An Upper Bound for the Tensor Rank

Abstract

E. Ballico

Department of Mathematics, University of Trento, 38123 Povo, Italy Correspondence should be addressed to E. Ballico; ballico@science.unitn.it Received 18 April 2013; Accepted 12 May 2013 Academic Editors: J. L. Cieśliński, J. Montaldi, and J. Porti Copyright © 2013 E. Ballico. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let T be a tensor of format $\left(m_{1}+1\right) \times \cdots \times\left(m_{s}+1\right), m_{1} \geq \cdots \geq m_{s}>0$, over \mathbb{C}. We prove that T has tensor rank at most $\prod_{i \neq 2}\left(m_{i}+1\right)$.

1. Introduction

Fix integers $s \geq 2$ and $m_{i}>0,1 \leq i \leq s$, and an algebraically closed base field \mathbb{K}. Let $T \in \otimes_{1 \leq i \leq s} \mathbb{K}^{m_{i}+1}$ be a tensor of format $\left(m_{1}+1\right) \times \cdots \times\left(m_{s}+1\right)$ over \mathbb{K}. The tensor rank $r(T)$ of T is the minimal integer $x \geq 0$ such that $T=\sum_{i=1}^{x} v_{1, i} \otimes \cdots \otimes$ $v_{s, i}$ with $v_{j, i} \in \mathbb{K}^{m_{j}+1}$ (see [1-6]). Classical papers (e.g., [7]) continue to suggest new results (see [8]). Let $t\left(m_{1}, \ldots, m_{s}\right)$ be the maximum of all integers $r(T), T \in \otimes_{1 \leq i \leq s} \mathbb{K}^{m_{i}+1}$. In this paper we prove the following result.

Theorem 1. For all integers $s \geq 2$ and $m_{1} \geq \cdots \geq m_{s}>0$ one hast $\left(m_{1}, \ldots, m_{s}\right) \leq \prod_{i \neq 2}\left(m_{i}+1\right)$.

This result is not optimal. It is not sharp when $s=2$, since $t\left(m_{1}, m_{2}\right)=m_{2}+1$ by elementary linear algebra. For large s the bound should be even worse. In our opinion to get stronger results one should split the set of all $\left(s ; m_{1}, \ldots, m_{s}\right)$ into subregions. For instance, we think that for large s the cases with $m_{1} \gg m_{2} \gg \cdots>m_{s}>0$ and the cases with $m_{1}=\cdots=m_{s}$ are quite different.

We make the definitions in the general setting of the Segre-Veronese embeddings of projective spaces (i.e., of partially symmetric tensors), but we only use the case of the usual Segre embedding, that is, the usual tensor rank. The tensor $T=0$ has zero as its tensor rank. If $\lambda \in \mathbb{K} \backslash\{0\}$, then the tensors T and λT have the same rank. Hence it is sufficient to study the function "tensor rank" on the projectivisation of the vector space $\otimes_{1 \leq i \leq s} \mathbb{K}^{m_{i}+1}$. We may translate the tensor rank and the integer $t\left(m_{1}, \ldots, m_{s}\right)$ in the following language.

