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Modularity in protein interactome networks (PINs) is a central theme involving aspects such as the study of the resolution limit,
the comparative assessment of module-�nding algorithms, and the role of data integration in systems biology. It is less common
to study the relationships between the topological hierarchies embedded within the same network.is occurrence is not unusual,
in particular with PINs that are considered assemblies of various interactions depending on specialized biological processes. e
integrated view offered so far by modularity maps represents in general a synthesis of a variety of possible interaction maps, each
re�ecting a certain biological level of specialization. e driving hypothesis of this work leverages on such network components.
erefore, subnetworks are generated from fragmentation, a process aimed to isolating parts of a common network source that are
here called fragments, from which the acronym fragPIN is used. e characteristics of modularity in each obtained fragPIN are
elucidated and compared. Finally, as it was hypothesized that different timescales may underlie the biological processes fromwhich
the fragments are computed, the analysis was centered on an example involving the �uctuation dynamics inherent to the signaling
process and was aimed to show how timescales can be identi�ed from such dynamics, in particular assigning the interactions based
on selected topological properties.

1. Introduction

PIN [1] are almost pervasively studied in genomics, but espe-
cially when H. Sapiens is considered they present limitations
due to sparse coverage and suboptimal accuracy of both
experimental (yeast two-hybrid, for instance) and in silico
measurements (literature mining, orthology, etc.) [2, 3]. is
overall uncertainty is re�ected in a pathological presence of
false positives and negatives and ultimately complicates data
mining and analysis tasks. In order to bypass the complexities
induced by such factors, data integration strategies are widely
pursued (for instance, studies in [4, 5] have become quite
popular). However, a difficulty comes from the fact that
the integrated entities are usually heterogeneous, and thus
normalization and rescaling need to be considered. An
excellent example of the complexity underlying a sequence
of integrative omics tasks is offered by the personal omics

pro�ling work recently published by Chen et al. [6], soon
considered a reference for personalized medicine research.

e working hypothesis of this short paper is to adopt
an opposite investigation strategy compared to aggregation:
instead of integrating the PIN dataset with data from other
omics sources, its constituent entities were explored, con-
sidering the building blocks that biologically allow for the
protein interactions to be observed and measured, at least in
part. A PIN map consists of three main types of constituent
entities: positive data, that is, the measured physical interac-
tions, which represent the real evidence; negative data, that
is, the interactions that are not present, considered as latent
variables; and uncertain data, that is, noisy information (false
positives) for which partial recovery is possible through data
integration. Notably, this mix is usually measured through
both transient andpersistent PINdynamics, togetherwith the
related degree of uncertainty.
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F 1: Continued.



ISRN Genomics 3

100

10−1

10−2

tPIN degrees

100 101

Fitted power law

 degree distribution and fitted power law

(g)

100

10−1

10−2

10−3

102

ttPIN degrees

100

Fitted power law

ttPIN degree distribution and fitted power law

10−4
101 103

(h)

F 1: Distributional laws for fragPIN: pattern comparisons and goodness of �t between degree distributions and power laws.

is work aims to elucidate through the compara-
tive assessment of module-�nding algorithms the relation-
ships between topologies that belong to the same network.
In particular, PIN can be considered to assemble vari-
ous interactions which depend on specialized biological
processes. e integrated view generally offered by mod-
ularity maps represents indeed a synthesis of a variety of
possible interaction maps [7–9] embedded in the same
network. Individual reference to such maps was made, at
least for a list of them, and fragPIN were used to indicate
the type of network which is generated from fragmentation,
a process that retrieves from the same network source a
certain number of biologically differentiated subnetworks.
en, elucidation of the characteristics of modularity in each
obtained fragment was carried out, helping to investigate
the hypothesis that different timescales may underlie the
interactive dynamics related to the biological processes from
which the fragments are computed. As an example, analysis
of PIN �uctuation dynamics for signaling was carried out
to show how the inherent timescales can be identi�ed, and
interactions assigned to them based on selected topological
properties.

