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Measurement of photons number in a quantum cavity is very difficult and the photons number is changed after each measurement.
Recently, many efforts have been done for the nondemolition measurement methods. Haroche et al. succeed in recognizing
existence or nonexistence of one photon in a quantum cavity. In this paper, we employ their experimental setup for a quantum
nondemolition measurement and pump a coherent state in their quantum cavity. In this case, we could detect more photons in the
quantum cavity by a measurement of a displacedWigner function. It is also shown that the measurement of more than one photon
is possible by the Haroche method by measuring just one point of displaced Wigner function. Furthermore, if the cavity field is
filled by a superposition of two number states, the average number of photons within the cavity would be measurable. We show
that their setup is also suitable to apply for the measurement of the squeezing parameter for the squeezed state of photons number
in the quantum cavity successfully.

1. Introduction

The formulation of quantum mechanics in phase space was
proposed by Wigner [1]. This formulation is very useful in
various fields of physics including quantum mechanics [2,
3], quantum optics [4–6], and condensate matter [7, 8].
The physical concepts are extractable fromWigner function.
Wigner functionmay take negative value for a quantum state.
The existence of negative or interference of Wigner function
is a nonclassicality indicator for quantum systems [9–11]. On
the other hand, Wigner function is a measurable quantity.
Many authors introduced methods to measure Wigner func-
tion for trapped ions [12], photonic number states in quantum
cavity [13–15], Schrodinger cat state, and coherent state [16].
Bertet et al. measure a complete Wigner function for the
vacuum and a single photon state [17]. Lutterbach andDavid-
ovich presented amethod tomeasure theWigner distribution
function of photonic state in a quantum cavity field [18, 19].
They used an experimental ingenious setup which was made
by one high Q-factor and two low Q-factor cavities.

Nogues et al. (members of Haroche group) measured the
Wigner distribution functions of electromagnetic fields in a
cavity with the number states 𝑛 = 0 and 𝑛 = 1 at origin

of phase space [20]. The Wigner distribution function at the
origin of phase space is positive for 𝑛 = 0 and negative for
𝑛 = 1. Therefore, the sign of measured Wigner distribution
function, itself, gives us the number of photons in the cavity
and its value is not important [20]. So, if there are more than
one photon, it would not be possible to recognize the number
of photons. In this paper we used the Haroche method to
measure the larger number of photons by measuring just
one point of the displaced Wigner distribution function in a
quantum cavity. We use an experimental setup for the meas-
urement of displacedWigner function proposed by Deléglise
et al. [16] (Haroche group). It is shown that their experimental
setup is useful for the measurement of number of photons,
even for 𝑛 > 1. This method is also suitable to measure the
average number of superpositions of two number states.
The development of method to an arbitrary superposition of
states needs more measurement for many more points of
Wigner function which is not discussed in this paper. Fur-
thermore this method is also applied to measure the squeez-
ing parameter for squeezed number state of photons.

In the next section, the Wigner distribution function is
calculated for four values of 𝑛 and their plot in phase space
is illustrated. It would be shown that Wigner functions at
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the origin of phase space have positive value for the even
and negative value for the odd number of photons. So, by
measuring the Wigner function at the origin we only find
whether the number of photons is even or odd. The value of
the displacedWigner function depends on the photons num-
ber.We find a point in phase space inwhichWigner functions
have different values for different photons number.Therefore
we determine the photons number (or the average of photons
number) bymeasuring the displacedWigner function. In this
section Lutterbach and Davidovich method is developed for
displacedWigner function and its experimental setup will be
introduced. The measurement of displaced Wigner function
in a quantum cavity is compared with the value of theWigner
function of different number states. Then the number of
photons is obtained. In Section 3 a quantum cavity field is set
to be in a superposition of two number states. In this case the
average number of photons in the cavity is measured by cal-
culating the Wigner function in the quantum cavity field by
comparing the result with the Wigner function measured by
the Latterbach andDavidovich proposed experimental setup.
Section 4 is devoted to themeasurement of squeezing param-
eter for the squeezed number states in a quantum cavity.
The displaced Wigner function is measured for the squeezed
field by developed Lutterbach and Davidovich experimental
setup. The squeezed parameter is measurable by calculating
the displacedWigner function, for any value of 𝑛. Finally, the
last section is devoted to the conclusions.

