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The isoperimetric number of a graph 𝐺, denoted by 𝑖(𝐺), was introduced by Mohar (1987). A graph 𝐺 and a subset𝑋 of its vertices
are given, and let 𝜕(𝑋) denote the edge boundary of 𝑋, the set of edges which connects vertices in 𝑋 to vertices not in 𝑋. The
isoperimetric number of 𝐺 is defined as 𝑖(𝐺) = min

1≤|𝑋|≤|𝑉(𝐺)|/2
(|𝜕(𝑋)|/|𝑋|). In this paper, some results about the isoperimetric

number of graphs obtained by graph operations are given.

1. Introduction

Given a graph 𝐺 and a subset 𝑋 of its vertices, let 𝜕(𝑋)

denote the edge boundary of 𝑋 that is, the set of edges
which connects vertices in 𝑋 with vertices not in 𝑋. The
isoperimetric number is defined as

𝑖 (𝐺) = min
1≤|𝑋|≤|𝑉(𝐺)|/2

|𝜕 (𝑋)|

|𝑋|
. (1)

Clearly, 𝑖(𝐺) can be defined in a more symmetric form by

𝑖 (𝐺) = min |𝐸 (𝑋, 𝑌)|

min {|𝑋| , |𝑌|}
, (2)

where the minimum runs over all partitions of𝑉(𝐺) = 𝑋∪𝑌

into nonempty subsets 𝑋 and 𝑌, and 𝐸(𝑋, 𝑌) = 𝜕𝑋 = 𝜕𝑌 are
the edges between 𝑋 and 𝑌.

As examples of isoperimetric numbers, we consider the
following.

(i) The isoperimetric number of the complete graph 𝐾
𝑛

with 𝑛 vertices is 𝑖(𝐾
𝑛
) = ⌈𝑛/2⌉.

(ii) The isoperimetric number of the cycle 𝐶
𝑛
with 𝑛

vertices is 𝑖(𝐶
𝑛
) = 2/⌊𝑛/2⌋.

(iii) The isoperimetric number of the path 𝑃
𝑛
with 𝑛

vertices is 𝑖(𝑃
𝑛
) = 1/⌊𝑛/2⌋.

(iv) The isoperimetric number of the complete bipartite
graph with𝑚 + 𝑛 vertices𝐾

𝑚,𝑛
is

𝑖 (𝐾
𝑚,𝑛

) =

{{{{{{{{{

{{{{{{{{{

{

𝑚𝑛

𝑚 + 𝑛
, if 𝑚 and 𝑛 are even

𝑚𝑛 + 1

𝑚 + 𝑛
, if 𝑚 and 𝑛 are odd

𝑚𝑛

𝑚 + 𝑛 − 1
, if 𝑚 + 𝑛 is odd.

(3)

It can be briefly shown as 𝑖(𝐾
𝑚,𝑛

) = ⌈𝑚𝑛/2⌉/⌊(𝑚 + 𝑛)/2⌋.
The isoperimetric number is also closely related to the

notion of bisection width, 𝑏𝑤(𝐺), of a graph 𝐺. This is the
minimum number of edges that must be removed from 𝐺

in order to split 𝑉(𝐺) into two equal-sized (within one if the
number of vertices in 𝐺 is odd) subsets:

𝑏𝑤 (𝐺) = min
|𝑋|=⌊|𝑉(𝐺)|/2⌋

|𝜕𝑋| , (4)

where 𝑋 ⊂ 𝑉(𝐺). If known, one can use the isoperimetric
number of a graph 𝐺 to establish a lower bound for its
bisection width using the fact that

𝑏𝑤 (𝐺)

⌊|𝑉 (𝐺)| /2⌋
≥ 𝑖 (𝐺) . (5)

See [1].
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The importance of 𝑖(𝐺) lies in various interesting inter-
pretations of this number by Mohar as follows [2].

(a) From (2), it is evident that, in trying to determine 𝑖(𝐺),
we have to find a small edge-cut 𝐸(𝑋, 𝑌) separating
as large a subset 𝑋 (assume |𝑋| ≤ |𝑌|) as possible
from the remaining larger part 𝑌. So, it is evident that
𝑖(𝐺) can serve as measure of 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖V𝑖𝑡𝑦 of graphs.
It seems that there might be possible applications
in problems concerning connected networks,and the
ways to “destroy” them are by removing a large
portion of the network by cutting only a few edges.

(b) Theproblemof the partitioning𝑉(𝐺) into two equally
sized subsets (to within one element), in such a way
that the number of the edges in the cut is minimal, is
known as the 𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑤𝑖𝑑𝑡ℎ problem. It is important
in VLSI design and some other practical applications.
Clearly, it is related to isoperimetric number.

Theorem 1 (see [2]). Some of the theorems that Mohar stated
are given below.