Following the work of Huthmacher et al. [10], previous
examples of comparative network biology analysis have been
suggested by Durek and Walther [11] with the attempt to
elucidate the implications of PIN for the regulation of the
underlying reaction networks. A comprehensive analysis of
enzyme-enzyme interactions in metabolic networks of E. coli
and S. cerevisiae has thus been performed. e latter has
involved the analysis of topological properties of these dif-
ferent but related networks and addressed issues such as the
efficiency of metabolic processes and how the organization of
enzyme interactions correlate with metabolic efficiency.

e methods adopted in the above papers required the
study of the global network connectivity properties, various
�ltering steps to reveal organization differences between
all interaction sets and networks targeted to metabolism,
and the analysis of scale-free exponents, average cluster

coefficient, degree correlation, distance, and centrality was
performed. Priority was assigned to fragPIN modularity,
and by computing modules according to two popular tech-
niques, the differential con�gurations thus obtained were
assessed.Modules are characterized by interactions occurring
at different timescales and to a degree that depends on the
involved biological processes. Unfortunately, technological
and experimental sources cannot provide the needed detail of
information. erefore, the timescale decomposition offered
by fragPIN and inherent to each particular process must be
determined in some other ways, for instance in silico through
the computational approach described below.

2. Methods

Similarly to all the interactome datasets, also the S. cerevisiae
(yeast) interactome presents its complexities; the work of
Reguly et al. [12] is an optimal choice, particularly with
regard to the literature-curated interactions from small-
scale experiments (among other interactome disaggregated
information presented by the authors). e dataset involves
31793 publications and reports about 11334 nonredundant
interactions (from a total of 33311) and 3289 proteins. Given
this yeast source, a compilation of PINs was built and studied
to compare their modular properties. Each subinteractome
was analyzed according to the characterizing biological pro-
cess. is process was called PIN fragmentation. e natural
consequence of fragmentation is that speci�c PINs are built
whose connectivity patterns re�ect the dynamics inherent to
the separately involved biological process.e list is reported
below.

(i) rPIN = Reguly LC interactome: the source interac-
tome.

(ii) mPIN =metabolic PIN.
It is obtained by �ltering the rPIN such that proteins
with their GO terms not associated to metabolism
(source: SGD db, http://www.yeastgenome.org/)
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F 2: Core and community structure in fragPIN. Size of interactome included with nodes and edges.

are taken off. mPIN contains interactions between
metabolic proteins.

(iii) ePIN = enzyme PIN.
It is obtained by �ltering rPIN through known
annotated enzymes (source: KEGG db, http://www
.genome.jp/kegg/). 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 contains only interactions
between enzymes.

(iv) pPIN = pathways PIN.
It is obtained by �ltering the rPIN through pathways
retrieved from the KEGG db. pPIN contains only
interactions between proteins involved in annotated
pathways.

(v) cPIN = cell-cycle PIN.
It is obtained by �ltering rPIN through proteins
involved in cell cycle processes (source: MIPS, mips.
helmholtz-muenchen.de/genre/proj/yeast/and SGD
db). cPIN contains interactions between proteins
involved in cell-cycle process.

(vi) tPIN = transcription factor PIN.
It is obtained by �ltering rPIN through transcription
factors (source: YEASTRACT db, http://www.yeast-
ract.com/). tPIN contains interactions between tran-
scription factors.

(vii) ttPIN = transcription factor with targets PIN.
It is is obtained by �ltering rPIN through transcrip-
tion factors from the YEASTRACT db. It contains
interactions between transcription factors and their
target proteins.

(viii) sPIN = signalling PIN.
It is obtained by �ltering rPIN using signalling path-
ways retrieved from KEGG db. sPIN contains only
interactions between proteins involved in signalling
annotated pathways.