For each subset A of a projective space, let $\langle A\rangle$ denote the linear span of A. For each integral variety $Y \subset \mathbb{P}^{n}$ and any $P \in\langle Y\rangle$ the Y-rank $r_{Y}(P)$ of P is the minimal cardinality of a finite set $A \subset Y$ such that $P \in\langle A\rangle$. Now assume $\langle Y\rangle=\mathbb{P}^{n}$. The maximal Y-rank ρ_{Y} is the maximum of all integers $r_{Y}(P)$, $P \in \mathbb{P}^{n}$. Fix integers $s>0, m_{i} \geq 0,1 \leq i \leq s$, and $d_{i}>0,1 \leq i \leq s$. Set $T\left(m_{1}, \ldots, m_{s}\right):=\mathbb{P}^{m_{1}} \times \cdots \times \mathbb{P}^{m_{s}}$. Let $\nu_{d_{1}, \ldots, d_{s}}: T\left(m_{1}, \ldots, m_{s}\right) \rightarrow \mathbb{P}^{r}, r:=-1+\prod_{1 \leq i \leq s}\binom{m_{i}+d_{i}}{m_{i}}$ be the Segre-Veronese embedding of multidegree $\left(d_{1}, \ldots, d_{s}\right)$, that is, the embedding of $T\left(m_{1}, \ldots, m_{s}\right)$ induced by the \mathbb{K}-vector space of all polynomials $f \in \mathbb{K}\left[x_{i, j}\right], 1 \leq i \leq s, 0 \leq j \leq m_{i}$, whose nonzero monomials have degree d_{i} with respect to the variables $x_{i, j}, 0 \leq j \leq m_{i}$. Set $T\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right)$:= $v_{d_{1}, \ldots, d_{s}}\left(T\left(m_{1}, \ldots, m_{s}\right)\right)$. The variety $T\left(m_{1}, \ldots, m_{s} ; 1, \ldots, 1\right)$ is the Segre embedding of $T\left(m_{1}, \ldots, m_{s}\right)$. Fix $P \in \mathbb{P}^{r}, r:=$ $-1+\prod_{1 \leq i \leq s}\left(m_{i}+1\right)$. Let $\{\lambda T\}_{\lambda \in \mathbb{K} \backslash\{0\}}$ be the set of all nonzero tensors of format $\left(m_{1}+1\right) \times \cdots \times\left(m_{s}+1\right)$ associated with P. We have $r(T)=r_{T\left(m_{1}, \ldots, m_{s} ; 1, \ldots, 1\right)}(P)$. Hence $t\left(m_{1}, \ldots, m_{s}\right)=$ $\rho_{T\left(m_{1}, \ldots, m_{s} ; 1, \ldots, 1\right)}$. To prove Theorem 1 we refine the notion of Y rank in the following way.

Definition 2. Fix positive integers $s, m_{i}, 1 \leq i \leq s$, and d_{i}, $1 \leq i \leq s$. A small box of $T\left(m_{1}, \ldots, m_{s}\right)$ is a closed set $L_{1} \times \cdots \times L_{s} \subset T\left(m_{1}, \ldots, m_{s}\right)$ with L_{i} being a hyperplane of $\mathbb{P}^{m_{i}}$ for all i. A large box of $T\left(m_{1}, \ldots, m_{s}\right)$ is a product $L_{1} \times \cdots \times L_{s} \subset T\left(m_{1}, \ldots, m_{s}\right)$ such that there is $j \in\{1, \ldots, s\}$ with $L_{j} \subset \mathbb{P}^{m_{j}}$ being a hyperplane, while $L_{i}=\mathbb{P}^{m_{i}}$ for all $i \neq j$. A small polybox (resp., large polybox) of $T\left(m_{1}, \ldots, m_{s}\right)$ is a finite union of small (resp., large) boxes of $T\left(m_{1}, \ldots, m_{s}\right)$. A small box (resp., small polybox, resp., large box, resp., large
polybox) $B \subset T\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right)$ is the image by $v_{d_{1}, \ldots, d_{s}}$ of a small box (resp., small polybox, resp., large box, resp., large polybox) of $T\left(m_{1}, \ldots, m_{s}\right)$.