(a) 𝑖(𝐺) = 0 if and only if 𝐺 is disconnected.
(b) If 𝐺 is k-edge-connected then 𝑖(𝐺) ≥ 2𝑘/|𝑉(𝐺)|.
(c) If𝛿(𝐺) is theminimal degree of vertices in𝐺 then 𝑖(𝐺) ≤

𝛿(𝐺).
(d) If 𝑒 = 𝑢V is an edge of 𝐺 and |𝑉(𝐺)| ≥ 4 then 𝑖(𝐺) ≤

[deg(𝑢) + deg(V) − 2]/2.
(e) If Δ is the maximum vertex degree in 𝐺 then 𝑖(𝐺) ≤

(Δ − 2) + 2/⌊|𝑉(𝐺)|/2⌋. If G has a cycle with almost
half the vertices of G then 𝑖(𝐺) ≤ Δ − 2.

If a set 𝑋 ⊂ 𝑉(𝐺) with |𝑋| ≤ (1/2)|𝑉(𝐺)| reaches the
minimum 𝑖(𝐺) = |𝜕(𝑋)|/|𝑋| we call it an isoperimetric set.
For𝑈 ⊆ 𝑉(𝐺) denoted by𝐺 | 𝑈, the subgraph of𝐺 is induced
on 𝑈 [2].

Proposition 2 (see [2]). If 𝐺 is a connected graph then it has
an isoperimetric set 𝑋 such that 𝐺 | 𝑋 and 𝐺 | (𝑉 \ 𝑋) are
connected subgraphs of 𝐺.

In the next section, we prove a upper bound for isoperi-
metric number of lexicographic product of graphs.

2. Lexicographic Product

The lexicographic product 𝐺
1
[𝐺
2
] of two graphs 𝐺

1
and 𝐺

2

has its vertex set 𝑉(𝐺
1
) × 𝑉(𝐺

2
) with (𝑢

1
, 𝑢
2
) adjacent to

(V
1
, V
2
) if either 𝑢

1
adjacent to V

1
in 𝐺
1
or 𝑢
1

= V
1
and 𝑢

2

are adjacent to V
2
in 𝐺
2
. Note that unlike the union, join, and

Cartesian product, this operation is not commutative.

Theorem 3. Let 𝐺 be a graph with 𝑚 vertices, and let 𝑞 edges
and 𝐻 be a graph with 𝑛 vertices. Then,

𝑖 (𝐺 [𝐻]) ≤ min{𝑖 (𝐺) 𝑛,
2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐻)

⌊𝑛/2⌋
} . (6)

Proof. Let 𝑋
𝐺

⊆ 𝑉(𝐺) and 𝑋
𝐺
be the isoperimetric set of 𝐺

and 𝜕
𝐺
(𝑋) edge boundary of 𝐺. We know that 𝐺[𝐻] includes

𝑛 copies of𝐺. If |𝑋| = |𝑋
𝐺
|𝑛 then |𝜕(𝑋)| ≤ |𝜕

𝐺
(𝑋)|𝑛𝑛. Hence,

|𝜕 (𝑋)|

|𝑋|
≤

󵄨󵄨󵄨󵄨𝜕𝐺 (𝑋)
󵄨󵄨󵄨󵄨 𝑛𝑛

󵄨󵄨󵄨󵄨𝑋𝐺
󵄨󵄨󵄨󵄨 𝑛

=

󵄨󵄨󵄨󵄨𝜕𝐺 (𝑋)
󵄨󵄨󵄨󵄨 𝑛𝑛

󵄨󵄨󵄨󵄨𝑋𝐺
󵄨󵄨󵄨󵄨 𝑛

=

󵄨󵄨󵄨󵄨𝜕𝐺 (𝑋)
󵄨󵄨󵄨󵄨 𝑛

󵄨󵄨󵄨󵄨𝑋𝐺
󵄨󵄨󵄨󵄨

. (7)

So,

min{
|𝜕 (𝑋)|

|𝑋|
} ≤ min{

󵄨󵄨󵄨󵄨𝜕𝐺 (𝑋)
󵄨󵄨󵄨󵄨 𝑛

󵄨󵄨󵄨󵄨𝑋𝐺
󵄨󵄨󵄨󵄨

}

= min{

󵄨󵄨󵄨󵄨𝜕𝐺 (𝑋)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑋𝐺
󵄨󵄨󵄨󵄨

} 𝑛 = 𝑖 (𝐺) 𝑛.

(8)

Similarly, let 𝑋
𝐻

⊆ 𝑉(𝐻) with |𝑋
𝐻
| ≤ ⌊𝑛/2⌋ and

|𝑋
𝐻
| = 𝑟𝑚. We know that 𝐺[𝐻] includes 𝑚 copies of 𝐻. If

|𝑋| = 𝑟𝑚 then we have |𝜕(𝑋)| ≤ 𝑟(𝑛 − 𝑟)2𝑞 + |𝜕
𝐻
(𝑋)|𝑚.

