 0 inΩ × R
+

,

V (𝑥, 0) = 𝑢
0
,

V|
𝜕Ω

= 0,

(59)

𝑤
𝑡

− 𝜀Δ𝑤
𝑡

− 𝜔Δ𝑤 + 𝑓 (𝑢) − 𝑓
0

(V) = 𝑔 (𝑥) in Ω × R
+

,

𝑤 (𝑥, 0) = 0,

𝑤|
𝜕Ω

= 0.

(60)

Applying the general results in [9, 12, 14], we know that
both (59) and (60) are global well-posed inH, and {𝐷

𝜀
(𝑡)}

𝑡≥0

also forms a semigroup.
Moreover, as in Section 4, we can deduce a similar

estimate for {𝐷
𝜀
(𝑡)}

𝑡≥0
in H, and so {𝐾

𝜀
(𝑡)}

𝑡≥0
. There exist

constants 𝐶
𝑀
(𝑀 is given in Lemma 6) and Λ

1
such that for

any 𝜀 ∈ [0, 1] and any 𝑢
0

∈ 𝐵
0
,

󵄩
󵄩
󵄩
󵄩
𝐷

𝜀
(𝑡) 𝐵

0

󵄩
󵄩
󵄩
󵄩

2

H
+

󵄩
󵄩
󵄩
󵄩
V

𝑡
(𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
∇V

𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜔 ∫

𝑡

𝑇1𝐵+2

󵄩
󵄩
󵄩
󵄩
∇V

𝑡
(𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠 ≤ 𝑀, ∀𝑡 ≥ Λ
1
,

(61)

∀𝜀 ∈ [0, 1] ,
󵄩
󵄩
󵄩
󵄩
𝐷

𝜀
(𝑡) 𝐵

0

󵄩
󵄩
󵄩
󵄩

2

H
+

󵄩
󵄩
󵄩
󵄩
𝐾

𝜀
(𝑡) 𝐵

0

󵄩
󵄩
󵄩
󵄩

2

H
≤ 𝐶

𝑀
,

∀𝑡 ≥ 0.

(62)

5.2. The First A Priori Estimate. We begin with the decay
estimates for the solution of (59).

Lemma 10. There exists a constant 𝑘 > 0 and 𝑄(⋅) ∈ J such
that

󵄩
󵄩
󵄩
󵄩
𝐷

𝜀
(𝑡) 𝐵

0

󵄩
󵄩
󵄩
󵄩

2

H
≤ 𝐶

𝑀,𝜔
𝑄 (

󵄩
󵄩
󵄩
󵄩
𝐵

0

󵄩
󵄩
󵄩
󵄩H

) 𝑒
−𝑘𝑡

,

∀𝑡 ≥ 0 𝑎𝑛𝑑 𝑎𝑛𝑦 𝜀 ∈ [0, 1] ,

(63)

where both 𝑘 and 𝑄(⋅) are independent of 𝜀 ∈ [0, 1].

Proof. Multiplying (59) by V, we have

𝑑

𝑑𝑡

(‖V‖
2

+ 𝜀‖∇V‖
2
) + 2𝜔‖∇V‖

2
+ 2 ⟨𝑓

0
(V) , V⟩ = 0. (64)

By means of (55), it follows that (𝑑/𝑑𝑡) (‖V‖
2

+ 𝜀‖∇V‖
2
) ≤ 0.

Therefore, there exists 𝑘
1

> 0 such that

‖V (𝑡)‖
2

+ 𝜀‖∇V (𝑡)‖
2

≤ ‖V (0)‖
2

+ 𝜀‖∇V (0)‖
2

≤ 𝑄 (
󵄩
󵄩
󵄩
󵄩
𝐵

0

󵄩
󵄩
󵄩
󵄩H

) 𝑒
−𝑘1𝑡

,

(65)

for all 𝑡 ≥ 0 and any 𝜀 ∈ [0, 1].
As a result, we multiply (59) by V and obtain

𝜔‖∇V‖
2

≤
󵄩
󵄩
󵄩
󵄩
V

𝑡

󵄩
󵄩
󵄩
󵄩

‖V‖ + 𝜀
󵄩
󵄩
󵄩
󵄩
∇V

𝑡

󵄩
󵄩
󵄩
󵄩

‖∇V‖ − ⟨𝑓
0

(V) , V⟩ . (66)

Then integrating with (55), (61), (62), and (65), we conclude

𝜔‖∇V‖
2

≤
√

𝑀 (‖V‖ + 𝜀 ‖∇V‖) ≤
√

𝑀𝑄 (
󵄩
󵄩
󵄩
󵄩
𝐵

0

󵄩
󵄩
󵄩
󵄩H

) 𝑒
−𝑘1𝑡

.

(67)

Thus, using the following Lemma 11 with (67), allows us to
complete our proof by taking 𝑘 = 𝑘

1
/2 and some increasing

function 𝑄(⋅).

Lemma 11. Let {𝑆(𝑡)}
𝑡≥0

be a continuous semigroup on the
Banach space 𝑋, satisfying

‖𝑆 (𝑡) 𝐵‖
𝑋

≤ 𝑄
1

(‖𝐵‖
𝑋

) 𝑒
−𝜇𝑡

, ∀𝑡 ≥ 𝑡
0
,

‖{𝑆 (𝑡) 𝐵 : 𝑡 ≥ 0}‖
𝑋

≤ 𝑄
2

(‖𝐵‖
𝑋

) .

(68)

Then

‖𝑆 (𝑡) 𝐵‖
𝑋

≤ 𝑄
3

(‖𝐵‖
𝑋

) 𝑒
−𝜇𝑡

, ∀𝑡 ≥ 0. (69)

Its proof is obvious and we omit it here.
The next estimate is about the solution of (60).

Lemma 12. For every (given) 𝑇 > 0 and any 𝜀 ∈ [0, 1],
there is a positive constant 𝐽 which only depends on 𝑇, 𝜔,

‖𝑔‖, and ‖𝑢
0
‖H such that the solutions of (60) satisfy

󵄩
󵄩
󵄩
󵄩
𝐾

𝜀
(𝑡) 𝐵

0

󵄩
󵄩
󵄩
󵄩

2

H𝜎
𝜀

≤ 𝐽, (70)

where both 𝐽 are independent of 𝜀 ∈ [0, 1], and 𝜎 = min{1/4,

(𝑁 + 2 − (𝑁 − 2)𝛾)/2}.

Proof. Multiplying (60) by 𝐴
𝜎
𝑤(𝑡) and integrating over Ω,

Then the proof is completely similar to that in [12,
Lemma 3.4], so, we omit it.

Based on Lemmas 10 and 12, following the idea in Zelik
[21], we can now decompose 𝑢(𝑡) as follows.