2. Measuring Number of Photons in
a Quantum Cavity

2.1. Calculating the Wigner Function. The Wigner function
for a number state |𝑛⟩ is given by [21]

𝑊(𝛼) = 2Tr (𝐷−1 (𝛼) 𝜌𝐷 (𝛼) 𝑃̂) , (1)

where 𝜌 = |𝑛⟩⟨𝑛| is the density operator, 𝑃̂ = 𝑒
𝑖𝜋𝑎

†
𝑎 is the

parity operator, and 𝐷(𝛼) = 𝑒
(𝛼𝑎

†
−𝛼

∗
𝑎) is the displacement

operator in phase space [21, 22]. The operation of the parity
and displacement operators on |𝑛⟩ is given by [21]

𝑃̂ |𝑛⟩ = 𝑒
𝑖𝜋𝑎

†
𝑎

|𝑛 ⟩ = (−1)
𝑛

|𝑛 ⟩ ,

𝐷 (𝛼) |𝑛⟩ = 𝑒
(𝛼𝑎

†
−𝛼

∗
𝑎)

|𝑛 ⟩ = |𝑛, 𝛼⟩ ,

(2)

where |𝑛, 𝛼⟩ is the displaced number state [21]. Equation (1)
can be written as [21]

𝑊(𝛼) = 2Tr (𝜌𝐷 (2𝛼) 𝑃̂) = 2

∞

∑

𝑚=0

⟨𝑚| (𝜌𝐷 (2𝛼) 𝑃̂) |𝑚⟩ ,

(3)

where |𝑚⟩ is a number state. By (2) and (3) the Wigner func-
tion is obtained as follows:

𝑊
𝑛

(𝛼) = 2

∞

∑

𝑚=0

(−1)
𝑛

𝛿
𝑛𝑚
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(4|𝛼|
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) .

(4)

The value of ⟨𝑛 | 𝑚, 2𝛼⟩ for 𝑛 < 𝑚 and 𝑛 ≥ 𝑚 is written
versus Laguerre polynomials as

⟨𝑛 | 𝑚, 2𝛼⟩ = 𝑒
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√
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) ,

(5)

respectively. By the above relations the Laguerre polynomials
for 𝑛 = 𝑚 are given by

𝐿
𝑛

(𝑥) =

𝑒
𝑥

𝑛!

𝑑
𝑛

𝑑𝑥
𝑛

(𝑒
−𝑥

𝑥
𝑛

) , (6)

where 𝑥 = 4|𝛼|
2. Let us consider a cavity with 𝑛 photons.

The exact value of 𝑛 is not definite, but suppose there is a few
number of photons, for example, between 0 and 3. From (4)
to (6) the Wigner function is calculated for number states as

𝑊
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(𝛼) = 2𝑒
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2

,

𝑊
1

(𝛼) = −2𝑒
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2

(1 − 4|𝛼|
2
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2
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2𝑒
−2|𝛼|

2

2!

(16|𝛼|
4

− 16|𝛼|
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+ 2) ,

𝑊
3

(𝛼) =

−2𝑒
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2

3!

(−64|𝛼|
6

+ 144|𝛼|
4

− 7|𝛼|
2

+ 6) .

(7)

In Figure 1, Re(𝛼) and Im(𝛼) are the axes of phase space.
The cross section of the Wigner functions for the number
states is plotted in terms of Re(𝛼) for Im(𝛼) = 0. These
Wigner functions have just two values in the origin; for even
number states they are positive, while for odd number states
they are negative. Thus, the value of the Wigner function at
the origin is not sufficient to specify the number of photons
in the quantum cavity. For other points of phase space these
values are not the same for different states of photon numbers.
One can apply this feature to specify the number of photons
in the cavity.

To select a point in the phase space in which the Wigner
function and consequently the number of photons are going
to be measured, we note that the values of the Wigner
function for each 𝑛 should have the maximum difference as
much as possible. In order to have exact and significant
measurement the discrepancy should be much more than
measuring errors. In Figure 2 the value of Wigner functions
versus the number of photons has been plotted for Re(𝛼) =

0.5.

2.2. The Measurement of Photons Number. In this section we
apply the Lutterbach and Davidovich method for measuring
theWigner function of the electromagnetic field in the cavity,
where the number of photons is one of the 𝑛 values (e.g. 𝑛 =

0, 1, 2, and 3).
As shown in Figure 3, the experimental setup is made of

3 cavities. The quantum field in cavity 𝐶 is determined by an
eigenstate of number states, but 𝑅

1

and 𝑅
2

cavities contain
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Figure 1: The Wigner function is plotted versus Re(𝛼) for 𝑛 =

0, 1, 2, 3. 𝑊
0

, 𝑊
1

, 𝑊
2

, and 𝑊
3

are the Wigner distribution functions
for 𝑛 = 0, 1, 2, 3, respectively. The Wigner distribution functions at
the origin have only two values for both the even and odd numbers
of photons. Outside the origin, for example, at Re(𝛼) = 0.5, values
of the Wigner distribution functions are not the same for different
number of photons.
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Figure 2: The values of Wigner function for the photon numbers
(0 to 3) for Re(𝛼) = 0.5. It is necessary to reduce the experimental
error, in order to avoid the overlap of the errors in neighbor points.

classical fields. Each cavity is a Fabry-Perot resonator which
is made of two spherical super conductor mirrors [20].