Therefore, |𝜕(𝑋)|/|𝑋| ≤ (𝑟(𝑛 − 𝑟)2𝑞 + |𝜕
𝐻
(𝑋)|𝑚)/𝑟𝑚. So,

min{|𝜕(𝑋)|/|𝑋|} ≤ min{(𝑟(𝑛 − 𝑟)2𝑞 + |𝜕
𝐻
(𝑋)|𝑚)/𝑟𝑚}. The

function (𝑟(𝑛−𝑟)2𝑞+|𝜕
𝐻
(𝑋)|𝑚)/𝑟𝑚 takes its minimum value

at 𝑟 = ⌊𝑛/2⌋. Since |𝑋
𝐻
| = ⌊𝑛/2⌋ then |𝜕(𝑋)| = 𝑏𝑤(𝐻). We

have

𝑖 (𝐺 [𝐻]) ≤
2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐻)

⌊𝑛/2⌋
. (9)

The proof is completed by (8) and (9).

Wehave 𝑖(𝐺)𝑛 ≤ 2𝑞⌈𝑛/2⌉)/𝑚+𝑏𝑤(𝐻)/⌊𝑛/2⌋ according to
the upper bounds of 𝑖(𝐺), and hence we get 𝑖(𝐺[𝐻]) ≤ 𝑖(𝐺)𝑛.

Corollary 4. Let 𝐺 be a graph with𝑚 vertices, and let 𝑞 edges
and 𝐻 be a graph with 𝑛 vertices. If 𝑛 is even and 𝑖(𝐺) ≤ 𝑞/𝑚

and 𝑖(𝐺) ≤ 2𝑏𝑤(𝐻)𝑛
2 then

𝑖 (𝐺) 𝑛 ≤
2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐻)

⌊𝑛/2⌋
. (10)

Proof. If 𝑛 is even and 𝑖(𝐺) ≤ 2𝑏𝑤(𝐻)/𝑛
2 then 𝑖(𝐺)𝑛

2
≤

2𝑏𝑤(𝐻). Hence, we have 𝑖(𝐺)𝑛
2
+ 𝑞𝑛
2

≤ 2𝑏𝑤(𝐻) + 𝑞𝑛
2.

Since 𝑖(𝐺) ≤ 𝑞/𝑚 then 𝑛
2
(𝑖(𝐺) + 𝑖(𝐺)𝑚) ≤ 𝑛

2
(𝑖(𝐺) + 𝑞) ≤

𝑖(𝐺)𝑛
2
+ 𝑞𝑛
2

≤ 2𝑏𝑤(𝐻) + 𝑞𝑛
2. So, we have 𝑖(𝐺)𝑚𝑛

2
≤

𝑛
2
(𝑖(𝐺) + 𝑖(𝐺)𝑚) ≤ 2𝑏𝑤(𝐻) + 𝑞𝑛

2. Therefore, we have

𝑖 (𝐺)𝑚𝑛
2

𝑚𝑛
≤

2𝑏𝑤 (𝐻) + 𝑞𝑛
2

𝑚𝑛
=

2𝑞 (𝑛/2)

𝑚
+

𝑏𝑤 (𝐻)

𝑛/2

=
2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐻)

⌊𝑛/2⌋
.

(11)

Corollary 5. Let 𝐺 be a graph with𝑚 vertices, and let 𝑞 edges
and 𝐻 be a graph with 𝑛 vertices. If 𝑛 is odd and 𝑖(𝐺) ≤

2𝑏𝑤(𝐻)𝑛
2
− 𝑛 then

𝑖 (𝐺) 𝑛 ≤
2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐻)

⌊𝑛/2⌋
. (12)

Corollary 6. Let 𝑇 be a tree with 𝑚 vertices, and let 𝐻 be a
graph with 𝑛 vertices. If 𝑛 is even then

𝑖 (𝑇) 𝑛 ≤
2 (𝑚 − 1) ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐻)

⌊𝑛/2⌋
. (13)
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Proof. For 𝑛 > 1 and𝑚 > 1, we know that 0 ≤ (𝑚−2)𝑛
2
+2𝑚.

Then,𝑚𝑛
2
≤ (2𝑚 − 2)𝑛

2
+ 2𝑚. Since 𝑏𝑤(𝐻) ≥ 1 and 𝑖(𝑇) < 1

then we have 𝑖(𝑇)𝑚𝑛
2

≤ 𝑚𝑛
2

≤ (2𝑚 − 2)𝑛
2
+ 2𝑚𝑏𝑤(𝐻).

Therefore, we have

𝑖 (𝑇) 𝑛 ≤
2 (𝑚 − 1) (𝑛/2)

𝑚
+

𝑏𝑤 (𝐻)

𝑛/2

=
2 (𝑚 − 1) ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐻)

⌊𝑛/2⌋
.