Lemma 13. Let 𝑢(𝑡) be the solution of (𝐸
𝜀
) corresponding to

the initial data 𝑢
0

∈ 𝐵
0
.Then, for any 𝜂 > 0, we can decompose

𝑢(𝑡) = 𝑆
𝜀
(𝑡)𝑢

0
as

𝑢 (𝑡) = V
1

(𝑡) + 𝑤
1

(𝑡) , ∀𝑡 ≥ 0, (71)
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where V
1
(𝑡) and 𝑤

1
(𝑡) satisfy the following estimates:

∫

𝑡

𝑠

󵄩
󵄩
󵄩
󵄩
∇V

1
(𝜏)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝜏 ≤ 𝜂 (𝑡 − 𝑠) + 𝐶
𝜂
, ∀𝑡 ≥ 𝑠 ≥ 0,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

1
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐾
𝜂
, ∀𝑡 ≥ 0,

(72)

with the constants 𝐶
𝜂
and 𝐾

𝜂
depending on 𝜂, 𝜔, ‖𝐵

0
‖H, and

‖𝑔‖, but both independent of 𝜀 ∈ [0, 1].

Proof. The proof is completely similar to that of [12,
Lemma 4.6] and [22, Lemma 5.4], since the estimates in
Lemmas 10 and 12 hold uniformly with respect to 𝜀 ∈

[0, 1].

Note that in the above decomposition in Lemma 13, we
can require further that V

1
(𝑡) satisfies the following: there is a

constant 𝑀
5
which depends only on 𝜔, ‖𝑢

0
‖H such that

󵄩
󵄩
󵄩
󵄩
∇V

1
(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑄 (
󵄩
󵄩
󵄩
󵄩
𝐵

0

󵄩
󵄩
󵄩
󵄩H

) := 𝑀
4
, ∀𝑡 ≥ 0, 𝑢

0
∈ 𝐵

0
. (73)

5.3. The Second A Priori Estimate. The main purpose of this
subsection is to deduce some uniformly asymptotic (with
respect to 𝜀 ∈ [0, 1] and 𝑡) the a priori estimates about the
solution of (𝐸

𝜀
).

Lemma 14. There exists positive constants ],𝑅 > 0, and𝑄(⋅) ∈

J such that for each 𝜀 ∈ [0, 1], there is a subset 𝐵
𝜀

⊂ H1

𝜀

satisfying
󵄩
󵄩
󵄩
󵄩
󵄩
𝐵

𝜀

󵄩
󵄩
󵄩
󵄩
󵄩

2

H1
𝜀

= sup
𝑢∈𝐵𝜀

{‖∇𝑢‖
2

+ 𝜀‖Δ𝑢‖
2
} ≤ 𝑅, (74)

and the exponential attraction

distH0
𝜀

(𝑆
𝜀

(𝑡) 𝐵
0
, 𝐵

𝜀
) ≤ 𝑄

1
(
󵄩
󵄩
󵄩
󵄩
𝐵

0

󵄩
󵄩
󵄩
󵄩H

) 𝑒
−]𝑡

, ∀𝑡 ≥ 0, (75)

where all ], 𝑅, and 𝑄
1
(⋅) are independent of 𝜀 ∈ [0, 1], and

distH0
𝜀

(⋅, ⋅) denotes the Hausdorff semidistance with respect to
theH0

𝜀
-norm.

Proof. It is convenient to separate our proof into three steps.
We emphasize, especially, that all the generic constants in the
proof are independent of 𝜀 ∈ [0, 1].

Step 1.We first claim that (recall 𝜎 = min{1/4, (𝑁 + 2 − (𝑁 −

2)𝛾)/2}): ∃]
𝜎
, 𝑅

𝜎
> 0 and 𝑄

𝜎
(⋅) ∈ J such that for each 𝜀 ∈

[0, 1], there is a subset 𝐵
𝜎,𝜀

⊂ H𝜎

𝜀
satisfying

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵

𝜎,𝜀

󵄩
󵄩
󵄩
󵄩
󵄩

2

H𝜎
𝜀

= sup
𝑢∈𝐵𝜀

{

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

} ≤ 𝑅
𝜎 (76)

and the exponential attraction

distH0
𝜀

(𝑆
𝜀

(𝑡) 𝐵
0
, 𝐵

𝜎,𝜀
) ≤ 𝑄

𝜎
(
󵄩
󵄩
󵄩
󵄩
𝐵

0

󵄩
󵄩
󵄩
󵄩H

) 𝑒
−]𝜎𝑡

, ∀𝑡 ≥ 0. (77)

We will apply Lemma 2 with 𝑋 = H0

𝜀
and 𝑉 = H𝜎

𝜀
(note

that𝐵
0

⊂ H ⊂ H0

𝜀
for any 𝜀 ∈ [0, 1]). From (54), we canwrite

𝑓
0

(𝑠) = 𝑠𝜑 (𝑠) with 󵄨
󵄨
󵄨
󵄨
𝜑 (𝑠)

󵄨
󵄨
󵄨
󵄨

≤ 𝐶|𝑠|
4/(𝑁−2)

. (78)

For any 𝑥 ∈ 𝐵
0
and 𝑦 ∈ H0

𝜀
, 𝑧 ∈ H𝜎

𝜀
satisfying 𝑥 = 𝑦 + 𝑧,

we decompose the solution of (𝐸
𝜀
) as 𝑆

𝜀
(𝑡)(𝑥) = 𝑉

𝜀

𝑥
(𝑡)𝑦 +

𝑈
𝜀

𝑥
(𝑡)𝑧, where

𝑉
𝜀

𝑥
(𝑡) 𝑦 = V (𝑡) , 𝑈

𝜀

𝑥
(𝑡) 𝑧 = 𝑤 (𝑡) , (79)

which uniquely solves the following equations, respectively:

V
𝑡

− 𝜀ΔV
𝑡

− 𝜔ΔV = ℎ
1
,

V (𝑥, 0) = 𝑦,

V|
𝜕Ω

= 0,

(80)

𝑤
𝑡

− 𝜀Δ𝑤
𝑡

− 𝜔Δ𝑤 = ℎ
2
,

𝑤 (𝑥, 0) = 𝑧,

𝑤|
𝜕Ω

= 0,

(81)

with ℎ
1

= −V𝜑(V) and ℎ
2

= 𝑔(𝑥) − 𝑓(𝑢) + V𝜑(V), and V(𝑡) is
the solution of (59) corresponding to the initial data 𝑥.

For (80), from (54), (56), (78), and Lemmas 10 and 12, we
can directly calculate that

󵄩
󵄩
󵄩
󵄩
ℎ

1

󵄩
󵄩
󵄩
󵄩𝐿
2𝑁/(𝑁+2) ≤ 𝐶 ‖∇V‖ ‖∇V‖

4/(𝑁−2)
≤ 𝐶

𝑀,𝜔,𝑁
𝑒

−𝑘
󸀠
𝑡

‖∇V‖ ,

(82)

where 𝑘
󸀠

= (2/(𝑁 − 2))𝑘, 𝑘 is given in Lemma 10.
Multiplying V by (80), we have

𝑑

𝑑𝑡

(‖V‖
2

+ 𝜀‖∇V‖
2
) + 2𝜔‖∇V‖

2
= 2 ⟨ℎ

1
, V⟩

≤ 2
󵄩
󵄩
󵄩
󵄩
ℎ

1

󵄩
󵄩
󵄩
󵄩𝐿
2𝑁/(𝑁+2)‖V‖

𝐿
2𝑁/(𝑁−2)

≤ 𝐶
𝑀,𝜔,𝑁

𝑒
−𝑘
󸀠
𝑡
‖∇V‖

2

≤ 𝐶
𝑀,𝜔,𝑁

𝑒
−2𝑘
󸀠
𝑡
𝜀‖∇V‖

2

+ 𝜔‖∇V‖
2
.