In this experiment, a beam of Rydberg rubidium atoms
pass through the cavities and interact with their electromag-
netic fields. If one of the electrons of the atoms (usually the
valence electron) is excited and jumps to a level with a higher
quantum number, the atom would settle in a Rydberg state.

C

R1 R2

Detector
Atom

Figure 3: The experimental scheme for measuring the Wigner
functions in the electromagnetic field in cavity 𝐶, which leads us to
measure the number of photons. The cavities 𝑅

1

and 𝑅
2

contain the
classical electromagnetic fields.

n = 51

n = 50

51Hz

|g⟩

|e⟩

C, R1, R2

Figure 4:The Rydberg levels for the rubidium atomwhich interacts
with all cavities in Figure 3.

Here, two Rydberg levels with quantum numbers, 50 and
51, are investigated and their states denoted by |𝑔⟩ and |𝑒⟩,
respectively (see Figure 4). The frequency of the field of each
cavity is set to be close to the transition frequency between
these two levels. So, the rubidium atom interacts with the
field as a two-level atom. The interaction of the rubidium
atom with the field of 𝑅

1

and 𝑅
2

cavities is performed in a
resonant state. In the cavity 𝑅

1

, the atom in the |𝑒⟩ state emits
a photon during the interaction with the field and jumps to
|𝑔⟩ state. The atom may absorb this photon and come back
to the |𝑒⟩ state again. This happens over and over and the
atom oscillates between the two levels. These oscillations are
called Rabi oscillations.TheRabi frequency is denoted byΩ

𝑅

.
In general, during interaction, the state of atom evolves to a
superposition of states [23] as follows:

| 𝑒⟩

𝑅1

󳨀󳨀→ cos(
Ω
𝑅

𝑡

2

) | 𝑒⟩ + sin(

Ω
𝑅

𝑡

2

)
󵄨
󵄨
󵄨
󵄨
𝑔⟩ , (8)

where Ω
𝑅

𝑡 is a phase which is obtained by the atom while
passing through the cavity 𝑅

1

. Here we consider Ω
𝑅

𝑡 = 𝜋/2;
then

| 𝑒⟩

𝑅1

󳨀󳨀→

1

√2

(| 𝑒⟩ +
󵄨
󵄨
󵄨
󵄨
𝑔⟩) . (9)

In the cavity 𝐶, by applying a uniform electric field, the
Stark effect causes a small difference between the cavity field
frequency 𝜔

𝑓

and the two-level atom transition frequency
𝜔
𝑎

= (𝐸
𝑒

− 𝐸
𝑔

)/ℎ, which is called detuning 𝛿 = 𝜔
𝑓

− 𝜔
𝑎

. In a
nonresonance interaction, there is no transition between the
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atomic levels. Such nonresonance interaction applies a phase
shift to the atomic state. This phase shift is given by [23]

𝑒
−𝑖

̂

𝐻eff/ℎ
| 𝑒⟩ |𝑛, 𝛼⟩ = 𝑒

−𝑖𝜑(𝑛+1)𝑡

| 𝑒⟩ |𝑛, 𝛼⟩ ,

𝑒
−𝑖

̂

𝐻eff/ℎ 󵄨
󵄨
󵄨
󵄨
𝑔⟩ |𝑛, 𝛼⟩ = 𝑒

−𝑖𝜑𝑛𝑡
󵄨
󵄨
󵄨
󵄨
𝑔⟩ |𝑛, 𝛼⟩ ,

(10)

for |𝑒⟩ and |𝑔⟩ states, respectively. In these relations,
𝐻̂eff = ℎ𝜑[(1 + 𝑎

†

𝑎)|𝑒⟩⟨𝑒| − 𝑎
†

𝑎|𝑔⟩⟨𝑔|)] is the interac-
tion Hamiltonian, 𝜑 = 𝜆

2

/𝛿 = 𝑑
2

𝜀
2

/ℎ
2

𝛿 depends on
𝜀 = −(ℎ𝜔/𝜀

∘

𝑉)
1/2 sin 𝑘𝑧 which is equal to the electric field

amplitude, and 𝐸 = (ℎ𝜔/𝜀
∘

𝑉)
1/2

(𝑎
†

+ 𝑎) sin 𝑘𝑧 [23]. In
order to measure the displaced Wigner function a coherent
electromagnetic field is pumped into the cavity 𝐶. The effect
of this coherent field on the number state of photon is a
displacement which is shown by |𝑛, 𝛼⟩ = 𝐷(𝛼)|𝑛⟩. The state
of the atom outgoing the cavity 𝐶 is given by

