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Let𝑇 be a tensor of format (𝑚
1
+1)×⋅ ⋅ ⋅×(𝑚

𝑠
+1),𝑚

1
≥ ⋅ ⋅ ⋅ ≥ 𝑚

𝑠
> 0, overC. We prove that𝑇 has tensor rank at most∏

𝑖 ̸= 2
(𝑚
𝑖
+1).

1. Introduction

Fix integers 𝑠 ≥ 2 and 𝑚
𝑖
> 0, 1 ≤ 𝑖 ≤ 𝑠, and an algebraically

closed base fieldK. Let 𝑇 ∈ ⊗
1≤𝑖≤𝑠

K𝑚𝑖+1 be a tensor of format
(𝑚
1
+ 1) × ⋅ ⋅ ⋅ × (𝑚

𝑠
+ 1) over K. The tensor rank 𝑟(𝑇) of 𝑇

is the minimal integer 𝑥 ≥ 0 such that 𝑇 = ∑
𝑥

𝑖=1
V
1,𝑖

⊗ ⋅ ⋅ ⋅ ⊗

V
𝑠,𝑖
with V

𝑗,𝑖
∈ K𝑚𝑗+1 (see [1–6]). Classical papers (e.g., [7])

continue to suggest new results (see [8]). Let 𝑡(𝑚
1
, . . . , 𝑚

𝑠
) be

the maximum of all integers 𝑟(𝑇), 𝑇 ∈ ⊗
1≤𝑖≤𝑠

K𝑚𝑖+1. In this
paper we prove the following result.

Theorem 1. For all integers 𝑠 ≥ 2 and 𝑚
1
≥ ⋅ ⋅ ⋅ ≥ 𝑚

𝑠
> 0 one

has 𝑡(𝑚
1
, . . . , 𝑚

𝑠
) ≤ ∏

𝑖 ̸= 2
(𝑚
𝑖
+ 1).

This result is not optimal. It is not sharp when 𝑠 = 2,
since 𝑡(𝑚

1
, 𝑚
2
) = 𝑚

2
+ 1 by elementary linear algebra. For

large 𝑠 the bound should be even worse. In our opinion to get
stronger results one should split the set of all (𝑠; 𝑚

1
, . . . , 𝑚

𝑠
)

into subregions. For instance, we think that for large 𝑠 the
cases with 𝑚

1
≫ 𝑚
2
≫ ⋅ ⋅ ⋅ ≫ 𝑚

𝑠
> 0 and the cases with

𝑚
1
= ⋅ ⋅ ⋅ = 𝑚

𝑠
are quite different.

We make the definitions in the general setting of the
Segre-Veronese embeddings of projective spaces (i.e., of
partially symmetric tensors), but we only use the case of the
usual Segre embedding, that is, the usual tensor rank. The
tensor𝑇 = 0 has zero as its tensor rank. If 𝜆 ∈ K\{0}, then the
tensors 𝑇 and 𝜆𝑇 have the same rank. Hence it is sufficient
to study the function “tensor rank” on the projectivisation
of the vector space ⊗

1≤𝑖≤𝑠
K𝑚𝑖+1. We may translate the tensor

rank and the integer 𝑡(𝑚
1
, . . . , 𝑚

𝑠
) in the following language.

For each subset 𝐴 of a projective space, let ⟨𝐴⟩ denote the
linear span of 𝐴. For each integral variety 𝑌 ⊂ P𝑛 and any
𝑃 ∈ ⟨𝑌⟩ the 𝑌-rank 𝑟