(83)

Furthermore, using the similar estimates of Lemma 6, we
get

𝑑

𝑑𝑡

(‖V‖
2

+ 𝜀‖∇V‖
2
) + 𝜀

1
(‖V‖

2
+ 𝜀‖∇V‖

2
)

≤ 2𝐶
𝑀,𝜔,𝑁

𝑒
−2𝑘
󸀠
𝑡

(‖V‖
2

+ 𝜀‖∇V‖
2
) ,

(84)

where 𝜀
1
is a small positive constant such that 𝜀

1
≤

min{𝐶
𝑀,𝜔,𝑁

𝑒
−2𝑘
󸀠
𝑡
, 𝜆

1
𝜔} for all 𝑡 ≥ 0.

And then applying Lemma 5 to above inequality, there
holds

󵄩
󵄩
󵄩
󵄩
𝑉

𝜀

𝑥
(𝑡) 𝑦

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

≤ 𝑒
𝐶𝑀,𝜔,𝑁/𝑘

󸀠

𝑒
−𝜀1𝑡󵄩󵄩

󵄩
󵄩
𝑦

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

. (85)

For (81), since

ℎ
2

= 𝑔 (𝑥) − 𝑓 (𝑢) + 𝑓 (V) − 𝑓
1

(V) + 𝑤𝜑 (V) − 𝑤𝜑 (V) ,

(86)
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then
󵄨
󵄨
󵄨
󵄨
ℎ

2

󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑔

󵄨
󵄨
󵄨
󵄨

+ 𝐶 |𝑤| (1 + |𝑢|
4/(𝑁−2)

+ |V|
4/(𝑁−2)

)

+ 𝐶 |𝑤| |V|
4/(𝑁−2)

+ 𝐶 (1 + |V|
𝛾
) .

(87)

Using Hölder inequality we get
󵄩
󵄩
󵄩
󵄩
ℎ

2

󵄩
󵄩
󵄩
󵄩𝐿
2𝑁/(𝑁+2(1−𝜎)) ≤ 2𝐶|Ω|

(2−2𝜎)/2𝑁 󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

+ 2𝐶‖𝑤‖
𝐿
2𝑁/(𝑁−2(1+𝜎))

× (1 + ‖𝑢‖
4/(𝑁−2)

𝐿
2𝑁/(𝑁−2)

+ ‖V‖
4/(𝑁−2)

𝐿
2𝑁/(𝑁−2)

)

+ 2𝐶‖V‖
4/(𝑁−2)

𝐿
2𝑁/(𝑁−2)

‖𝑤‖
𝐿
2𝑁/(𝑁−2(1−𝜎))

+ 2𝐶 (1 + ‖V‖
4/(𝑁−2)

𝐿
2𝑁/(𝑁−2)

)

≤ 𝐶
|Ω|

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

× (1 + ‖∇𝑢‖
4/(𝑁−2)

+ ‖∇V‖
4/(𝑁−2)

)

+ 𝐶‖∇V‖
4/(𝑁−2) 󵄩

󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

+ 𝐶 (1 + ‖∇V‖
4/(𝑁−2)

)

≤ 𝐶
𝑀,𝜔,𝑁

𝑒
−𝑘
󸀠
𝑡 󵄩

󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

+ 𝐶
𝑀,‖𝑔‖

2
,|Ω|

𝐽 (𝑡) , ∀𝑡 ≥ 0,

(88)

where we used (53), (62), and Lemmas 10 and 12.
Hence, multiplying 𝐴

𝜎
𝑤 by (83), we have

𝑑

𝑑𝑡

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

) + 2𝜔

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 2 ⟨ℎ
2
, 𝑤⟩

≤ 2
󵄩
󵄩
󵄩
󵄩
ℎ

2

󵄩
󵄩
󵄩
󵄩𝐿
2𝑁/(𝑁+2(1−𝜎))

󵄩
󵄩
󵄩
󵄩
𝐴

𝜎
𝑤

󵄩
󵄩
󵄩
󵄩𝐿
2𝑁/(𝑁−2(1−𝜎))

≤ 2𝐶
𝑀,𝜔,𝑁

𝑒
−2𝑘
󸀠
𝑡
𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝐶
𝑀,‖𝑔‖

2
,|Ω|

𝐽 (𝑡)

+ 𝜔

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(89)

Furthermore, we have

𝑑

𝑑𝑡

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

+ 𝜀
1

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤ 2𝐶
𝑀,𝜔,𝑁

𝑒
−2𝑘
󸀠
𝑡

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

+ 𝐶
𝑀,‖𝑔‖

2
,|Ω|

𝐽 (𝑡) ,

(90)

where 𝜀
1
is a small positive constant given in (84).

Then, using Lemma 5 we obtain

󵄩
󵄩
󵄩
󵄩
𝑈

𝜀

𝑥
(𝑡) 𝑧

󵄩
󵄩
󵄩
󵄩

2

H𝜎
𝜀

≤ 𝑒
𝑀,𝜔,𝑁/𝑘

󸀠

𝑒
−𝜀1𝑡

‖𝑧‖
2

H𝜎
𝜀

+

1

𝜀
1

𝑒
𝜀1

𝐶
𝑀,‖𝑔‖

2
,|Ω|

𝐽 (𝑡) .

(91)

Therefore, combining (85) and (91), we can verify that all
the conditions of Lemma 2 are satisfied for the cases 𝑋 = H0

𝜀
,

𝑉 = H𝜎

𝜀
, and 𝑇(𝑡) = 𝑆

𝜀
(𝑡). Moreover, since there is a 𝑐

1
> 0

(independent of 𝜀) such that 𝑐
1
‖𝐵

0
‖H ≥ ‖𝐵

0
‖H0
𝜀

for any 𝜀 ∈

[0, 1] and the constants in our estimates are all independent
of 𝜀; consequently, ]

𝜎
, 𝑅

𝜎
, and 𝑄

𝜎
(⋅) are all independent of

𝜀 ∈ [0, 1], and then we can deduce our claim.

Step 2. We claim that there exists a constant 𝑅
𝜎

> 0 which
depends only on 𝑅

𝜎
such that

∀𝜀 ∈ [0, 1] ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝐵

𝜎,𝜀

󵄩
󵄩
󵄩
󵄩
󵄩

2

H𝜎
𝜀

≤ 𝑅
𝜎
, ∀𝑡 ≥ 0. (92)

Multiplying (𝐸
𝜀
) by 𝐴

𝜎
𝑢(𝑡), we only need to note the

following:

1

2

𝑑

𝑑𝑡

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

) + 𝜔

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

= ⟨𝑔, 𝐴
𝜎
𝑢⟩ − ⟨𝑓 (𝑢) , 𝐴

𝜎
𝑢⟩ .