Definition 3. Fix positive integers $s, m_{i}, 1 \leq i \leq s$, and d_{i}, $1 \leq i \leq s$, and set $r:=-1+\prod_{1 \leq i \leq s}\binom{m_{i}+d_{i}}{m_{i}}$. Fix $P \in \mathbb{P}^{r}$. The rank $r_{m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}}(P)$ of P is the minimal cardinality of a finite set $A \subset T\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right)$ such that $P \in\langle A\rangle$. The unboxed rank (resp., small unboxed rank) $r_{m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}}^{\prime}(P)$ (resp., $\left.r_{m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}}^{\prime \prime}(P)\right)$ of P is the minimal integer $t>0$ such that for each large polybox (resp., small polybox) $B \subset T\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right)$ there is a finite set $A \subset T\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right) \backslash B$ with $P \in\langle A\rangle$ and $\sharp(A)=t$. Let $t\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right)$ (resp., $t^{\prime}\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right)$, resp., $\left.t^{\prime \prime}\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right)\right)$ be the maximum of all integers $r_{m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}}(P)$ (resp., $r_{m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}}^{\prime}(P)$, resp., $\left.r_{m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}}^{\prime \prime}(P)\right), P \in \mathbb{P}^{r}$.

Notice that $t\left(m_{1}, \ldots, m_{s}\right)=t\left(m_{1}, \ldots, m_{s} ; 1, \ldots, 1\right)$.
Since $r_{m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}}(P) \leq r_{m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}}^{\prime \prime}(P) \leq$ $r_{m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}}^{\prime}(P)$ for all P, we have $t\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right) \leq$ $t^{\prime \prime}\left(m_{1}, \ldots, m_{s} ; d_{1}, \ldots, d_{s}\right)$. Hence Theorem 1 is an immediate corollary of the following result.

Theorem 4. For all integers $s \geq 2$ and $m_{1} \geq \cdots \geq m_{s}>0$ one has $t^{\prime \prime}\left(m_{1}, \ldots, m_{s}\right) \leq \prod_{i \neq 2}\left(m_{i}+1\right)$.

We hope that the definitions of unboxed rank and small unboxed rank are interesting in themselves, not just as a tool. As far as we know the best upper bound for the symmetric tensor rank is due to Białynicki-Birula and Schinzel ($[9,10]$). In [9] Białynicki-Birula and Schinzel used the corresponding notion in the case $s=1$.

2. Proof of Theorem 4

Remark 5. Fix integers $s \geq 2$ and $m_{i}>0,1 \leq i \leq$ s. Fix $j \in\{1, \ldots, s\}$ and let $\pi_{j}: T\left(m_{1}, \ldots, m_{s}\right) \rightarrow$ $T\left(m_{1}, \ldots, m_{j-1}, m_{j+1}, \ldots, m_{s}\right)$ be the projection. For any small polybox $B \subset T\left(m_{1}, \ldots, m_{s}\right)$ the set $\pi_{j}(B)$ is a small polybox of the Segre variety $T\left(m_{1}, m_{j-1}, m_{j+1}, \ldots, m_{s}\right)$.

In the case $s=2$ we also need the following notation. Fix integers $m_{1} \geq m_{2}>0$. For each $P \in \mathbb{P}^{r}, r=\left(m_{1}+\right.$ 1) $\left(m_{2}+1\right)-1$, let $\widetilde{t}_{m_{1}, m_{2}}(P)$ be the minimal integer $t>0$ with the following property: for each finite union $E \subset \mathbb{P}^{m_{1}}$ of hyperplanes there is a set $A \subset T\left(m_{1}, m_{2}\right) \backslash E \times \mathbb{P}^{m_{2}}$ such that $\sharp(A)=t$ and $P \in\left\langle v_{1,1}(A)\right\rangle$. Let $\widetilde{t}\left(m_{1}, m_{2}\right)$ be the maximum of all integers $\tilde{t}_{m_{1}, m_{2}}(P), P \in \mathbb{P}^{r}$. Obviously $t\left(m_{1}, m_{2}\right) \leq t^{\prime \prime}\left(m_{1}, m_{2}\right) \leq \widetilde{t}\left(m_{1}, m_{2}\right) \leq t^{\prime}\left(m_{1}, m_{2}\right)$. Linear algebra gives $t\left(m_{1}, m_{2}\right)=1+\min \left\{m_{1}, m_{2}\right\}=m_{2}+1$.