𝑌
(𝑃) of 𝑃 is the minimal cardinality of

a finite set 𝐴 ⊂ 𝑌 such that 𝑃 ∈ ⟨𝐴⟩. Now assume ⟨𝑌⟩ = P𝑛.
Themaximal𝑌-rank 𝜌

𝑌
is the maximum of all integers 𝑟

𝑌
(𝑃),

𝑃 ∈ P𝑛. Fix integers 𝑠 > 0, 𝑚
𝑖
≥ 0, 1 ≤ 𝑖 ≤ 𝑠, and

𝑑
𝑖
> 0, 1 ≤ 𝑖 ≤ 𝑠. Set 𝑇(𝑚

1
, . . . , 𝑚

𝑠
) := P𝑚1 × ⋅ ⋅ ⋅ × P𝑚𝑠 . Let

]
𝑑1 ,...,𝑑𝑠

: 𝑇(𝑚
1
, . . . , 𝑚

𝑠
) → P𝑟, 𝑟 := −1+∏

1≤𝑖≤𝑠
(
𝑚𝑖+𝑑𝑖
𝑚𝑖

) be the
Segre-Veronese embedding of multidegree (𝑑

1
, . . . , 𝑑

𝑠
), that

is, the embedding of 𝑇(𝑚
1
, . . . , 𝑚

𝑠
) induced by the K-vector

space of all polynomials 𝑓 ∈ K[𝑥
𝑖,𝑗
], 1 ≤ 𝑖 ≤ 𝑠, 0 ≤ 𝑗 ≤ 𝑚

𝑖
,

whose nonzero monomials have degree 𝑑
𝑖
with respect to the

variables 𝑥
𝑖,𝑗
, 0 ≤ 𝑗 ≤ 𝑚

𝑖
. Set 𝑇(𝑚

1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
) :=

]
𝑑1 ,...,𝑑𝑠

(𝑇(𝑚
1
, . . . , 𝑚

𝑠
)). The variety 𝑇(𝑚

1
, . . . , 𝑚

𝑠
; 1, . . . , 1) is

the Segre embedding of 𝑇(𝑚
1
, . . . , 𝑚

𝑠
). Fix 𝑃 ∈ P𝑟, 𝑟 :=

−1 + ∏
1≤𝑖≤𝑠

(𝑚
𝑖
+ 1). Let {𝜆𝑇}

𝜆∈K\{0} be the set of all nonzero
tensors of format (𝑚

1
+ 1) × ⋅ ⋅ ⋅ × (𝑚

𝑠
+ 1) associated with

𝑃. We have 𝑟(𝑇) = 𝑟
𝑇(𝑚1 ,...,𝑚𝑠;1,...,1)

(𝑃). Hence 𝑡(𝑚
1
, . . . , 𝑚

𝑠
) =

𝜌
𝑇(𝑚1 ,...,𝑚𝑠 ;1,...,1)

. To proveTheorem 1 we refine the notion of𝑌-
rank in the following way.

Definition 2. Fix positive integers 𝑠, 𝑚
𝑖
, 1 ≤ 𝑖 ≤ 𝑠, and 𝑑

𝑖
,

1 ≤ 𝑖 ≤ 𝑠. A small box of 𝑇(𝑚
1
, . . . , 𝑚

𝑠
) is a closed set

𝐿
1
× ⋅ ⋅ ⋅ × 𝐿

𝑠
⊂ 𝑇(𝑚

1
, . . . , 𝑚

𝑠
) with 𝐿

𝑖
being a hyperplane

of P𝑚𝑖 for all 𝑖. A large box of 𝑇(𝑚
1
, . . . , 𝑚

𝑠
) is a product

𝐿
1
× ⋅ ⋅ ⋅ × 𝐿

𝑠
⊂ 𝑇(𝑚

1
, . . . , 𝑚

𝑠
) such that there is 𝑗 ∈ {1, . . . , 𝑠}

with 𝐿
𝑗
⊂ P𝑚𝑗 being a hyperplane, while 𝐿

𝑖
= P𝑚𝑖 for all

𝑖 ̸= 𝑗. A small polybox (resp., large polybox) of 𝑇(𝑚
1
, . . . , 𝑚

𝑠
)

is a finite union of small (resp., large) boxes of 𝑇(𝑚
1
, . . . , 𝑚

𝑠
).

A small box (resp., small polybox, resp., large box, resp., large
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polybox) 𝐵 ⊂ 𝑇(𝑚
1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
) is the image by ]

𝑑1 ,...,𝑑𝑠

of a small box (resp., small polybox, resp., large box, resp.,
large polybox) of 𝑇(𝑚

1
, . . . , 𝑚

𝑠
).