(93)

First, since 𝜎 < 1, we have 𝜎 < (1 + 𝜎)/2 and then

󵄨
󵄨
󵄨
󵄨
⟨𝑔, 𝐴

𝜎
𝑢 (𝑡)⟩

󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝐴

𝜎
𝑢

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 4𝜔
󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

+

𝜔

16

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

,

(94)

⟨𝑓 (𝑢) , 𝐴
𝜎
𝑢⟩ ≤ 𝐶 ∫

Ω

(1 + |𝑢|
(𝑁+2)/(𝑁−2)

)
󵄨
󵄨
󵄨
󵄨
𝐴

𝜎
𝑢

󵄨
󵄨
󵄨
󵄨
𝑑𝑥

≤ 4𝜔|Ω|
2

+

𝜔

16

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶 ∫

Ω

|𝑢|
4/(𝑁−2)

|𝑢|
󵄨
󵄨
󵄨
󵄨
𝐴

𝜎
𝑢

󵄨
󵄨
󵄨
󵄨
𝑑𝑥,

(95)

while

∫

Ω

|𝑢|
4/(𝑁−2)

|𝑢|
󵄨
󵄨
󵄨
󵄨
𝐴

𝜎
𝑢

󵄨
󵄨
󵄨
󵄨
𝑑𝑥

≤ ∫

Ω

(
󵄨
󵄨
󵄨
󵄨
V

1

󵄨
󵄨
󵄨
󵄨

4/(𝑁−2)

+
󵄨
󵄨
󵄨
󵄨
𝑤

1

󵄨
󵄨
󵄨
󵄨

4/(𝑁−2)

) |𝑢|
󵄨
󵄨
󵄨
󵄨
𝐴

𝜎
𝑢

󵄨
󵄨
󵄨
󵄨
𝑑𝑥,

∫

Ω

󵄨
󵄨
󵄨
󵄨
V

1

󵄨
󵄨
󵄨
󵄨

4/(𝑁−2)

|𝑢|
󵄨
󵄨
󵄨
󵄨
𝐴

𝜎
𝑢

󵄨
󵄨
󵄨
󵄨
𝑑𝑥

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
∇V

1

󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)󵄩󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

𝜔

16

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶𝑀
4

󵄩
󵄩
󵄩
󵄩
∇V

1

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

,

(96)

where we used (73).
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Moreover, since 𝜎 ≤ 1/4, we have 2 ≤ 2𝑁(𝑁 − 2)/(𝑁(𝑁 −

4 − 2𝜎) + 4(1 + 3𝜎)) ≤ 2𝑁/(𝑁 − 2 − 2𝜎) and then

∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑤

1

󵄨
󵄨
󵄨
󵄨

4/(𝑁−2)

|𝑢|
󵄨
󵄨
󵄨
󵄨
𝐴

𝜎
𝑢

󵄨
󵄨
󵄨
󵄨
𝑑𝑥

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
∇𝑤

1

󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

𝐿
2𝑁/(𝑁−2−2𝜎)‖𝑢‖

𝐿
2𝑁(𝑁−2)/(𝑁(𝑁−4−2𝜎)+4(1+3𝜎))

‖𝐴
𝜎
𝑢‖

≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑤

1

󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

× ‖𝑢‖
𝐿
2𝑁(𝑁−2)/(𝑁(𝑁−4−2𝜎)+4(1+3𝜎))

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶𝐾
4/(𝑁−2)

𝜂
‖𝑢‖

𝐿
2𝑁(𝑁−2)/(𝑁(𝑁−4−2𝜎)+4(1+3𝜎))

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶𝐾
4/(𝑁−2)

𝜂
(𝐶

𝑀
+

𝜔

32𝐶𝐾
4/(𝑁−2)

𝜂

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩
)

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

≤

𝜔

32

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶
𝑀

𝐾
4/(𝑁−2)

𝜂

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶
𝑀

𝐾
8/(𝑁−2)

𝜂
+

𝜔

16

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

,

(97)

where 𝐾
𝜂
is given in Lemma 13.

Hence, substituting the above estimates into (93), apply-
ing the Poincaré inequality we have

𝑑

𝑑𝑡

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

+ (𝐶 − 𝐶𝑀
4

󵄩
󵄩
󵄩
󵄩
∇V

1

󵄩
󵄩
󵄩
󵄩

2

) (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

≤ 8𝜔
󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

+ 𝐶
𝑀

(1 + 𝐾
8/(𝑁−2)

𝜂
) .

(98)

Then using the Gronwall inequality and integrating over
[0, 𝑡] (from Lemma 12), we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝑒
− ∫
𝑡

0
(𝐶−𝐶𝑀4‖∇V1(𝑠)‖

2
)𝑑𝑠

× (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑢 (0)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢 (0)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

+ 𝐶
𝑀

(1 + 𝐾
8/(𝑁−2)

𝜂
)

× ∫

𝑡

0

𝑒
− ∫
𝑠

𝑡
(𝐶−𝐶𝑀4‖∇V1(𝑦)‖

2
)𝑑𝑦

𝑑𝑠

+ 8𝜔 ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

𝑒
− ∫
𝑠

𝑡
(𝐶−𝐶𝑀4‖∇V1(𝑦)‖

2
)𝑑𝑦

𝑑𝑠.

(99)

Taking 𝜂 (in Lemma 13) small enough such that 𝜂 <

𝐶/2𝐶𝑀
4
, we have

∫

𝑡

0

𝑒
− ∫
𝑠

𝑡
(𝐶−𝐶𝑀4‖∇V1(𝑦)‖

2
)𝑑𝑦

𝑑𝑠

= ∫

𝑡

0

𝑒
𝐶(𝑠−𝑡)

𝑒
∫
𝑡

𝑠
𝐶𝑀4‖∇V1(𝑦)‖

2
)𝑑𝑦

𝑑𝑠

≤ ∫

𝑡

0

𝑒
𝐶(𝑠−𝑡)

𝑒
𝐶𝑀4𝜂(𝑡−𝑠)+𝐶𝑀4𝐶𝜂

𝑑𝑠

≤ 𝑒
𝐶𝑀4𝐶𝜂

∫

𝑡

0

𝑒
𝐶(𝑠−𝑡)/2

𝑑𝑠 ≤

2𝑒
𝐶𝑀4𝐶𝜂

𝐶

,

(100)

𝑒
− ∫
𝑡

0
(𝐶−𝐶𝑀4‖∇V1(𝑠)‖

2
)𝑑𝑠

≤ 𝑒
−𝐶𝑡/2

𝑒
𝐶𝑀4𝐶𝜂

. (101)

Thus,

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

𝑒
− ∫
𝑠

𝑡
(𝐶−𝐶𝑀5‖∇V1(𝑦)‖

2
)𝑑𝑦

𝑑𝑠 ≤

𝑒
𝐶𝑀4𝐶𝜂

1 − 𝑒
−(𝐶/2)

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

. (102)

Substituting above (100) and (102) into (99), we get that
for all 𝑡 ≥ 0

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜎/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜎)/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝑒
𝐶𝑀5𝐶𝜂

𝑅
𝜎

+

2𝐶
𝜔

(1 + 𝐾
8/(𝑁−2)

𝜂
)

𝐶

𝑒
𝐶𝑀5𝐶𝜂

+

𝑒
𝐶𝑀5𝐶𝜂

1 − 𝑒
−(𝐶/2)

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

:= 𝑅
𝜎
.

(103)

Step 3. Based on Step 1 and Step 2, applying the attraction
transitivity lemma given in [28, Theorem 5.1] and noticing
the Holder continuity Lemma 9, we can prove our lemma by
performing a standard bootstrap argument, whose proof is
now simple since Step 1 makes the nonlinear term become
subcritical to some extent.