(14)

Corollary 7. Let 𝑇 be a tree with 𝑚 vertices, and let 𝐻 be a
graph with 𝑛 vertices. If 𝑛 is odd and 𝑛 − 1 < 𝑚 then 𝑖(𝑇)𝑛 ≤

2(𝑚 − 1)⌈𝑛/2⌉/𝑚 + 𝑏𝑤(𝐻)/⌊𝑛/2⌋.

Corollary 8. Let 𝐺 be a graph with 𝑚 vertices, 𝑞 edges that is
not a tree, and let 𝑃

𝑛
be a path graph with 𝑛 vertices. If 𝑛 is even

and 𝑖(𝐺) ≤ (𝑚 − 1)/𝑚 then

𝑖 (𝐺) 𝑛 ≤
2𝑞 (𝑛/2)

𝑚
+

1

(𝑛/2)
=

2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝑃
𝑛
)

⌊𝑛/2⌋
. (15)

Proof. If 𝑛 is even and 𝑖(𝐺) ≤ (𝑚 − 1)/𝑚 then 𝑖(𝐺)𝑚 ≤ 𝑚− 1.
Thus, 𝑖(𝐺)𝑚𝑛

2
≤ (𝑚 − 1)𝑛

2
≤ (𝑚 − 1)𝑛

2
+ 2𝑚. Therefore,

𝑖(𝐺)𝑚𝑛
2
/𝑚𝑛 ≤ ((𝑚−1)𝑛

2
+2𝑚)/𝑚𝑛 = (𝑚−1)𝑛/𝑚+2/𝑛. So,

𝑖 (𝐺) 𝑛 ≤
(𝑚 − 1) 𝑛

𝑚
+

2

𝑛
=

2 (𝑚 − 1) 𝑛/2

𝑚

+
1

𝑛/2
≤

2𝑞 (𝑛/2)

𝑚
+

1

𝑛/2

=
2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝑃
𝑛
)

⌊𝑛/2⌋
.

(16)

Corollary 9. Let 𝐺 be a graph with 𝑚 vertices, 𝑞 edges that is
not a tree, and let 𝑃

𝑛
be a path graph with 𝑛 vertices. If 𝑛 is odd

and 𝑖(𝐺) ≤ 2/(𝑛
2
− 𝑛) then

𝑖 (𝐺) 𝑛 ≤
2𝑞 ((𝑛 + 1) /2)

𝑚
+

1

(𝑛 − 1) /2
=

2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝑃
𝑛
)

⌊𝑛/2⌋
.

(17)

Corollary 10. Let 𝐺 be a graph with 𝑚 vertices, 𝑞 edges that
is not a tree, and let 𝐶

𝑛
be a cycle graph with 𝑛 vertices. If 𝑛 is

even and 𝑖(𝐺) ≤ (𝑛
2
+ 4)/𝑛

2 then

𝑖 (𝐺) 𝑛 ≤
2𝑞 (𝑛/2)

𝑚
+

2

𝑛/2
=

2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐶
𝑛
)

⌊𝑛/2⌋
. (18)

Proof. If 𝑛 is even and 𝑖(𝐺) ≤ (𝑛
2
+ 4)/𝑛

2 then

𝑖 (𝐺) 𝑛 ≤
𝑛
2
+ 4

𝑛
=

𝑛
2

𝑛
+

4

𝑛
=

𝑚𝑛

𝑚
+

2

𝑛/2

=
2𝑚𝑛/2

𝑚
+

2

𝑛/2
≤

2𝑞 (𝑛/2)

𝑚
+

2

𝑛/2
.

(19)

So,

𝑖 (𝐺) 𝑛 ≤
2𝑞 (𝑛/2)

𝑚
+

2

𝑛/2
=

2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐶
𝑛
)

⌊𝑛/2⌋
. (20)

Corollary 11. Let 𝐺 be a graph with𝑚 vertices, 𝑞 edges that is
not a tree, and let𝐶

𝑛
be a cycle graph with 𝑛 vertices. If 𝑛 is odd

and 𝑖(𝐺) ≤ (𝑛
2
+ 3)/(𝑛

2
− 𝑛) then

𝑖 (𝐺) 𝑛 ≤
2𝑞 ((𝑛 + 1) /2)

𝑚
+

2

(𝑛 − 1) /2
=

2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐶
𝑛
)

⌊𝑛/2⌋
.

(21)

Corollary 12. Let 𝐺 be a graph with𝑚 vertices, 𝑞 edges that is
not a tree and let𝐾

𝑛
be a complete graph with 𝑛 vertices.

