Research Article

An Upper Bound for the Tensor Rank

E. Ballico

Department of Mathematics, University of Trento, 38123 Povo, Italy

Correspondence should be addressed to E. Ballico; ballico@science.unitn.it

Received 18 April 2013; Accepted 12 May 2013

Academic Editors: J. L. Cieśliński, J. Montaldi, and J. Porti

Copyright © 2013 E. Ballico. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let T be a tensor of format $(m_1 + 1) \times \cdots \times (m_s + 1)$, $m_1 \geq \cdots \geq m_s > 0$, over C. We prove that T has tensor rank at most $\prod_{i=2}^{s+1}(m_i + 1)$.

1. Introduction

Fix integers $s \geq 2$ and $m_i > 0$, $1 \leq i \leq s$, and an algebraically closed base field K. Let $T \in \otimes_{i=1}^{s} K^{m_i+1}$ be a tensor of format $(m_1 + 1) \times \cdots \times (m_s + 1)$ over K. The tensor rank $r(T)$ of T is the minimal integer $x \geq 0$ such that $T = \sum_{i=1}^{x} v_{i1} \otimes \cdots \otimes v_{is}$ with $v_{ij} \in K^{m_i+1}$ (see [1–6]). Classical papers (e.g., [7]) continue to suggest new results (see [8]). Let $t(m_1, \ldots, m_s)$ be the maximum of all integers $r(T)$, $T \in \otimes_{i=1}^{s} K^{m_i+1}$. In this paper we prove the following result.

Theorem 1. For all integers $s \geq 2$ and $m_1 \geq \cdots \geq m_s > 0$ one has $t(m_1, \ldots, m_s) \leq \prod_{i=2}^{s+1}(m_i + 1)$.

This result is not optimal. It is not sharp when $s = 2$, since $t(m_1, m_2) = m_2 + 1$ by elementary linear algebra. For large s the bound should be even worse. In our opinion to get stronger results one should split the set of all $(s; m_1, \ldots, m_s)$ into subregions. For instance, we think that for large s the cases with $m_1 \gg m_2 \gg \cdots \gg m_s > 0$ and the cases with $m_1 = \cdots = m_s$ are quite different.

We make the definitions in the general setting of the Segre-Veronese embeddings of projective spaces (i.e., of partially symmetric tensors), but we only use the case of the usual Segre embedding, that is, the usual tensor rank. The tensor $T = 0$ has zero as its tensor rank. If $\lambda \in K \setminus \{0\}$, then the tensors T and λT have the same rank. Hence it is sufficient to study the function “tensor rank” on the projectivisation of the vector space $\otimes_{i=1}^{s} K^{m_i+1}$. We may translate the tensor rank and the integer $t(m_1, \ldots, m_s)$ in the following language.

For each subset A of a projective space, let $\langle A \rangle$ denote the linear span of A. For each integral variety $Y \subset \mathbb{P}^s$ and any $P \in \langle Y \rangle$ the Y-rank $r_Y(P)$ of P is the minimal cardinality of a finite set $A \subset Y$ such that $P \in \langle A \rangle$. Now assume $\langle Y \rangle = \mathbb{P}^s$. The maximal Y-rank r_Y is the maximum of all integers $r_Y(P)$, $P \in \mathbb{P}^s$. Fix integers $s > 0$, $m_i > 0$, $1 \leq i \leq s$, and $d_i > 0$, $1 \leq i \leq s$. Set $T(m_1, \ldots, m_s) := \mathbb{P}^{m_1} \times \cdots \times \mathbb{P}^{m_s}$.

Let $\nu_{d_1, \ldots, d_s} : T(m_1, \ldots, m_s) \to \mathbb{P}^r$, $r = -1 + \prod_{i=1}^{s} (m_i + d_i)$ be the Segre-Veronese embedding of multidegree (d_1, \ldots, d_s), that is, the embedding of $T(m_1, \ldots, m_s)$ induced by the K-vector space of all polynomials $f \in K[x_{ij}]$, $1 \leq i \leq s$, $0 \leq j \leq m_i$, whose nonzero monomials have degree d_i with respect to the variables x_{ij}, $0 \leq j \leq m_i$. Set $T(m_1, m_2; d_1, \ldots, d_s) := \nu_{d_1, \ldots, d_s}(T(m_1, \ldots, m_s))$. The variety $T(m_1, m_2; 1, \ldots, 1)$ is the Segre embedding of $T(m_1, \ldots, m_s)$. Fix $P \in \mathbb{P}^r$, $r := -1 + \prod_{i=1}^{s} (m_i + 1)$. Let $\{A_T\}_{T \in K[x_{ij}] \setminus \{0\}}$ be the set of all nonzero tensors of format $(m_1 + 1) \times \cdots \times (m_s + 1)$ associated with P. We have $r(T) = r_{T(m_1, \ldots, m_s)}(P)$. Hence $t(m_1, \ldots, m_s) = r_{T(m_1, \ldots, m_s)}$. To prove Theorem 1 we refine the notion of Y-rank in the following way.