Definition 3. Fix positive integers 𝑠, 𝑚
𝑖
, 1 ≤ 𝑖 ≤ 𝑠, and 𝑑

𝑖
,

1 ≤ 𝑖 ≤ 𝑠, and set 𝑟 := −1 + ∏
1≤𝑖≤𝑠

(
𝑚𝑖+𝑑𝑖
𝑚𝑖

). Fix 𝑃 ∈ P𝑟.
The rank 𝑟

𝑚1 ,...,𝑚𝑠;𝑑1 ,...,𝑑𝑠
(𝑃) of 𝑃 is the minimal cardinality

of a finite set 𝐴 ⊂ 𝑇(𝑚
1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
) such that

𝑃 ∈ ⟨𝐴⟩. The unboxed rank (resp., small unboxed rank)
𝑟
󸀠

𝑚1 ,...,𝑚𝑠;𝑑1 ,...,𝑑𝑠
(𝑃) (resp., 𝑟󸀠󸀠

𝑚1 ,...,𝑚𝑠 ;𝑑1,...,𝑑𝑠
(𝑃)) of 𝑃 is the minimal

integer 𝑡 > 0 such that for each large polybox (resp., small
polybox) 𝐵 ⊂ 𝑇(𝑚

1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
) there is a finite set

𝐴 ⊂ 𝑇(𝑚
1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
) \ 𝐵 with 𝑃 ∈ ⟨𝐴⟩ and ♯(𝐴) = 𝑡.

Let 𝑡(𝑚
1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
) (resp., 𝑡󸀠(𝑚

1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
),

resp., 𝑡
󸀠󸀠
(𝑚
1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
)) be the maximum of all

integers 𝑟
𝑚1 ,...,𝑚𝑠 ;𝑑1 ,...,𝑑𝑠

(𝑃) (resp., 𝑟
󸀠

𝑚1 ,...,𝑚𝑠 ;𝑑1 ,...,𝑑𝑠
(𝑃), resp.,

𝑟
󸀠󸀠

𝑚1 ,...,𝑚𝑠;𝑑1 ,...,𝑑𝑠
(𝑃)), 𝑃 ∈ P𝑟.

Notice that 𝑡(𝑚
1
, . . . , 𝑚

𝑠
) = 𝑡(𝑚

1
, . . . , 𝑚

𝑠
; 1, . . . , 1).

Since 𝑟
𝑚1 ,...,𝑚𝑠 ;𝑑1 ,...,𝑑𝑠

(𝑃) ≤ 𝑟
󸀠󸀠

𝑚1 ,...,𝑚𝑠 ;𝑑1,...,𝑑𝑠
(𝑃) ≤

𝑟
󸀠

𝑚1 ,...,𝑚𝑠;𝑑1 ,...,𝑑𝑠
(𝑃) for all 𝑃, we have 𝑡(𝑚

1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
) ≤

𝑡
󸀠󸀠
(𝑚
1
, . . . , 𝑚

𝑠
; 𝑑
1
, . . . , 𝑑

𝑠
). Hence Theorem 1 is an immediate

corollary of the following result.

Theorem 4. For all integers 𝑠 ≥ 2 and𝑚
1
≥ ⋅ ⋅ ⋅ ≥ 𝑚

𝑠
> 0 one

has 𝑡󸀠󸀠(𝑚
1
, . . . , 𝑚

𝑠
) ≤ ∏

𝑖 ̸= 2
(𝑚
𝑖
+ 1).

We hope that the definitions of unboxed rank and small
unboxed rank are interesting in themselves, not just as a tool.
As far as we know the best upper bound for the symmetric
tensor rank is due to Białynicki-Birula and Schinzel ([9, 10]).
In [9] Białynicki-Birula and Schinzel used the corresponding
notion in the case 𝑠 = 1.

2. Proof of Theorem 4

Remark 5. Fix integers 𝑠 ≥ 2 and 𝑚
𝑖

> 0, 1 ≤ 𝑖 ≤

𝑠. Fix 𝑗 ∈ {1, . . . , 𝑠} and let 𝜋
𝑗

: 𝑇(𝑚
1
, . . . , 𝑚

𝑠
) →

𝑇(𝑚
1
, . . . , 𝑚

𝑗−1
, 𝑚
𝑗+1

, . . . , 𝑚
𝑠
) be the projection. For any

small polybox 𝐵 ⊂ 𝑇(𝑚
1
, . . . , 𝑚

𝑠
) the set 𝜋

𝑗
(𝐵) is a small

polybox of the Segre variety 𝑇(𝑚
1
, 𝑚
𝑗−1

, 𝑚
𝑗+1

, . . . , 𝑚
𝑠
).