(a) If 𝑛 is even and 𝑖(𝐺) ≤ (𝑞/𝑚) + (1/2) then

𝑖 (𝐺) 𝑛 ≤
2𝑞 (𝑛/2)

𝑚
+

𝑛
2
/4

𝑛/2
=

2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐾
𝑛
)

⌊𝑛/2⌋
. (22)

(b) If 𝑛 is odd and 𝑖(𝐺) ≤ (𝑛 + 1)(2𝑞 + 𝑚)/𝑚𝑛 then

𝑖 (𝐺) 𝑛 ≤
2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐾
𝑛
)

⌊𝑛/2⌋
. (23)

Proof. (a) If 𝑛 is even and 𝑖(𝐺) ≤ (𝑞/𝑚) + (1/2) then we have

𝑖 (𝐺) 𝑛 ≤
𝑞𝑛

𝑚
+

𝑛

2

=
2𝑞 (𝑛/2)

𝑚
+

𝑛
2
/4

𝑛/2

=
2𝑞 ⌈𝑛/2⌉

𝑚
+

𝑏𝑤 (𝐾
𝑛
)

⌊𝑛/2⌋
.

(24)

The proof for 𝑛 even is very similar to the proof for odd.

Theorem 13. Let 𝑃
𝑚
be a path graph with𝑚 vertices, and let 𝑞

edges and 𝐻 be a graph with 𝑛 vertices. Then,

𝑖 (𝑃
𝑚 [𝐻])

=

{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{

{

2𝑛

𝑚
, 𝑖𝑓 𝑚 𝑖𝑠 𝑒V𝑒𝑛

2𝑛
2
+ 2𝑏𝑤 (𝐻)

𝑚𝑛
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 𝑏𝑤 (𝐻) (𝑚 − 1) < 𝑛
2

2𝑛

𝑚 − 1
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 𝑏𝑤 (𝐻) (𝑚 − 1) ≥ 𝑛
2

2𝑛
2
+ 2𝑏𝑤 (𝐻)

𝑚𝑛 − 1
, 𝑖𝑓 𝑚 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑜𝑑𝑑

𝑎𝑛𝑑 𝑏𝑤 (𝐻) (𝑚 − 1) < 𝑛
2
− 𝑛

2𝑛

𝑚 − 1
, 𝑖𝑓 𝑚 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑒V𝑒𝑛

𝑎𝑛𝑑 𝑏𝑤 (𝐻) (𝑚 − 1) ≥ 𝑛
2
− 𝑛.

(25)

Proof. Let 𝑉(𝑃
𝑚
) = {1, 2, . . . , 𝑚} and 𝑋 ⊆ 𝑉(𝑃

𝑚
[𝐻]) with

|𝑋| ≤ ⌊𝑚𝑛/2⌋. For 𝑖 = 1, 2, . . . , 𝑚 let 𝑋
𝑖
= 𝑋 ∩ (𝑉(𝐻) ×

𝑖). Hence, 𝑋 is the disjoint union of 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚
. Let

𝑆
0

= {𝑋
𝑖
| |𝑋
𝑖
| = 0, 1 ≤ 𝑖 ≤ 𝑚} and 𝑆

𝑛
= {𝑋
𝑖
| |𝑋
𝑖
| =

𝑛, 1 ≤ 𝑖 ≤ 𝑚}. To prove this theorem, we have three cases.
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Case 1. Let 𝑚 be an even integer. To prove this case, we have
three subcases.

Subcase 1.1. If |𝑋| = 𝑟 where 1 ≤ 𝑟 < 𝑛 then |𝜕(𝑋)| ≥ 𝑟𝑛 + 1.
Therefore, |𝜕(𝑋)|/|𝑋| ≥ (𝑟𝑛 + 1)/𝑟. The function (𝑟𝑛 + 1)/𝑟

has its minimum value at 𝑟 = 𝑛 − 1, and we have

min{
|𝜕 (𝑋)|

|𝑋|
} ≥

(𝑛 − 1) 𝑛 + 1

𝑛 − 1
. (26)

Subcase 1.2. If 𝑆
0
> 0 and 𝑆

𝑛
> 0 and |𝑋| = 𝑟 where 𝑛 ≤ 𝑟 ≤

𝑚𝑛/2 then |𝜕(𝑋)| ≥ 𝑛
2
+ (𝑚 − 𝑆

0
− 𝑆
𝑛
)|𝜕
𝐻
(𝑋)|. Therefore,

|𝜕(𝑋)|/|𝑋| ≥ (𝑛
2
+ (𝑚 − 𝑆

0
− 𝑆
𝑛
)|𝜕
𝐻

(𝑋)|)/𝑟. The function
(𝑛
2
+ (𝑚 − 𝑆

0
− 𝑆
𝑛
)|𝜕
𝐻

(𝑋)|)/𝑟 has its minimum value at 𝑟 =

𝑚𝑛/2. If 𝑟 = 𝑚𝑛/2 then (𝑚 − 𝑆
0
− 𝑆
𝑛
)|𝜕
𝐻
(𝑋)| = 0. Thus,

min{
|𝜕 (𝑋)|

|𝑋|
} ≥

2𝑛

𝑚
. (27)