Definition 2. Fix positive integers s, m_i, $1 \leq i \leq s$, and d_i, $1 \leq i \leq s$. A small box of $T(m_1, \ldots, m_s)$ is a closed set $L_1 \times \cdots \times L_s \subset T(m_1, \ldots, m_s)$ with L_i being a hyperplane of \mathbb{P}^{m_i} for all i. A large box $T(m_1, \ldots, m_s)$ is a product $L_1 \times \cdots \times L_s \subset T(m_1, \ldots, m_s)$ such that there is $j \in \{1, \ldots, s\}$ with $L_j \subset \mathbb{P}^{m_j}$ being a hyperplane, while $L_i = \mathbb{P}^{m_i}$ for all $i \neq j$. A small polybox (resp., large polybox) of $T(m_1, \ldots, m_s)$ is a finite union of small (resp., large) boxes of $T(m_1, \ldots, m_s)$. A small box (resp., small polybox, resp., large box, resp., large
polybox) \(B \subset T(m_1, \ldots, m_s; d_1, \ldots, d_s) \) is the image by \(\nu_{d_1, \ldots, d_s} \) of a small box (resp., small polybox, resp., large box, resp., large polybox) of \(T(m_1, \ldots, m_s) \).

Definition 3. Fix positive integers \(s, m_i, 1 \leq i \leq s \), and \(d_i, 1 \leq i \leq s \), and set \(r := -1 + \prod_{1 \leq i \leq s} (m_i + d_i) \). Fix \(P \in \mathbb{P}^r \).

The rank \(r_{m_1, m_2, \ldots, m_s}((P) \bigcap T(m_1, m_2, \ldots, m_s; d_1, \ldots, d_s)) \) of \(P \) is the minimal cardinality of a finite set \(A \subset T(m_1, m_2, \ldots, m_s; d_1, \ldots, d_s) \) such that for each finite union \(\#(A) \leq t(\#(C)) \) there is a finite set \(A \subset T(m_1, m_2, \ldots, m_s; d_1, \ldots, d_s) \) with \(\#(A) = t \).

Lemma 6. For all integers \(m_i \geq m_2 > 0 \) one has \(t''(m_1, \ldots, m_s) \leq t(m_1, \ldots, m_s) \). Proof. It is sufficient to prove the inequality \(t(m_1, m_2) \leq t(m_1 + 1, m_2) \). Without losing generality we may assume \(m_1 = m_2 = m \). Set \(m := m_1 \) and \(V := \mathbb{P}^{m-1} \). Fix \(P \in \mathbb{P}^r \), \(r = m^2 + 2m \), and a union \(E \subset \mathbb{P}^m \) of finitely many hyperplanes. Fix \(v \in V \otimes V \) inducing \(P \) and \(E' \subset V \) inducing \(E \). Fix a basis \(e_0, \ldots, e_m \) of \(V \) such that \(e_i \notin E' \) for all \(i \). We may write \(v = \sum_{i=0}^m e_i \otimes w_i \) for some \(w_i \in V \). Hence \(t_{m_1, m_2}((P) \bigcap T(m_1, m_2; d_1, d_2)) \leq \prod_{1 \leq i \leq t} (m_i + d_i) \) for all \(i \). Without losing generality we may assume \(P \) and \(E' \subset \mathbb{P}^m \) are a small box (Remark 5). For a fixed integer \(s \) we also use induction on \(m_s \), starting from the case \(m_1 = 0 \) (in which we use \(s \) instead of \(s \)).

Proof of Theorem 4. Lemma 6 gives the case \(s = 2 \). Hence we may assume \(s \geq 3 \) and use induction on \(s \). Fix \(P \in \mathbb{P}^r \) and a small polybox \(B \subset T(m_1, \ldots, m_s; 1, \ldots, 1) \). For a fixed integer \(s \) we also use induction on \(m_s \), starting from the case \(m_1 = 0 \) (in which we use \(s \) instead of \(s \)).

Acknowledgments

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