𝐶

󳨀→

1

√2

(𝑒
−𝑖𝜑(𝑎

†
𝑎+1)𝑡

| 𝑒⟩ + 𝑒
−𝑖𝜑𝑎

†
𝑎𝑡

󵄨
󵄨
󵄨
󵄨
𝑔⟩) . (11)

The relative phase between the cavities𝑅
1

and𝑅
2

is 𝜂 [18].
The atom makes also an interaction with a phase Ω

𝑅

𝑡 = 𝜋/2

in the cavity 𝑅
2

resonantly. Thus each part of states in (11)
changes as follows:

| 𝑒⟩

𝑅2

󳨀󳨀→

1

√2

(|𝑒⟩ + 𝑒
𝑖𝜂

󵄨
󵄨
󵄨
󵄨
𝑔⟩) ,

󵄨
󵄨
󵄨
󵄨
𝑔⟩

𝑅2

󳨀󳨀→

1

√2

(
󵄨
󵄨
󵄨
󵄨
𝑔⟩ − 𝑒

−𝑖𝜂

| 𝑒⟩) .

(12)

Therefore, after going out of the last cavity the total state of
the system is given by

󵄨
󵄨
󵄨
󵄨
𝜓⟩ =

1

√2

[(𝑒
−𝑖𝜑(𝑛+1)

− 𝑒
𝑖(𝜑𝑛−𝜂)

) | 𝑒⟩

+ (𝑒
𝑖(−𝜑((𝑛+1)+𝜂)

+ 𝑒
𝑖𝜑𝑛

)
󵄨
󵄨
󵄨
󵄨
𝑔⟩] |𝑛, 𝛼⟩ .

(13)

By (13) the atom-field density matrix of the whole system
is obtained as

𝜌atom+field =

1

4

[| 𝑒⟩ ⟨𝑒 | (𝑒
−𝑖𝜑(𝑛+1)

− 𝑒
𝑖(𝜑𝑛−𝜂)

)

× 𝜌
󸀠

(𝑒
+𝑖𝜑(𝑛+1)

− 𝑒
−𝑖(𝜑𝑛−𝜂)

)

+
󵄨
󵄨
󵄨
󵄨
𝑔⟩⟨𝑔

󵄨
󵄨
󵄨
󵄨
(𝑒
𝑖(−𝜑(𝑛+1)+𝜂)

+ 𝑒
𝑖𝜑𝑛

)

× 𝜌
󸀠

(𝑒
𝑖(−𝜑(𝑛+1)+𝜂)

+ 𝑒
−𝑖𝜑𝑛

)

+ nondiagonal terms of atomic state] ,

(14)

where 𝜌
󸀠

= 𝐷(𝛼)𝜌𝐷
−1

(𝛼). Then outgoing state of atom is
detected by ionization detector in the |𝑒⟩ or |𝑔⟩ states. This
experiment should be repeatedmany times and the probabili-
ties of detecting the atoms in each |𝑒⟩ or |𝑔⟩ state are described
with𝑃

𝑒

= 𝑁
𝑒

/(𝑁
𝑒

+𝑁
𝑔

) and𝑃
𝑔

= 𝑁
𝑔

/(𝑁
𝑒

+𝑁
𝑔

), respectively.

Here𝑁
𝑒

and𝑁
𝑔

are the numbers of detected atoms in |𝑒⟩ and
|𝑔⟩ states, respectively. By (14), these probabilities and also the
difference between them versus the Wigner function [18] are
obtained as

Δ𝑃 = −Re {𝑒
𝑖(𝜑−𝜂) Tr [𝐷 (𝛼) 𝜌𝐷

−1

(𝛼) 𝑒
2𝑖𝜑𝑎

†
𝑎

]} , (15)

where Δ𝑃 = 𝑃
𝑒

− 𝑃
𝑔

. If we set 𝜑 = −𝜂 = 𝜋/2, then Δ𝑃 would
be proportional to a displaced Wigner function:

Δ𝑃 = 𝑃
𝑒

− 𝑃
𝑔

=

𝑊(−𝛼)

2

. (16)

The number of photons in the cavity 𝐶 is obtained by a
comparison between the measured Wigner function at the
point 𝛼, (16), and the value of the displacedWigner functions
for 𝑛 = 0, 1, 2, 3. We can develop this method to measure
a large number of photons, although the accuracy of our
measurement is our main limitation.