Lemma 6. For all integers $m_{1} \geq m_{2}>0$ one hast $t^{\prime \prime}\left(m_{1}, m_{2}\right) \leq$ $\widetilde{t}\left(m_{1}, m_{2}\right) \leq m_{1}+1$.

Proof. It is sufficient to prove the inequality $\tilde{t}\left(m_{1}, m_{2}\right) \leq m_{1}+$ 1 . Without losing generality we may assume $m_{1}=m_{2}$. Set $m:=m_{1}$ and $V:=\mathbb{K}^{m+1}$. Fix $P \in \mathbb{P}^{r}, r=m^{2}+2 m$, and a
union $E \subset \mathbb{P}^{m}$ of finitely many hyperplanes. Fix $v \in V \otimes V$ inducing P and $E^{\prime} \varsubsetneqq V$ inducing E. Fix a basis e_{0}, \ldots, e_{m} of V such that $e_{i} \notin E^{\prime}$ for all i. We may write $v=\sum_{i=0}^{m} e_{i} \otimes w_{i}$ for some $w_{i} \in V$. Hence $\widetilde{t}_{m, m}(P) \leq m+1$.

Proof of Theorem 4. Lemma 6 gives the case $s=2$. Hence we may assume $s \geq 3$ and use induction on s. Fix $P \in \mathbb{P}^{r}$ and a small polybox $B \subset T\left(m_{1}, \ldots, m_{s} ; 1, \ldots, 1\right)$. For a fixed integer s we also use induction on m_{s}, starting from the case $m_{s}=0$ (in which we use $s-1$ instead of s).

Take a general hyperplane $L \subset \mathbb{P}^{m_{s}}$. Set $T\left(m_{1}, \ldots, m_{s} ; s\right.$, $L):=T\left(m_{1}, \ldots, m_{s-1}\right) \times L \subset T\left(m_{1}, \ldots, m_{s}\right), E:=\nu_{1, \ldots, 1}\left(T\left(m_{1}\right.\right.$, $\left.\left.\ldots, m_{s} ; s, L\right)\right), F:=\langle E\rangle$, and $R:=-1+\prod_{1 \leq i \leq s-1}\left(m_{i}+1\right)$. We have $\operatorname{dim}(F)=-1+m_{s} \prod_{1 \leq i \leq s-1}\left(m_{i}+1\right)$. Let $\ell: \mathbb{P}^{r} \backslash$ $F \rightarrow \mathbb{P}^{R}$ denote the linear projection from F. Notice that $F \cap T\left(m_{1}, \ldots, m_{s} ; 1, \ldots, 1\right)=E$. If $m_{s}=1$, then we have $E=T\left(m_{1}, \ldots, m_{s-1} ; 1, \ldots, 1\right)$ and hence we use induction on s to apply Theorem 4 to E. If $m_{s} \geq 2$, then we use induction on m_{s} to apply Theorem 4 to E. Set $\ell^{\prime}:=\ell \mid$ $T\left(m_{1}, \ldots, m_{s} ; 1, \ldots, 1\right) \backslash E$. Notice that ℓ^{\prime} induces a surjection $\ell^{\prime}: T\left(m_{1}, \ldots, m_{s} ; 1, \ldots, 1\right) \backslash E \rightarrow T\left(m_{1}, \ldots, m_{s-1} ; 1, \ldots, 1\right)$ (projection onto the first $s-1$ factors). Let B_{1} denote the closure of $\ell^{\prime}(B \backslash B \cap E)$ in $T\left(m_{1}, \ldots, m_{s-1} ; 1, \ldots, 1\right)$. Since B is a small polybox, B_{1} is a small polybox (Remark 5). For general L we may also assume that $B \cap E$ is a small polybox of E. First assume $P \in E$. Since $B \cap E$ is a small polybox of E, the inductive assumption gives the existence of a set $A \subset E \backslash A \cap B$ such that $P \in\langle A\rangle$ and $\sharp(A) \leq m_{s} \times \prod_{1 \leq i \leq s-1, i \neq 2}\left(m_{i}+1\right)$. Hence $r_{T\left(m_{1}, \ldots, m_{s} 1, \ldots, 1\right)}^{\prime \prime}(P)<\prod_{i \neq 2}\left(m_{i}+1\right)$. Now assume $P \notin F$. Hence $\ell(P)$ is defined. Since B_{1} is a small polybox, there is $B \subset T\left(m_{1}, \ldots, m_{s-1} ; 1, \ldots, 1\right) \backslash B_{1}$ such that $\ell(P) \in\langle B\rangle$ and $\sharp(B) \leq t^{\prime \prime}\left(m_{1}, \ldots, m_{s-1}\right) \leq\left(m_{1}+1\right) \times \prod_{3 \leq i \leq s-1}\left(m_{i}+1\right)$. Since ℓ^{\prime} is surjective, there is $B_{2} \subset E$ such that $\ell^{\prime}\left(B_{2}\right)=B$. Since $B_{2} \cap$ $E=\emptyset$ and $F \cap T\left(m_{1}, \ldots, m_{s} ; 1, \ldots, 1\right)=E$, we have $B_{2} \cap F=\emptyset$. Hence ℓ is defined at each point of B_{2}. Since $P \in\langle B\rangle$ and $\ell\left(B_{2}\right)=B$, there is $O \in F$ such that $P \in\left\langle\{O\} \cup B_{2}\right\rangle$. Since $B \cap E$ is a small polybox, there is $B_{3} \subset E \backslash B \cap E$ such that $O \in\left\langle B_{3}\right\rangle$ and $\sharp\left(B_{3}\right) \leq t^{\prime \prime}\left(m_{1}, \ldots, m_{s}-1\right) \leq m_{s} \times \prod_{1 \leq i \leq s, i \neq 2}\left(m_{i}+1\right)$. We have $P \in\left\langle B_{2} \cup B_{3}\right\rangle$ and $\sharp\left(B_{2} \cup B_{3}\right) \leq \prod_{i \neq 2}\left(m_{i}+1\right)$.