In the case 𝑠 = 2 we also need the following notation.
Fix integers 𝑚

1
≥ 𝑚
2
> 0. For each 𝑃 ∈ P𝑟, 𝑟 = (𝑚

1
+

1)(𝑚
2
+ 1) − 1, let 𝑡̃

𝑚1 ,𝑚2
(𝑃) be the minimal integer 𝑡 > 0

with the following property: for each finite union 𝐸 ⊂ P𝑚1

of hyperplanes there is a set 𝐴 ⊂ 𝑇(𝑚
1
, 𝑚
2
) \ 𝐸 × P𝑚2

such that ♯(𝐴) = 𝑡 and 𝑃 ∈ ⟨]
1,1
(𝐴)⟩. Let 𝑡̃(𝑚

1
, 𝑚
2
) be

the maximum of all integers 𝑡̃
𝑚1 ,𝑚2

(𝑃), 𝑃 ∈ P𝑟. Obviously
𝑡(𝑚
1
, 𝑚
2
) ≤ 𝑡

󸀠󸀠
(𝑚
1
, 𝑚
2
) ≤ 𝑡̃(𝑚

1
, 𝑚
2
) ≤ 𝑡

󸀠
(𝑚
1
, 𝑚
2
). Linear

algebra gives 𝑡(𝑚
1
, 𝑚
2
) = 1 +min{𝑚

1
, 𝑚
2
} = 𝑚

2
+ 1.

Lemma 6. For all integers𝑚
1
≥ 𝑚
2
> 0 one has 𝑡󸀠󸀠(𝑚

1
, 𝑚
2
) ≤

𝑡̃(𝑚
1
, 𝑚
2
) ≤ 𝑚

1
+ 1.

Proof. It is sufficient to prove the inequality 𝑡̃(𝑚
1
, 𝑚
2
) ≤ 𝑚

1
+

1. Without losing generality we may assume 𝑚
1
= 𝑚
2
. Set

𝑚 := 𝑚
1
and 𝑉 := K𝑚+1. Fix 𝑃 ∈ P𝑟, 𝑟 = 𝑚

2
+ 2𝑚, and a

union 𝐸 ⊂ P𝑚 of finitely many hyperplanes. Fix V ∈ 𝑉 ⊗ 𝑉

inducing 𝑃 and 𝐸󸀠 ⊊ 𝑉 inducing 𝐸. Fix a basis 𝑒
0
, . . . , 𝑒

𝑚
of𝑉

such that 𝑒
𝑖
∉ 𝐸
󸀠 for all 𝑖. We may write V = ∑

𝑚

𝑖=0
𝑒
𝑖
⊗ 𝑤
𝑖
for

some 𝑤
𝑖
∈ 𝑉. Hence 𝑡̃

𝑚,𝑚
(𝑃) ≤ 𝑚 + 1.

Proof of Theorem 4. Lemma 6 gives the case 𝑠 = 2. Hence we
may assume 𝑠 ≥ 3 and use induction on 𝑠. Fix 𝑃 ∈ P𝑟 and a
small polybox 𝐵 ⊂ 𝑇(𝑚

1
, . . . , 𝑚

𝑠
; 1, . . . , 1). For a fixed integer

𝑠 we also use induction on 𝑚
𝑠
, starting from the case 𝑚

𝑠
= 0

(in which we use 𝑠 − 1 instead of 𝑠).
Take a general hyperplane 𝐿 ⊂ P𝑚𝑠 . Set 𝑇(𝑚

1
, . . . , 𝑚

𝑠
; 𝑠,

𝐿) := 𝑇(𝑚
1
, . . . , 𝑚

𝑠−1
) × 𝐿 ⊂ 𝑇(𝑚

1
, . . . , 𝑚

𝑠
), 𝐸 := ]

1,...,1
(𝑇(𝑚
1
,

. . . , 𝑚
𝑠
; 𝑠, 𝐿)), 𝐹 := ⟨𝐸⟩, and 𝑅 := −1 + ∏

1≤𝑖≤𝑠−1
(𝑚
𝑖
+ 1).