3. Measuring the Average Number of Photons
in a Quantum Cavity

In the previous experimental setup the cavity 𝐶 was in a
number state |𝑛⟩ and the proposed experiment reveals integer
photons number within the cavity. In this section we show
if cavity 𝐶 can be in a superposition state; the average of
photons number is alsomeasurable by the same experimental
method. This method is applied for different superpositions
of number states. For example, consider the field of quantum
cavity 𝐶 to be in a superposition state of |0⟩ and |1⟩:

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

⟩ = √1 − 𝑐
2

| 0⟩ + 𝑐 |1⟩ , (17)

where 𝑐 = |𝑐| exp 𝑖𝜃. The average number of photons is
independent of the phase 𝜃:

𝑛 = ⟨𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

⟩ = 𝑐
2

. (18)

In the next subsection we show that the measurement of the
displaced Wigner function for a superposition of states gives
us the average photon numbers and the phase 𝜃.

3.1. Calculating the Wigner Function for a Superposition
of Number States. Suppose the cavity field is given by a
superposition state |𝜓

󸀠

⟩ = √1 − 𝑐
2

|0⟩ + 𝑐|1⟩. By substituting
the density operator 𝜌 = |𝜓

󸀠

⟩⟨𝜓
󸀠

| in (3) the Wigner function
for the field in the cavity 𝐶 is obtained as

𝑊(𝛼) = 2 [(1 − |𝑐|
2

) ⟨0 | 0, 2𝛼⟩ + √1 − 𝑐
2

× 𝑐 (𝑒
−𝑖𝜃

⟨1 | 0, 2𝛼⟩ − 𝑒
+𝑖𝜃

⟨0 | 1, 2𝛼⟩)

−|𝑐|
2

⟨1 | 1, 2𝛼⟩ ] .

(19)
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Figure 5: The Wigner functions for superposition of number eigenstates versus 𝑛: (a) for Re(𝛼) = 0.2, Im(𝛼) = 0 and (b) for Re(𝛼) = 0.5,
Im(𝛼) = 0.

Equations (5) are utilized to determine the value of ⟨𝑛 | 𝑚,

2𝛼⟩ in the above equations for 𝑛,𝑚 = 0, 1 as follows:

𝑊(𝛼) = 2𝑒
−2|𝛼|

2

[(1 − |𝑐|
2

) 𝐿
0

0

(4|𝛼|
2

)

+ √1 − 𝑐
2

𝑐 (𝑒
−𝑖𝜃

𝛼 + 𝑒
+𝑖𝜃

𝛼
∗

) 𝐿
1

0

(4|𝛼|
2

)

− |𝑐|
2

𝐿
0

1

(4|𝛼|
2

)] ,

(20)

where 𝛼 = Re(𝛼) + Im(𝛼). By substituting (18) in (20) the
Wigner function is obtained in terms of average photons
number and the phase 𝜃:

𝑊(𝛼) = 2𝑒
−2|𝛼|

2

× [(1 − 𝑛) 𝐿
0

0

(4|𝛼|
2

) + √(1 − 𝑛) 𝑛

× (𝑒
−𝑖𝜃

𝛼 + 𝑒
+𝑖𝜃

𝛼
∗

) 𝐿
1

0

(4|𝛼|
2

) − 𝑛𝐿
0

1

(4|𝛼|
2

) ] .

(21)

The value of Laguerre polynomials is calculated by

𝐿
𝑘

𝑛

(𝑥) =

𝑒
𝑥

𝑛!

𝑥
−𝑘

𝑑
𝑛

𝑑𝑥
𝑛

(𝑒
−𝑥

𝑥
𝑛+𝑘

) , (22)

for 𝑥 = 4|𝛼|
2 [24]. By (21) and (22) the Wigner distribution

function for Im(𝛼) = 0 is obtained as

𝑊(𝛼) = 2𝑒
−2|𝛼|

2

[(1 − 2𝑛) + √(1 − 𝑛) 𝑛 |𝛼| cos 𝜃 + 4𝑛|𝛼|
2

] .

(23)

Clearly, the measurement of the Wigner function is more
difficult for the large value of 𝛼 because increasing the value
of 𝛼 gives a decrease in the value of the Wigner function. For
|𝛼| ≪ 1, (23) reduces to 𝑊(𝛼) ≃ 2 exp(−2|𝛼|

2

)(1 − 2𝑛),
which is a linear in terms of 𝑛 as shown in Figure 5. For this
example ourmethod gives us the value of the average number
of photons even for 𝛼 = 0.