5.4. Proof of Theorem 1. Lemma 14 has shown some asymp-
totic regularities; however, the radius of ‖𝐵

𝜀
‖H1 depends on 𝜀

and the distances only under theH0

𝜀
-norm.

To proveTheorem 1, we first give two lemmas as prelimi-
nary.

Lemma 15. There exsits a constant 𝑅
1

> 0 such that for any
bounded (inH1

𝜀
) subset 𝐵 ⊂ H1

𝜀
, there exsits 𝑇

1
= 𝑇

1
(‖𝐵‖H1

𝜀

)

such that

∀𝜀 ∈ [0, 1] ,
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝐵

󵄩
󵄩
󵄩
󵄩

2

H1
𝜀

≤ 𝑅
1
, ∀𝑡 ≥ 𝑇

1
. (104)

Proof. Multiplying (𝐸
𝜀
) by −Δ𝑢, we find

𝑑

𝑑𝑡

(‖∇𝑢‖
2

+ 𝜀‖∇𝑢‖
2
) + 2𝜔‖∇𝑢‖

2

= −2 ⟨𝑓 (𝑢) , −Δ𝑢⟩ + 2 ⟨𝑔, −Δ𝑢⟩ ,

2 ⟨𝑔, −Δ𝑢⟩ ≤ 𝐶
𝜔

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

+

𝜔

2

‖∇𝑢‖
2
.

(105)
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Noting 𝑢 ∈ H1

𝜀
⊂ H0

𝜀
, from Lemma 6, yields

󵄨
󵄨
󵄨
󵄨
−2 ⟨𝑓 (𝑢) , −Δ𝑢⟩

󵄨
󵄨
󵄨
󵄨

≤ 2 ∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓

󸀠
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
|∇𝑢| |∇𝑢| 𝑑𝑥

≤ 𝐶 (1 + ‖∇𝑢‖
4/(𝑁−2)

) ‖Δ𝑢‖ ‖Δ𝑢‖

≤ 𝐶
𝑀

𝜀‖∇𝑢‖
2

+

𝜔

2

‖∇𝑢‖
2
,

(106)

hence, we obtain

𝑑

𝑑𝑡

(‖∇𝑢‖
2

+ 𝜀‖∇𝑢‖
2
) + 𝜀

2
(‖∇𝑢‖

2
+ 𝜀‖∇𝑢‖

2
)

≤ 2𝐶
𝑀

(‖∇𝑢‖
2

+ 𝜀‖∇𝑢‖
2
) + 𝐶

𝜔

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

,

(107)

where 𝜀
2
is a small, positive constant.

Similarly, with using Lemma 4 we finally complete the
proof.

Lemma 16. There exists a constant 𝑅
2

> 0 such that for any
bounded (in H1

𝜀
) subset 𝐵 ⊂ H1

𝜀
, there is a 𝑇

2
= 𝑇

2
(‖𝐵‖H1

𝜀

)

such that

∀𝜀 ∈ [0, 1] ,
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡)𝐵

󵄩
󵄩
󵄩
󵄩

2

H1
≤ 𝑅

2
, ∀𝑡 ≥ 𝑇

2
. (108)

Proof. From Lemma 15, we only need to estimate that the
bound of ‖Δ𝑢‖

2 is independent of 𝜀 ∈ [0, 1].
Applying Lemma 15 again, we have

𝑑

𝑑𝑡

(‖∇𝑢‖
2

+ 𝜀‖∇𝑢‖
2
) + (2𝜔 − 2𝐶𝐶

𝑀
− 1) ‖∇𝑢‖

2
≤ 𝐶

𝜔

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

.

(109)

Taking𝜔 = max{1, 2𝐶𝐶
𝑀

}whichmay provide that 1/𝜔 <

𝜀 and 2𝜔 − 2𝐶𝐶
𝑀

− 1 > 0, integrating (109) on [𝑡, 𝑡 + 1], and
from Lemma 15, when 𝑡 ≥ 𝑇

1
we yield

∫

𝑡+1

𝑡

‖Δ𝑢(𝜏)‖
2
𝑑𝜏 ≤

𝐶
𝜔,𝑅1

2𝜔 − 2𝐶𝐶
𝑀

− 1

. (110)

Hence, multiplying (𝐸
𝜀
) by −Δ𝑢

𝑡
, we can complete our

proof by applying the uniform Gronwall lemma.

Now, we are ready to proveTheorem 1.

Proof of Theorem 1. Set

B = {𝑢 ∈ H
1

: ‖𝑢‖
2

H1 ≤ 𝑅
2
} , (111)

where the constant 𝑅
2
comes from Lemma 16.

From Lemmas 16 and 14, we know that there is a 𝑡
0
such

that 𝑆
𝜀
(𝑡)𝐵

𝜀
⊂ B (recall that 𝐵

𝜀
is given in (78)) for all 𝑡 ≥ 𝑡

0

and any 𝜀 ∈ [0, 1].
On the other hand, note that ∃𝑐

1
, 𝑐

2
> 0 such that

𝑐
1
‖⋅‖H0

𝜀

≤ ‖⋅‖H ≤ 𝑐
2
‖⋅‖H1

𝜀

. (112)

Then, from Lemma 9, there exists 𝑡
1
which depends only

on ‖𝐵
0
‖H and ‖𝐵

𝜀
‖H1
𝜀

(so only on 𝑀, 𝑅) such that

∀𝜀 ∈ [0, 1] ,

󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡) 𝑢

1
− 𝑆

𝜀
(𝑡) 𝑢

2

󵄩
󵄩
󵄩
󵄩H

≤ 𝑒
𝐶
𝑅

𝑡󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩

1/2

H0
𝜀

,

∀𝑡 ≥ 𝑡
1
,

𝑢
1

∈ 𝐵
0

⊂ H ⊂ H
0

𝜀
, 𝑢

2
∈ 𝐵

𝜀
⊂ H

1

𝜀
⊂ H

0

𝜀
,

(113)

∀𝜀 ∈ [0, 1] , 𝑆
𝜀

(𝑡) 𝐵
0

⊂ 𝐵
0
, ∀𝑡 ≥ 𝑡

1
. (114)

Therefore, from Lemma 14, we have

distH (𝑆
𝜀

(𝑡 + 𝑡
0

+ 𝑡
1
) 𝐵

0
,B)

≤ distH (𝑆
𝜀

(𝑡 + 𝑡
0

+ 𝑡
1
) 𝐵

0
, 𝑆

𝜀
(𝑡

0
+ 𝑡

1
) 𝐵

𝜀
)

≤ 𝐶
𝑀,𝑅,𝑡0+𝑡1

dist1/2

H (𝑆
𝜀

(𝑡) 𝐵
0
, 𝐵

𝜀
)

≤ 𝐶
𝑀,𝑅,𝑡0+𝑡1

√𝑄
1

(
󵄩
󵄩
󵄩
󵄩
𝐵

0

󵄩
󵄩
󵄩
󵄩H

)𝑒
−(]/2)𝑡

.

(115)

Hence, noting that 𝑡
0
, 𝑡

1
, and 𝑅 are all fixed, we can

complete the proof by taking ] = ]/2 and applying
Lemma 11.