Subcase 1.3. If (𝑆
0
= 0, 𝑆

𝑛
= 0) or (𝑆

0
= 0, 𝑆

𝑛
> 0) or (𝑆

0
>

0, 𝑆
𝑛
= 0) and |𝑋| = 𝑟 where 𝑛 ≤ 𝑟 ≤ 𝑚𝑛/2 then

|𝜕 (𝑋)| ≥ ⌊
𝑟

𝑚
⌋(𝑛 − ⌊

𝑟

𝑚
⌋) 2𝑞 +

󵄨󵄨󵄨󵄨𝜕𝐻 (𝑋)
󵄨󵄨󵄨󵄨 𝑚

≥ ⌊
𝑟

𝑚
⌋(𝑛 − ⌊

𝑟

𝑚
⌋) 2 (𝑚 − 1)

+
󵄨󵄨󵄨󵄨𝜕𝐻 (𝑋)

󵄨󵄨󵄨󵄨 𝑚 ≥ ⌊
𝑟

𝑚
⌋(𝑛 − ⌊

𝑟

𝑚
⌋) (2𝑚 − 2) + 𝑚.

(28)

Thus, |𝜕(𝑋)|/|𝑋| ≥ (⌊𝑟/𝑚⌋(𝑛 − ⌊𝑟/𝑚⌋)(2𝑚 − 2) + 𝑚)/𝑟. The
function (⌊𝑟/𝑚⌋(𝑛 − ⌊𝑟/𝑚⌋)(2𝑚−2) +𝑚)/𝑟 has its minimum
value at 𝑟 = 𝑚𝑛/2, and we have

min{
|𝜕 (𝑋)|

|𝑋|
}

≥
⌊(𝑚𝑛/2) /𝑚⌋ (𝑛 − ⌊(𝑚𝑛/2) /𝑚⌋) (2𝑚 − 2) + 𝑚

𝑚𝑛/2

=
𝑛
2
𝑚 − 𝑛

2
+ 2𝑚

𝑚𝑛
.

(29)

By (26), (27), and (29), if 𝑚 is even then 𝑖(𝑃
𝑚
[𝐻]) =

(2𝑛/𝑚).

Case 2. Let𝑚 be an odd, and let 𝑛 be an even integer. To prove
this case, we have four subcases.

Subcase 2.1. If |𝑋| = 𝑟 where 1 ≤ 𝑟 < 𝑛 then |𝜕(𝑋)| ≥ 𝑟𝑛 + 1.
Therefore, |𝜕(𝑋)|/|𝑋| ≥ (𝑟𝑛 + 1)/𝑟. The function (𝑟𝑛 + 1)/𝑟

has its minimum value at 𝑟 = 𝑛 − 1, and we have

min{
|𝜕 (𝑋)|

|𝑋|
} ≥

(𝑛 − 1) 𝑛 + 1

𝑛 − 1
. (30)

Subcase 2.2. If 𝑆
0

> 0 and 𝑆
𝑛

> 0 and |𝑋| = 𝑟 where 𝑛 ≤

𝑟 ≤ (𝑚 − 1)𝑛/2 then |𝜕(𝑋)| ≥ 𝑛
2
+ (𝑚 − 𝑆

0
− 𝑆
𝑛
)|𝜕
𝐻

(𝑋)|.
Therefore, |𝜕(𝑋)|/|𝑋| ≥ (𝑛

2
+ (𝑚 − 𝑆

0
− 𝑆
𝑛
)|𝜕
𝐻

(𝑋)|)/𝑟. The
function (𝑛

2
+(𝑚−𝑆

0
−𝑆
𝑛
)|𝜕
𝐻

(𝑋)|)/𝑟 has its minimum value
at 𝑟 = (𝑚−1)𝑛/2. If 𝑟 = (𝑚−1)𝑛/2 then (𝑚−𝑆

0
−𝑆
𝑛
)|𝜕
𝐻
(𝑋)| =

0. Thus,

min{
|𝜕 (𝑋)|

|𝑋|
} ≥

𝑛
2

(𝑚 − 1) 𝑛/2
=

2𝑛

𝑚 − 1
. (31)

Subcase 2.3. If 𝑆
0

> 0 and 𝑆
𝑛

> 0 and |𝑋| = 𝑟 where (𝑚 −

1)𝑛/2 ≤ 𝑟 ≤ 𝑚𝑛/2 then |𝜕(𝑋)| = 𝑛
2
+ 𝑏𝑤(𝐻). Therefore,

|𝜕(𝑋)|/|𝑋| = (𝑛
2
+ 𝑏𝑤(𝐻))/𝑟. The function (𝑛

2
+ 𝑏𝑤(𝐻))/𝑟

has its minimum value at 𝑟 = 𝑚𝑛/2. Thus,

min{
|𝜕 (𝑋)|

|𝑋|
} =

𝑛
2
+ 𝑏𝑤 (𝐻)

𝑚𝑛/2
=

2𝑛
2
+ 2𝑏𝑤 (𝐻)

𝑚𝑛
.