3.2. Measuring the Average Number of Photons. Before run-
ning the experiment, the field of the cavity 𝐶 is set initially to
be

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠󸀠

⟩ = 𝐷 (𝛼)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

⟩ = √1 − 𝑐
2

| 0, 𝛼⟩ + 𝑐 |1, 𝛼⟩ , (24)

by applying a coherent beam of light. The state of incoming
atom is |𝑒⟩ which is resonantly (nonresonantly) interacted
with the cavities 𝑅

1

and 𝑅
2

(with the cavity 𝐶) with a phase
factor Ω

𝑅

𝑡 = 𝜋/2 (with a phase factor). Outgoing atom-field
state is obtained as

󵄨
󵄨
󵄨
󵄨
𝜓⟩ =

1

2

[(𝑒
−𝑖𝜑(𝑛+1)

− 𝑒
𝑖(𝜑𝑛−𝜂)

) | 𝑒⟩

+ (𝑒
𝑖(−𝜑((𝑛+1)+𝜂)

+ 𝑒
𝑖𝜑𝑛

)
󵄨
󵄨
󵄨
󵄨
𝑔⟩]

× (√1 − 𝑐
2

| 0, 𝛼⟩ + 𝑐 |1, 𝛼⟩) .

(25)
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Furthermore, the atom-field density matrix is obtained as

𝜌atom+field =

1

4

[| 𝑒⟩⟨𝑒| (𝑒
−𝑖𝜑(𝑛+1)

− 𝑒
𝑖(𝜑𝑛−𝜂)

)

× 𝜌
󸀠

(𝑒
+𝑖𝜑(𝑛+1)

− 𝑒
−𝑖(𝜑𝑛−𝜂)

)

+
󵄨
󵄨
󵄨
󵄨
𝑔⟩⟨𝑔

󵄨
󵄨
󵄨
󵄨
((𝑒
𝑖(−𝜑(𝑛+1)+𝜂)

+𝑒
𝑖𝜑𝑛

))

× 𝜌
󸀠

(𝑒
𝑖(−𝜑(𝑛+1)+𝜂)

+ 𝑒
−𝑖𝜑𝑛

)

+ nondiagonal terms of atomic state] ,

(26)

where 𝜌
󸀠

= 𝐷(𝛼)𝜌𝐷
−1

(𝛼) and

𝜌 =

󵄨
󵄨
󵄨
󵄨
󵄨
𝜓
󸀠

⟩⟨𝜓
󸀠

󵄨
󵄨
󵄨
󵄨
󵄨
= (1 − |𝑐|

2

) |0⟩⟨0|

+ √1 − 𝑐
2

𝑐 (|0⟩⟨1| + |1⟩⟨0| ) + |𝑐|
2

| 1⟩ ⟨1| .

(27)

Theprobability of finding the outgoing atom state in the states
|𝑔⟩ or |𝑒⟩ is measured by an ionized detector. The difference
between these probabilities 𝑃

𝑒

− 𝑃
𝑔

is given by (15). By (15)
and (27) and for 𝜑 = −𝜂 = 𝜋/2, similar to (16), the measured
Wigner function is obtained as

Δ𝑃 = 𝑃
𝑒

− 𝑃
𝑔

=

1

2

𝑊 (−𝛼) . (28)

The Wigner function, obtained with an experimental
measurement of Δ𝑃, is compared to the value of displaced
Wigner function, shown in Figure 5, to obtain the average of
photons number 𝑛. The development of this method to dif-
ferent superposition of two number states is straightforward.
Figure 5 shows the Wigner function for a superposition of
|0⟩ and |3⟩ number states which has many applications in
the construction of a GHZ state [25]. As expected from (18),
the average number of photons is independent of the phase
𝜃. Therefore by measuring the Wigner function in the point
𝜃 = 0 (or𝛼 = 0) we can obtain the average number of photons
and consequently the superposition coefficient 𝑐. Then by
replacing the average number of photons in (23), the Wigner
function is obtained in terms of the phase 𝜃. Measuring the
Wigner function that is shown in Figure 6 leads us to obtain
the phase 𝜃 for each superposition.

4. Measuring the Squeezing Parameter

4.1. Measuring the Squeezed Wigner Function. Usually the
squeezed lights are produced by a nonlinear interaction of
light and matter [26, 27]. Almeida et al. used two-photon
interactions to produce the squeezed states [28]. If the
field of the cavity 𝐶 is set to be in a displaced squeezed
number state |𝑛, 𝜉, 𝛼⟩, where 𝜉 = 𝑟𝑒

𝑖𝛾 [6], we show that
it is possible to determine the squeezing parameter 𝑟 by
the proposed experimental setup. The states |𝑒⟩ and |𝑔⟩ of
rubidium atoms resonantly interacted with the 𝑅

1

and 𝑅
2

cavities, where the phase Ω
𝑅

𝑡 is 𝜋/2. Similar to Section 2,
due to the nonresonance interaction of atom and field in the
quantum cavity 𝐶, the state of atom is changed by a phase
factor 𝜑. The density operator for such a system is given by

0.2

0.1

0

−0.1

−0.2
0 1 2 3 4 5 6

𝜃

W
(𝛼
)

Figure 6: Plots of the Wigner function versus 𝜃 for Re(𝛼) = 0.25,
Im(𝛼) = 0, and 𝑛 = 0.5.