6. Applications of Theorem 1

As for the applications of Theorem 1, in this subsection,
we consider the existence of finite dimensional exponential
attractors and the upper semicontinuity of global attractors
for problem (𝐸

𝜀
) under assumptions (1), (2), and 𝜔 > 1.

6.1. A Priori Estimates. For the subset B defined in (113), and
from Lemmas 6 and 8 we know that there is a 𝑡B such that

∀𝜀 ∈ [0, 1] ,
󵄩
󵄩
󵄩
󵄩
𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
∇𝑢

𝑡

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑀
3
, ∀𝑡 ≥ 𝑡B, 𝑢

0
∈ B,

(116)

where 𝑢(𝑡) = 𝑆
𝜀
(𝑡)𝑢

0
.

Now, for each 𝜀 ∈ [0, 1], define 𝐵
𝜀
as follows:

𝐵
𝜀

= ⋃

𝑡≥𝑡B+𝑇2

𝑆
𝜀

(𝑡)B, (117)

where 𝑇
2
is the time given in Lemma 16 corresponding to B.

Then, for each 𝜀 ∈ [0, 1] we have 𝐵
𝜀
as a positive invariant

under 𝑆
𝜀
(𝑡) (i.e., 𝑆

𝜀
(𝑡)𝐵

𝜀
= 𝐵

𝜀
, for all 𝑡 ≥ 0) (from Lemma 16)

∀𝜀 ∈ [0, 1] ,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵

𝜀

󵄩
󵄩
󵄩
󵄩
󵄩

2

H1
≤ 𝑅

2
. (118)

Moreover, we have the following results.

Lemma 17. Under assumptions (1), (2), and 𝜔 > 1, there
exists a constant T > 0 such that for every 𝜀 ∈ [0, 1], the
semigroup 𝑆

𝜀
(𝑡) satisfies the following properties: 𝑆

𝜀
(T) admits

a decomposition of the form

𝑆
𝜀

(T) = 𝐿
𝜀

+ 𝑁
𝜀
, 𝐿

𝜀
: 𝐵

𝜀
󳨀→ H

0

𝜀
, 𝐵

𝜀
󳨀→ H

𝜃

𝜀
,

(119)
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where 𝐿
𝜀
and 𝑁

𝜀
satisfy the estimates

󵄩
󵄩
󵄩
󵄩
𝐿

𝜀
𝑢

1
− 𝐿

𝜀
𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

≤

1

4

󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

, ∀𝑢
1
, 𝑢

2
∈ 𝐵

𝜀
,

󵄩
󵄩
󵄩
󵄩
𝑁

𝜀
𝑢

1
− 𝑁

𝜀
𝑢

2

󵄩
󵄩
󵄩
󵄩H𝜃
𝜀

≤ 𝐶
𝑅2T

󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

, ∀𝑢
1
, 𝑢

2
∈ 𝐵

𝜀
,

(120)

where the constants 𝐶
𝑅2T

are independent of 𝜀 and

𝜃 =

{

{

{

1, 𝑁 = 3, 4, 5, 6,

4

𝑁 − 2

, 𝑁 > 6.

(121)

Proof. For any two initial data 𝑢
𝑖

∈ 𝐵
𝜀
with solution 𝑆

𝜀
(𝑡)𝑢

𝑖
=

𝑢
𝑖 (𝑖 = 1, 2), we decompose the difference 𝑆

𝜀
(𝑡)𝑢

1
− 𝑆

𝜀
(𝑡)𝑢

2
as

follows:

𝑆
𝜀

(𝑡) 𝑢
1

− 𝑆
𝜀

(𝑡) 𝑢
2

= 𝐿
𝜀

(𝑡) (𝑢
1

− 𝑢
2
) + 𝑁

𝜀
(𝑡) (𝑢

1
− 𝑢

2
) ,

(122)

where 𝐿
𝜀
(𝑡)(𝑢

1
− 𝑢

2
) = Ṽ solves

Ṽ
𝑡

− 𝜀ΔṼ
𝑡

− 𝜔ΔṼ = 0 inΩ × R
+

,

Ṽ (𝑥, 0) = 𝑢
1

− 𝑢
2
,

Ṽ|
𝜕Ω

= 0,

(123)

𝑤
𝑡

− 𝜀Δ𝑤
𝑡

− 𝜔Δ𝑤 + 𝑓 (𝑢
1
) − 𝑓 (𝑢

2
) = 0 inΩ × R

+
,

𝑤 (𝑥, 0) = 0,

𝑤|
𝜕Ω

= 0.

(124)

Next, for clarity, we decompose the remainder proof into
two steps.
Step 1. For Ṽ(𝑡), multiplying (123) by Ṽ(𝑡), we have

𝑑

𝑑𝑡

(‖Ṽ‖
2

+ 𝜀‖∇Ṽ‖
2
) + 2𝜇

1
(‖Ṽ‖

2
+ 𝜀‖∇Ṽ‖

2
)

≤ 2𝜔𝜆
1

(‖Ṽ‖
2

+ 𝜀‖∇Ṽ‖
2
) ,

(125)

where 𝜇
1
is a small positive constant such that 𝜇

1
< 𝜔𝜆

1
.

Using Lemma 4 we can deduce that
󵄩
󵄩
󵄩
󵄩
𝐿

𝜀
𝑢

1
− 𝐿

𝜀
𝑢

2

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

= ‖Ṽ‖
2

H0
𝜀

≤ 𝑄 (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵

𝜀

󵄩
󵄩
󵄩
󵄩
󵄩H

)
󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

𝑒
−𝜇1𝑡

.

(126)

Hence, by taking 𝑇
󸀠

> 0 large enough, we get
󵄩
󵄩
󵄩
󵄩
󵄩
𝐿

𝜀
(𝑡 + 𝑇

󸀠
) 𝑢

1
− 𝐿

𝜀
(𝑡 + 𝑇

󸀠
) 𝑢

2

󵄩
󵄩
󵄩
󵄩
󵄩H0
𝜀

≤

1

4

󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

, ∀𝑡 ≥ 0.

(127)

Step 2. For𝑤(𝑡), multiplying (124) by𝐴
𝜃
𝑤(𝑡) (where 𝜃 is given

in (121)), we obtain
1

2

𝑑

𝑑𝑡

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜃/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜃)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

) + 𝜔

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜃)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

= − ⟨𝑓 (𝑢
1
) − 𝑓 (𝑢

2
) , 𝐴

𝜃
𝑤⟩ .