We have dim(𝐹) = −1 + 𝑚
𝑠
∏
1≤𝑖≤𝑠−1

(𝑚
𝑖
+ 1). Let ℓ : P𝑟 \

𝐹 → P𝑅 denote the linear projection from 𝐹. Notice that
𝐹 ∩ 𝑇(𝑚

1
, . . . , 𝑚

𝑠
; 1, . . . , 1) = 𝐸. If 𝑚

𝑠
= 1, then we have

𝐸 = 𝑇(𝑚
1
, . . . , 𝑚

𝑠−1
; 1, . . . , 1) and hence we use induction

on 𝑠 to apply Theorem 4 to 𝐸. If 𝑚
𝑠

≥ 2, then we use
induction on 𝑚

𝑠
to apply Theorem 4 to 𝐸. Set ℓ󸀠 := ℓ |

𝑇(𝑚
1
, . . . , 𝑚

𝑠
; 1, . . . , 1) \𝐸. Notice that ℓ󸀠 induces a surjection

ℓ
󸀠
: 𝑇(𝑚

1
, . . . , 𝑚

𝑠
; 1, . . . , 1) \ 𝐸 → 𝑇(𝑚

1
, . . . , 𝑚

𝑠−1
; 1, . . . , 1)

(projection onto the first 𝑠 − 1 factors). Let 𝐵
1
denote the

closure of ℓ󸀠(𝐵\𝐵∩𝐸) in𝑇(𝑚
1
, . . . , 𝑚

𝑠−1
; 1, . . . , 1). Since𝐵 is a

small polybox, 𝐵
1
is a small polybox (Remark 5). For general

𝐿 we may also assume that 𝐵 ∩ 𝐸 is a small polybox of 𝐸.
First assume 𝑃 ∈ 𝐸. Since 𝐵 ∩ 𝐸 is a small polybox of 𝐸, the
inductive assumption gives the existence of a set𝐴 ⊂ 𝐸\𝐴∩𝐵

such that 𝑃 ∈ ⟨𝐴⟩ and ♯(𝐴) ≤ 𝑚
𝑠
× ∏
1≤𝑖≤𝑠−1,𝑖 ̸= 2

(𝑚
𝑖
+ 1).

Hence 𝑟󸀠󸀠
𝑇(𝑚1 ,...,𝑚𝑠 ;1,...,1)

(𝑃) < ∏
𝑖 ̸= 2

(𝑚
𝑖
+1). Now assume 𝑃 ∉ 𝐹.

Hence ℓ(𝑃) is defined. Since 𝐵
1
is a small polybox, there is

𝐵 ⊂ 𝑇(𝑚
1
, . . . , 𝑚

𝑠−1
; 1, . . . , 1) \ 𝐵

1
such that ℓ(𝑃) ∈ ⟨𝐵⟩ and

♯(𝐵) ≤ 𝑡
󸀠󸀠
(𝑚
1
, . . . , 𝑚

𝑠−1
) ≤ (𝑚

1
+1)×∏

3≤𝑖≤𝑠−1
(𝑚
𝑖
+1). Since ℓ󸀠

is surjective, there is 𝐵
2
⊂ 𝐸 such that ℓ󸀠(𝐵

2
) = 𝐵. Since 𝐵

2
∩

𝐸 = 0 and 𝐹∩𝑇(𝑚
1
, . . . , 𝑚

𝑠
; 1, . . . , 1) = 𝐸, we have 𝐵

2
∩𝐹 = 0.

Hence ℓ is defined at each point of 𝐵
2
. Since 𝑃 ∈ ⟨𝐵⟩ and

ℓ(𝐵
2
) = 𝐵, there is𝑂 ∈ 𝐹 such that𝑃 ∈ ⟨{𝑂}∪𝐵

2
⟩. Since 𝐵∩𝐸

is a small polybox, there is 𝐵
3
⊂ 𝐸 \ 𝐵 ∩ 𝐸 such that 𝑂 ∈ ⟨𝐵

3
⟩

and ♯(𝐵
3
) ≤ 𝑡
󸀠󸀠
(𝑚
1
, . . . , 𝑚

𝑠
−1) ≤ 𝑚

𝑠
×∏
1≤𝑖≤𝑠,𝑖 ̸= 2

(𝑚
𝑖
+1). We

have 𝑃 ∈ ⟨𝐵
2
∪ 𝐵
3
⟩ and ♯(𝐵

2
∪ 𝐵
3
) ≤ ∏

𝑖 ̸= 2
(𝑚
𝑖
+ 1).
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