𝜌
󸀠󸀠

= 𝐷(𝛼)𝑆(𝜉)𝜌𝑆
−1

(𝜉)𝐷
−1

(𝛼), where 𝑆(𝜉) = exp((1/2)𝜉∗𝑎2 −
(1/2)𝜉𝑎

†2

) is a squeezing operator. Our main aim in this
section is the measurement of the squeezed parameter 𝑟 at
𝛾 = 0. The outgoing of state atom after passing through the
cavities 𝑅

1

, 𝐶, and 𝑅
2

is

󵄨
󵄨
󵄨
󵄨
𝜓⟩ =

1

2

[(𝑒
−𝑖𝜑(𝑛+1)

− 𝑒
𝑖(𝜑𝑛−𝜂)

) | 𝑒⟩

+ (𝑒
𝑖(−𝜑((𝑛+1)+𝜂)

+ 𝑒
𝑖𝜑𝑛

)
󵄨
󵄨
󵄨
󵄨
𝑔⟩]

󵄨
󵄨
󵄨
󵄨
𝑛, 𝜉, 𝛼⟩ .

(29)

The density matrix of the atom-field system before any
measurement is obtained as follows:

𝜌atom+field =

1

4

{| 𝑒⟩⟨𝑒| (𝑒
−𝑖𝜑(𝑛+1)

− 𝑒
𝑖(𝜑𝑛+𝜂)

)

× 𝜌
󸀠󸀠

(𝑒
+𝑖𝜑(𝑛+1)

− 𝑒
−𝑖(𝜑𝑛−𝜂)

)

+
󵄨
󵄨
󵄨
󵄨
𝑔⟩⟨𝑔

󵄨
󵄨
󵄨
󵄨
(𝑒
𝑖(−𝜑(𝑛+1)+𝜂)

+ 𝑒
𝑖𝜑𝑛

)

× 𝜌
󸀠󸀠

(𝑒
𝑖(−𝜑(𝑛+1)+𝜂)

+ 𝑒
−𝑖𝜑𝑛

)

+ nondiagonal terms of atomic state} .

(30)

Detecting the atomic states with an ionized detector gives us
the electromagnetic field state. Performing the experiment
over and over the probabilities of finding atoms in |𝑔⟩ or |𝑒⟩

states are obtained. By (30) Δ𝑃 = 𝑃
𝑒

− 𝑃
𝑔

is obtained as

Δ𝑃 = −Re{𝑒𝑖(𝜑−𝜂) Tr [𝜌󸀠󸀠𝑒2𝑖𝜑𝑎
†
𝑎

]}

= −Re {𝑒
𝑖(𝜑−𝜂) Tr [𝐷 (𝛼) 𝜌

𝑠

𝐷
−1

(𝛼) 𝑒
2𝑖𝜑𝑎

†
𝑎

]} ,

(31)
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Figure 7: The plots of the Wigner function versus the real part of 𝛼
in the regions betweenAandB, betweenB andC, and greater thanC.
The point A is at the origin of phase space, B is the first intersection
point of the curves, and C is the last interaction point of the curves.

where 𝜌
𝑠

= 𝑆(𝜉)𝜌𝑆
−1

(𝜉). It is very similar to (15) except 𝜌

which is replaced by 𝜌
𝑠

. If the phase 𝜑 = −𝜂 is set to 𝜋/2,
we have

Δ𝑃 = −Tr [𝐷 (𝛼) 𝜌
𝑠

𝐷
−1

(𝛼) 𝑒
𝑖𝜋𝑎

†
𝑎

]

= −Tr [𝐷 (𝛼) 𝑆 (𝜉) 𝜌𝑆
−1

(𝜉)𝐷
−1

(𝛼) 𝑒
𝑖𝜋𝑎

†
𝑎

] .

(32)

Clearly, the above equation is proportional to the squeezed
displaced Wigner function:

Δ𝑃 =

1

2

𝑊
𝜉

(−𝛼) . (33)

Equation (33) shows a relation between the experimental
value Δ𝑃 and the squeezed displaced Wigner function
(or squeezing parameter 𝑟), which is given theoretically.
Therefore the squeezing parameter 𝑟 is obtained by the
measurement of Δ𝑃.