Acknowledgments

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

[1] L. H. Lim and V. de Silva, "Tensor rank and the ill-posedness of the best low-rank approximation problem," SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 3, pp. 1084-1127, 2008.
[2] P. Comon, "Tensor decompositions: state of the art and applications," in Mathematics in Signal Processing, V (Coventry, 2000), vol. 71 of Institute of Mathematics and its Applications Conference Series, New Series, pp. 1-24, Oxford University Press, Oxford, UK, 2002.
[3] T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM Review, vol. 51, no. 3, pp. 455-500, 2009.
[4] J. M. Landsberg, Tensors: Geometry and Applications, vol. 128 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, USA, 2012.
[5] L. H. Lim and P. Comon, "Multiarray signal processing: tensor decomposition meets compressed sensing," Comptes Rendus Mecanique, vol. 338, pp. 311-320, 2010.
[6] E. Ballico, "An upper bound for the symmetric tensor rank of a polynomial in a large number of variables," Geometry, vol. 2013, Article ID 715907, p. 2, 2013.
[7] V. Strassen, "Rank and optimal computation of generic tensors," Linear Algebra and Its Applications, vol. 52-53, pp. 645-685, 1983.
[8] C. Bocci, L. Chiantini, and G. Ottaviani, "Refined methods for the identifiability of tensors," Annali di Matematica Pura e Applicata, http://arxiv.org/abs/1303.6915.
[9] A. Białynicki-Birula and A. Schinzel, "Representations of multivariate polynomials by sums of univariate polynomials in linear forms," Colloquium Mathematicum, vol. 112, no. 2, pp. 201-233, 2008.
[10] A. Białynicki-Birula and A. Schinzel, "Corrigendum to "representatons of multivariate polynomials by sums of univariate polynomials in linear forms" (Colloq. Math. 112 (2008), 201233) [MR2383331]," Colloquium Mathematicum, vol. 125, no. 1, p. 139, 2011.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