(32)

Subcase 2.4. If (𝑆
0
= 0, 𝑆

𝑛
= 0) or (𝑆

0
= 0, 𝑆

𝑛
> 0) or (𝑆

0
>

0, 𝑆
𝑛
= 0) and |𝑋| = 𝑟 where 𝑛 ≤ 𝑟 ≤ 𝑚𝑛/2 then

|𝜕 (𝑋)| ≥ ⌊
𝑟

𝑚
⌋(𝑛 − ⌊

𝑟

𝑚
⌋) 2𝑞 +

󵄨󵄨󵄨󵄨𝜕𝐻 (𝑋)
󵄨󵄨󵄨󵄨 𝑚

≥ ⌊
𝑟

𝑚
⌋(𝑛 − ⌊

𝑟

𝑚
⌋) 2 (𝑚 − 1) +

󵄨󵄨󵄨󵄨𝜕𝐻 (𝑋)
󵄨󵄨󵄨󵄨 𝑚

≥ ⌊
𝑟

𝑚
⌋(𝑛 − ⌊

𝑟

𝑚
⌋) (2𝑚 − 2) + 𝑚.

(33)

Thus, |𝜕(𝑋)|/|𝑋| ≥ (⌊𝑟/𝑚⌋(𝑛 − ⌊𝑟/𝑚⌋)(2𝑚 − 2) + 𝑚)/𝑟. The
function (⌊𝑟/𝑚⌋(𝑛 − ⌊𝑟/𝑚⌋)(2𝑚 − 2) + 𝑚)/𝑟 takes minimum
value at 𝑟 = 𝑚𝑛/2, and we have

min{
|𝜕 (𝑋)|

|𝑋|
}

≥
⌊(𝑚𝑛/2) /𝑚⌋ (𝑛 − ⌊(𝑚𝑛/2) /𝑚⌋) (2𝑚 − 2) + 𝑚

𝑚𝑛/2

=
𝑛
2
𝑚 − 𝑛

2
+ 2𝑚

𝑚𝑛
.

(34)

By (30), (31), (32), and (34), we have that if 𝑚 is odd and
𝑛 is even and 𝑏𝑤(𝐻)(𝑚 − 1) < 𝑛

2 then 𝑖(𝑃
𝑚

[𝐻]) = (2𝑛
2
+

2𝑏𝑤(𝐻))/𝑚𝑛, and if 𝑚 is odd and 𝑛 is even and 𝑏𝑤(𝐻)(𝑚 −

1) ≥ 𝑛
2 then 𝑖(𝑃

𝑚
[𝐻]) = 2𝑛/(𝑚 − 1).

Case 3. The proofs of the case in which 𝑚 and 𝑛 are odd are
similar to that of Case 2.

The isoperimetric number of 𝑖(𝑃
𝑚
[𝑃
𝑛
]) is given in the

following corollary.

Corollary 14. Let 𝑚 and 𝑛 be positive integers. Then,

𝑖 (𝑃
𝑚
[𝑃
𝑛
])

=

{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{

{

2𝑛

𝑚
, 𝑖𝑓 𝑚 𝑖𝑠 𝑒V𝑒𝑛

2𝑛
2
+ 2

𝑚𝑛
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 (𝑚 − 1) < 𝑛
2

2𝑛

𝑚 − 1
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 (𝑚 − 1) ≥ 𝑛
2

2𝑛
2
+ 2

𝑚𝑛 − 1
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑎𝑛𝑑 (𝑚 − 1) < 𝑛
2
− 𝑛

2𝑛

𝑚 − 1
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 (𝑚 − 1) ≥ 𝑛
2
− 𝑛.

(35)
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The isoperimetric number of 𝑖(𝑃
𝑚
[𝐶
𝑛
]) is given in the

following corollary.

Corollary 15. Let 𝑚 > 5 and 𝑛 be positive integers. Then,

𝑖 (𝑃
𝑚
[𝐶
𝑛
])

=

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

2𝑛

𝑚
, 𝑖𝑓 𝑚 𝑖𝑠 𝑒V𝑒𝑛

2𝑛
2
+ 4

𝑚𝑛
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 2 (𝑚 − 1) < 𝑛
2

2𝑛

𝑚 − 1
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 2 (𝑚 − 1) ≥ 𝑛
2

2𝑛
2
+ 4

𝑚𝑛 − 1
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑎𝑛𝑑 2 (𝑚 − 1) < 𝑛
2
− 𝑛

2𝑛

𝑚 − 1
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 2 (𝑚 − 1) ≥ 𝑛
2
− 𝑛.

(36)

The isoperimetric number of 𝑖(𝐶
𝑚
[𝑃
𝑛
]) is given in the

following corollary.