(128)

Case 1 (𝑁 = 3, 4). Then by using the embedding 𝐷(𝐴) 󳨅→

𝐿
𝑝

(Ω) for any 𝑝 ≥ 1, we have

󵄨
󵄨
󵄨
󵄨
󵄨
− ⟨𝑓 (𝑢

1
) − 𝑓 (𝑢

2
) , 𝐴𝑤⟩

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶 (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

1󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

𝐿
4𝑁/(𝑁−2)

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

2󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

𝐿
4𝑁/(𝑁−2)

)

×
󵄩
󵄩
󵄩
󵄩
∇ (𝑢

1
− 𝑢

2
)
󵄩
󵄩
󵄩
󵄩

‖𝐴𝑤‖

≤ 𝐶 (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

1󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

H1
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

2󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

H1
)

×
󵄩
󵄩
󵄩
󵄩
∇ (𝑢

1
− 𝑢

2
)
󵄩
󵄩
󵄩
󵄩

‖𝐴𝑤‖

≤ 𝐶
𝑅2

󵄩
󵄩
󵄩
󵄩
∇ (𝑢

1
− 𝑢

2
)
󵄩
󵄩
󵄩
󵄩

‖𝐴𝑤‖

≤ 𝐶
𝑅2

𝑒
𝐶𝑅2

𝑡󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

‖𝐴𝑤‖

≤ 𝐶
𝑅2 ,𝜔

𝑒
𝐶𝑅2

𝑡󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

+

𝜔

2

‖𝐴𝑤‖
2
,

(129)

where we have used (118) and (46).
Case 2 (𝑁 = 5, 6). Since 4𝑁/(𝑁 − 2) ≤ 2𝑁/(𝑁 − 4) and
embedding 𝐷(𝐴) 󳨅→ 𝐿

2𝑁/(𝑁−4)
(Ω), we also have

󵄨
󵄨
󵄨
󵄨
󵄨
− ⟨𝑓 (𝑢

1
) − 𝑓 (𝑢

2
) , 𝐴𝑤⟩

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶 (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

1󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

𝐿
4𝑁/(𝑁−2)

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

2󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

𝐿
4𝑁/(𝑁−2)

)

×
󵄩
󵄩
󵄩
󵄩
∇ (𝑢

1
− 𝑢

2
)
󵄩
󵄩
󵄩
󵄩

‖𝐴𝑤‖

≤ 𝐶 (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

1󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

𝐿
2𝑁/(𝑁−4)

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

2󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

𝐿
2𝑁/(𝑁−4)

)

×
󵄩
󵄩
󵄩
󵄩
∇ (𝑢

1
− 𝑢

2
)
󵄩
󵄩
󵄩
󵄩

‖𝐴𝑤‖

≤ 𝐶 (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

1󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

H1
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢

2󵄩
󵄩
󵄩
󵄩
󵄩

4/(𝑁−2)

H1
)

×
󵄩
󵄩
󵄩
󵄩
∇ (𝑢

1
− 𝑢

2
)
󵄩
󵄩
󵄩
󵄩

‖𝐴𝑤‖

≤ 𝐶
𝑅2 ,𝜔

𝑒
𝐶𝑅2

𝑡󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

+

𝜔

2

‖𝐴𝑤‖
2
.

(130)

Case 3 (𝑁 > 6). Noticing that embedding 𝐷(𝐴) 󳨅→

𝐿
2𝑁/(𝑁−4)

(Ω) and (4 − 2𝜃)/2𝑁 + (𝑁 − 2)/2𝑁 + (𝑁 − (1 −

2𝜃))/2𝑁 = 1, we have
󵄨
󵄨
󵄨
󵄨
󵄨
− ⟨𝑓 (𝑢

1
) − 𝑓 (𝑢

2
) , 𝐴

𝜃
𝑤⟩

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶
𝑅2 ,𝜔

𝑒
𝐶𝑅2

𝑡󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

+

𝜔

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜃)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

,

(131)

therefore, for any 𝑁 ≥ 3, we have

𝑑

𝑑𝑡

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝜃/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜃)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

+ 𝜔

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

(1+𝜃)/2
𝑤

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 2𝐶
𝑅2 ,𝜔

𝑒
𝐶𝑅2

𝑡󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩

2

H0
𝜀

, ∀𝑡 ≥ 0.

(132)
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Hence, taking

T = 𝑇
󸀠
, 𝐿

𝜀
= 𝐿

𝜀
(T) , 𝑁

𝜀
= 𝑁

𝜀
(T) , (133)

then, from (127) and (132), we can see that T, 𝐿
𝜀
, and 𝑁

𝜀

satisfy Lemma 17.

Lemma 18. Under assumptions (1), (2), and 𝜔 > 1, for an
arbitrary fixed time 𝑇 > 0 and any 𝜀 ∈ [0, 1], the semigroup
𝑆

𝜀
(𝑡) is Lipchitz continuous on [0, 𝑇]×𝐵

𝜀
in the following sense:

there exists a positive constant 𝐶
𝑇,𝑅2

such that for any 𝑢
𝑖

∈ 𝐵
𝜀
,

𝑡
𝑖

∈ [0, 𝑇], 𝑖 = 1, 2,
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡

1
) 𝑢

1
− 𝑆

𝜀
(𝑡

2
) 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

≤ 𝐶
𝑇,𝑅2

(
󵄨
󵄨
󵄨
󵄨
𝑡
1

− 𝑡
2

󵄨
󵄨
󵄨
󵄨

+
󵄩
󵄩
󵄩
󵄩
𝑢

1
− 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

) .

(134)

Proof. For 𝑢
1
, 𝑢

2
∈ 𝐵

𝜀
and 𝑡

1
, 𝑡

2
∈ [0, 𝑇] we have

󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡

1
) 𝑢

1
− 𝑆

𝜀
(𝑡

2
) 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

≤
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡

1
) 𝑢

1
− 𝑆

𝜀
(𝑡

2
) 𝑢

1

󵄩
󵄩
󵄩
󵄩H0
𝜀

+
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡

2
) 𝑢

1
− 𝑆

𝜀
(𝑡

2
) 𝑢

2

󵄩
󵄩
󵄩
󵄩H0
𝜀

.

(135)

The second term of above inequality is handled by
estimate (46). Concerning the first one

󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡

1
) 𝑢

1
− 𝑆

𝜀
(𝑡

2
) 𝑢

1

󵄩
󵄩
󵄩
󵄩H0
𝜀

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡2

𝑡1

𝑑

𝑑𝑡

𝑆
𝜀

(𝑡) 𝑢
1

𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩H0
𝜀

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡2

𝑡1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑

𝑑𝑡

𝑆
𝜀

(𝑡) 𝑢
1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩H0
𝜀

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(136)

Then from (116) and (117) we can deduce
󵄩
󵄩
󵄩
󵄩
𝑆

𝜀
(𝑡

1
) 𝑢

1
− 𝑆

𝜀
(𝑡

2
) 𝑢

1

󵄩
󵄩
󵄩
󵄩H0
𝜀

≤ √𝑀
3

󵄨
󵄨
󵄨
󵄨
𝑡
1

− 𝑡
2

󵄨
󵄨
󵄨
󵄨
. (137)

So, the proof is completed immediately.

6.2. Exponential Attractors. We are now ready to prove the
following result about the existence of exponential attractors.

Lemma 19. Under assumptions (1), (2), and 𝜔 > 1, for every
𝜀 ∈ [0, 1], there exists a compact subset E ⊂ H1, uniformly
bounded inH1, which satisfies the following conditions:

(i) E
𝜀
is semi-invariant with respect to the semigroup

{𝑆
𝜀
(𝑡)}

𝑡≥0
, that is,

𝑆
𝜀

(𝑡)E
𝜀

⊂ E
𝜀
, ∀𝑡 ≥ 0; (138)

(ii) the fractal dimension of E
𝜀
is finite, that is,

dim
𝐹

(E
𝜀
,H) ≤ Λ

𝜀
< ∞, ∀𝜀 ∈ [0, 1] ; (139)

(iii) for each 𝜀 ∈ [0, 1],E
𝜀
enjoys a uniform exponential

attraction property of the following form: for any
bounded (𝑖𝑛H) subset 𝐵 ⊂ H,

distH(𝑆
𝜀

(𝑡) 𝐵,E
𝜀
) ≤ 𝑄

𝜀
(‖𝐵‖E) 𝑒

−]󸀠𝑡
, ∀𝑡 ≥ 0. (140)

Here, Λ
𝜀
and 𝑄

𝜀
(⋅) may depend on 𝜀, but ]󸀠 is indepen-

dent of 𝜀.