4.2. Calculating the Squeezed Wigner Function. As shown in
Section 2, the Wigner function is written in terms of the
Laguerre polynomials for a number state. It is also possible
to write the Wigner function for a squeezed number state in
terms of the Laguerre polynomials. For a squeezed number
state, the Wigner function can be obtained by replacing 𝑒

𝑟

𝑞

and 𝑒
−𝑟

𝑝with 𝑞 and 𝑝, for theWigner function at 𝛾 = 0
∘ [27],

respectively. Therefore the Wigner function of a squeezed
displaced number state is given by

𝑊
𝑛𝑟

(𝛼) = 2(−1)
𝑛

{𝐿
𝑛

(4 (𝑒
2𝑟

(Re (𝛼))
2

+ 𝑒
−2𝑟

(Im (𝛼))
2

))}

× exp (−2 (𝑒
2𝑟

(Re (𝛼))
2

+ 𝑒
−2𝑟

(Im (𝛼))
2

)) .

(34)
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Figure 8: Plots of theWigner function versus 𝑟 for Re(𝛼) = 0.02 and
Im(𝛼) = 0. As illustrated, these plots are more suitable to measure
the greater values of 𝑟 because the difference between the Wigner
functions is larger than small value of 𝑟.

In (34) the squeezedWigner function is obtained by replacing
𝑒
𝑟 Re(𝛼) and 𝑒

−𝑟 Im(𝛼) with Re(𝛼) and Im(𝛼). For a number
state, the Wigner functions versus the squeezing parameter
are plotted for 0 to 3 number states versus Re(𝛼) in Figure 7.
In order to set 𝛼 in the best point for the measurement of the
squeezing parameter 𝑟, we partitioned the horizontal axis into
three domains.

(1) The A-B domain is relevant to small 𝛼.This domain is
started from the origin to the first intersection point
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Figure 9: Plots of the Wigner functions for number states versus 𝑟,
for Re(𝛼) = 1.14, Im(𝛼) = 0.

of the curves. Near themiddle, the difference between
the Wigner functions is almost larger than that of
the other points. So selecting 𝛼 in the middle of this
domain is a more suitable selection for the measuring
of the squeezing parameter 𝑟. In Figure 8 the Wigner
functions are plotted versus 𝑟 for 0 to 3 photon num-
ber in the domain A-B. It has been shown that for a
single value of a Wigner function and a specific
number state, the value of squeezing parameter is
unique. The sensitivity of Wigner function is higher
for larger 𝑟. We conclude that smaller values of 𝛼 are
more suitable for measuring larger squeezing para-
meters.
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Figure 10: Plot of theWigner function versus 𝑟 in the points Re(𝛼) =

1.7 and Im(𝛼) = 0 for the interval 0 ≤ 𝑟 ≤ 0.5.

(2) The B-C domain is relevant to the middle value of 𝛼.
This domain is from the first intersection point of the
two curves and extends out till the last intersection.
Usually selection of 𝛼 in this domain is not suitable at
all, since for a single value of a Wigner function the
value of squeezing parameter is not unique. Figure 9
shows this nonuniqueness of the squeezing parameter
for any Wigner function.

(3) The domain greater than 𝐶 is relevant to the bigger
values of 𝛼. In this domain squeezing parameter is
unique for any Wigner function. It should be noticed
that for bigger values of squeezing parameter the
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Wigner functions are very small. Figure 10 illustrates
the Wigner functions versus squeezing parameter 𝑟

for Re(𝛼) = 1.7 and Im(𝛼) = 0. It decreases for bigger
𝛼 and the sensitivity of theWigner functions is higher
for smaller 𝑟.Therefore, the domain𝐶 ismore suitable
for the measurement of small 𝑟. Here, the value of the
Wigner function for bigger 𝛼 is very small, so it is
not a suitable measurable value.Therefore, we choose
Re(𝛼) to be not very far from the point 𝐶.

5. Conclusion

In this paper we use measurement of the displaced Wigner
function for the measuring of photons number in a quantum
cavity. In this method a two-level Rydberg Rubidium atom is
used to make a nondemolition measurement of the average
number of photons in cavities. Detection of the atom states
gives us 𝑃

𝑒

and 𝑃
𝑔

. It is shown that the difference between
𝑃
𝑒

and 𝑃
𝑔

gives us the displaced Wigner function and
further gives us the average number of photons in the cavity
in a nondemolition measurement method. This setup has
also been used to the nondemolition measurement of the
squeezing parameter 𝑟 in the field of quantum cavity. One
may measure the squeezing parameter by measuring the
displaced squeezed Wigner function. In order to obtain
either a unique 𝑟 for each measured Wigner function or to
increase the sensitivity of our measurements, the value of
displacement should be set. We find that for larger values of
squeezing parameter 𝑟 the displacement should be small and
for smaller values of squeezing parameter 𝑟 the displacement
should be large.
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