Corollary 16. Let 𝑚 > 5 and 𝑛 be positive integers. Then,

𝑖 (𝐶
𝑚
[𝑃
𝑛
])

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

4𝑛

𝑚
, 𝑖𝑓 𝑚 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑒V𝑒𝑛

𝑎𝑛𝑑 𝑚 >
4𝑛
2

𝑛2 + 2

4𝑛
2
+ 2

𝑚𝑛
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 𝑚 ≤ 2𝑛
2
+ 1

4𝑛

𝑚 − 1
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 𝑚 > 2𝑛
2
+ 1

𝑛
2
− 1

𝑛
, 𝑖𝑓 𝑚 𝑖𝑠 𝑒V𝑒𝑛 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑎𝑛𝑑 𝑚 ≤
4𝑛
2

𝑛2 − 1
4𝑛

𝑚
, 𝑖𝑓 𝑚 𝑖𝑠 𝑒V𝑒𝑛 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑎𝑛𝑑 𝑚 >
4𝑛
2

𝑛2 − 1

4𝑛
2

(𝑚 − 1) 𝑛
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑎𝑛𝑑 𝑚 ≤ 2𝑛
2
− 2𝑛 + 1

4𝑛
2
+ 2

𝑚𝑛 − 1
, 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑎𝑛𝑑 𝑚 > 2𝑛
2
− 2𝑛 + 1.

(37)

The isoperimetric number of 𝑖(𝐾
𝑚
[𝑃
𝑛
]) is given in the

following corollary.

Corollary 17. Let 𝑚 and 𝑛 be positive integers. Then,

𝑖 (𝐾
𝑚
[𝑃
𝑛
])

=

{{{{{{{{{{

{{{{{{{{{{

{

𝑛
2
𝑚 − 𝑛

2
+ 4

2𝑛
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑛
2
𝑚
2
− 𝑛
2
𝑚 + 3𝑚

2𝑚𝑛
, 𝑖𝑓 𝑚 𝑖𝑠 𝑒V𝑒𝑛 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛
2
𝑚
2
− 𝑛
2
𝑚 + 5𝑚 − 1

2 (𝑚𝑛 − 1)
, 𝑖𝑓 𝑚 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑜𝑑𝑑.

(38)

The isoperimetric number of 𝑖(𝐾
1,𝑚

[𝑃
𝑛
]) is given in the

following corollary.

Corollary 18. Let 𝑚 and 𝑛 be positive integers. Then,

𝑖 (𝐾
1,𝑚

[𝑃
𝑛
])

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑛
2
𝑚 + 2𝑚 + 2

(𝑚 + 1) 𝑛
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 2𝑚 + 2 < 𝑛
2

𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 2𝑚 + 2 ≥ 𝑛
2

𝑛
2
𝑚 + 2𝑚 + 3

(𝑚 + 1) 𝑛
, 𝑖𝑓 𝑛 𝑎𝑛𝑑 𝑚 𝑎𝑟𝑒 𝑜𝑑𝑑

𝑎𝑛𝑑 2𝑚 + 3 < 𝑛
2

𝑛, 𝑖𝑓 𝑛 𝑎𝑛𝑑 𝑚 𝑎𝑟𝑒 𝑜𝑑𝑑

𝑎𝑛𝑑 2𝑚 + 3 ≥ 𝑛
2

𝑛
2
𝑚 + 2𝑚 + 2

(𝑚 + 1) 𝑛 − 1
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 2𝑚 + 2 < 𝑛
2
− 𝑛

𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 2𝑚 + 2 ≥ 𝑛
2
− 𝑛.

(39)

The isoperimetric number of 𝑖(𝐾
1,𝑚

[𝐶
𝑛
]) is given in the

following corollary.

Corollary 19. Let 𝑚 and 𝑛 be positive integers. Then,

𝑖 (𝐾
1,𝑚

[𝐶
𝑛
])

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑛
2
𝑚 + 4𝑚 + 4

(𝑚 + 1) 𝑛
, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 4𝑚 + 4 < 𝑛
2

𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 4𝑚 + 4 ≥ 𝑛
2

𝑛
2
𝑚 + 4𝑚 + 5

(𝑚 + 1) 𝑛
, 𝑖𝑓 𝑛 𝑎𝑛𝑑 𝑚 𝑎𝑟𝑒 𝑜𝑑𝑑

𝑎𝑛𝑑 4𝑚 + 5 < 𝑛
2

𝑛, 𝑖𝑓 𝑛 𝑎𝑛𝑑 𝑚 𝑎𝑟𝑒 𝑜𝑑𝑑

𝑎𝑛𝑑 4𝑚 + 5 ≥ 𝑛
2

𝑛
2
𝑚 + 4𝑚 + 4

(𝑚 + 1) 𝑛 − 1
, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 4𝑚 + 4 < 𝑛
2
− 𝑛

𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑒V𝑒𝑛

𝑎𝑛𝑑 4𝑚 + 4 ≥ 𝑛
2
− 𝑛.

(40)
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