Proof. For each 𝜀 ∈ [0, 1], we know that 𝐵
𝜀
is invariant

and compact in H0

𝜀
. Hence, applying the abstract results

established in [23, 24], from Lemmas 17 and 18 we can first
construct an exponential attractor on 𝐵

𝜀
with respect to the

H0

𝜀
-norm. Then, we can complete the proof by using the

attraction transitivity lemma given in [28, Theorem 5.1] from
Lemma 14 and the Hölder continuity (47).

6.3. Upper Semicontinuity of Global Attractors. Since A
𝜀

⊂

E
𝜀
, (ii) of Lemma 19 implies that the fractal dimension of

the global attractor A
𝜀
is finite too. Moreover, we have the

following upper semicontinuity result ofA
𝜀
at 𝜀 = 0.

Lemma 20. Under assumptions (1), (2), and 𝜔 > 1, the global
attractors {A

𝜀
}
𝜀∈[0,1]

are upper semicontinuous at 𝜀 = 0.

distH(A
𝜀
,A

0
) 󳨀→ 0 as 𝜀 󳨀→ 0

+
. (141)

Proof. Since the global attractor A
𝜀
is strictly invariant, that

is, 𝑆
𝜀
(𝑡)A

𝜀
= A

𝜀
for all 𝑡 ≥ 0, it is obvious to see that

⋃

𝜀∈[0,1]

A
𝜀

⊂ B and compact in H. (142)

Therefore, to apply Lemma 3, we can take 𝐾 = clH1(B)

and we only need to verify condition (14). Let 𝜀 ∈ [0, 1] and
𝑢̂ = 𝑆

𝜀
(𝑡)𝑢

𝜀
with 𝑢

𝜀
∈ A

𝜀
; also let V̂ = 𝑆

0
(𝑡)𝑢

0
with 𝑢

0
∈

B. Denote 𝑤(𝑡) = 𝑢̂(𝑡) − V̂(𝑡). Then 𝑤 solves the following
equation:

𝑤
𝑡

− 𝜔Δ𝑤 + 𝑓 (𝑢̂) − 𝑓 (V̂) = 𝜀Δ𝑢̂
𝑡
,

𝑤 (𝑥, 0) = 𝑢
𝜀

− 𝑢
0
,

𝑤|
𝜕Ω

= 0.

(143)

Multiplying (143) by 𝑤
𝑡
, we have

1

2

𝑑

𝑑𝑡

(𝜔‖∇𝑤‖
2

+ 2 ⟨𝜀Δ𝑢̂, 𝑤⟩) +
󵄩
󵄩
󵄩
󵄩
𝑤

𝑡

󵄩
󵄩
󵄩
󵄩

2

= − ⟨𝑓 (𝑢̂) − 𝑓 (V̂) , 𝑤
𝑡
⟩ ,

(144)

󵄨
󵄨
󵄨
󵄨
− ⟨𝑓 (𝑢̂) − 𝑓 (V̂) , 𝑤

𝑡
⟩

󵄨
󵄨
󵄨
󵄨

≤ 𝐶 (1 + ‖𝑢̂‖
4/(𝑁−2)

H1
+ ‖V̂‖

4/(𝑁−2)

H1
) ‖∇𝑤‖

󵄩
󵄩
󵄩
󵄩
𝑤

𝑡

󵄩
󵄩
󵄩
󵄩

≤ 𝐶
‖𝐵‖

H1
‖∇𝑤‖

2
+

1

2

󵄩
󵄩
󵄩
󵄩
𝑤

𝑡

󵄩
󵄩
󵄩
󵄩

2

,

(145)

where we used Lemma 19 and (118) and noticed the process
of Step 2 of Lemma 17 for 𝑁.

On the other hand, for (145), using Poincaré inequality,
we have

(𝜔 − 1) ‖∇𝑤‖
2

− 𝜀
2
‖∇𝑢̂‖

2

≤ 𝜔‖∇𝑤‖
2

+ 2 ⟨𝜀Δ𝑢̂, 𝑤⟩

≤ (𝜔 +

1

𝜆
1

) ‖∇𝑤‖
2

+ 𝜀
2
‖∇𝑢̂‖

2
.

(146)
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So, we obtain

𝑑

𝑑𝑡

(𝜔‖∇𝑤‖
2

+ 2 ⟨𝜀Δ𝑢̂, 𝑤⟩) +
󵄩
󵄩
󵄩
󵄩
𝑤

𝑡

󵄩
󵄩
󵄩
󵄩

2

≤ 2𝐶
‖𝐵‖

H1
‖∇𝑤‖

2

≤ 2𝐶
‖𝐵‖

H1
(𝜔‖∇𝑤‖

2
+ 2 ⟨𝜀Δ𝑢̂, 𝑤⟩) .

(147)

Noticing B ⊂ H1
⊂ H1

𝜀
⊂ H0

𝜀
, using (24), Lemma 15,

and Gronwall inequality, yields

‖∇𝑤‖
2

≤

1

(𝜔 − 1)

2𝐶
‖𝐵‖
𝑡,H1

((𝜔 +

1

𝜆
1

)
󵄩
󵄩
󵄩
󵄩
𝑢

𝜀
− 𝑢

0

󵄩
󵄩
󵄩
󵄩

2

H
+ 𝜀𝑅

1
)

+ 𝜀𝑀
1
, ∀𝑡 ≥ 𝑇

1𝐵
+ 𝑇

1
.

(148)

Hence, we know that there exists 𝑡
1

= 𝑡
1
(‖B‖H1) ≥ 𝑇

1𝐵
+

𝑇
1
such that

󵄩
󵄩
󵄩
󵄩
∇𝑤 (𝑡

1
+ 1)

󵄩
󵄩
󵄩
󵄩

2

≤

1

(𝜔 − 1)

2𝐶
𝑡1 ,‖𝐵‖

H1
((𝜔 +

1

𝜆
1

)
󵄩
󵄩
󵄩
󵄩
𝑢

𝜀
− 𝑢

0

󵄩
󵄩
󵄩
󵄩

2

H
+ 𝜀𝑅

1
)

+

𝑀
1

𝜔 − 1

𝜀,

(149)

which implies

if 𝜀
𝑛

󳨀→ 0
+

, andA
𝜀𝑛

∋ 𝑢
𝑛

󳨀→ 𝑢
0
,

then 𝑆
𝜀𝑛

(𝑡
1

+ 1) 𝑢
𝑛

󳨀→ 𝑆
0

(𝑡
1

+ 1) 𝑢
0
.

(150)

Therefore, from (142) and (150), we can directly apply
Lemma 3 to complete the proof.
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