3. Results

As a �rst check, distributional properties are computed
through the power laws, that is, 𝑝𝑝(𝑘𝑘)∝ 𝑘𝑘−𝛼𝛼, and reported in
Figure 1 with reference to each fragPIN and the correspond-
ing estimated exponents too (see [13–17] for general treat-
ment of the topic). e distributions appear quite different,
as expected, and this depends on the structure and size of the
fragPIN which is considered.

3.1. Modularity. Modularity is oen naturally computed
when networks are employed. Many algorithms have become
available, and a couple of them have been selected based
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F 3: Cores (a) and best core computed in cPIN. Graphs obtained by using MCODE.

on the popularity and consensus achieved. e �rst of
such methods that we employed is MCODE [18], which
exploits local graph density to suggest possible associations
between protein complexes and locally dense regions of a
graph computed from a clustering coefficient, that is, 𝐶𝐶𝑖𝑖 =
2𝑛𝑛/(𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖−1)), where 𝑘𝑘𝑖𝑖 is the node size of the neighborhood
of node 𝑖𝑖, and 𝑛𝑛 is the number of edges in the neighborhood.
e 𝑘𝑘-core is the structure that one �nds in a graph; it is
a network of minimal degree 𝑘𝑘 de�ned as the remaining
subgraph, aer that all the nodes with degrees 1−𝑘𝑘 have been
removed successively.

e procedure is as follows: (a) when a node is removed,
all its adjacent edges will also be removed; (b) aer a node
of degree ≤1 − 𝑘𝑘 is removed, in the remaining graph all the
remaining nodes with a new degree ≤1 − 𝑘𝑘 also need to be
removed. In other terms, given 𝐺𝐺 = (𝑉𝑉𝑉𝑉𝑉), the 𝑘𝑘-core is
computed by pruning all the𝑉𝑉 (with their𝐸𝐸) with degree less
than 𝑘𝑘 until all nodes in the remaining network have at least
degree 𝑘𝑘.

en, if a node ∈ 𝑘𝑘-core but ∉ (1 + 𝑘𝑘)-core of the graph,
it has coreness degree 𝑘𝑘. e highest 𝑘𝑘-core of a net-
work is the central most densely connected sub-network.
Aer vertex weighting, complex prediction is conducted
where the relevance of each cluster is validated against
known complexes or functional modules, and �nal statistics
are computed about clusters size, density, and functional
homogeneity.

e main modules identi�ed for all fragPIN are reported
in Figure 2 (table format). To obtain them, parameters for
network scoring have been set as follows: degree cutoff = 2;
for cluster �nding: node score cutoff = 0.2; haircut = true;
�uff = false;𝐾𝐾-core: 2; and maximum depth from seed: 100.

Modularity can then be computed by another very
popular community-�nding method called maximum mod-
ularity (MaxMod). To implement such a method, greedy
optimization algorithms have been employed by Clauset
et al. [19] to �nd the best possible modularity structure in
networks. In summary, a greedy procedure iteratively merges
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F 4: Community map computed in cPIN, with hubs indicated as red points, and red links connecting them to underline the high-
connectivity patterns. Graphs obtained fromMaxMod computations.

module pairs showing the largest modularity increase until a
gain is observed.

e optimization function 𝑄𝑄 [20] is reported below. It is
de�ned as an approximate difference between links observed
in a modular network versus those expected in a network
of equivalent size where they have been randomly placed.
erefore, a value of zero for 𝑄𝑄 indicates that the fraction
of within-module links is not different from what would
be expected from a randomized network of equivalent size.
Nonzero values of 𝑄𝑄 indicate deviation from randomness,
and values around 0.3 suggest the presence of modular struc-
ture (this result comes from extensive simulations reported
in the above references) as

𝑄𝑄 =󵠈󵠈
𝑖𝑖

⎡⎢⎢⎢⎢⎣
𝑒𝑒𝑖𝑖𝑖𝑖 −
⎛
⎝
󵠈󵠈
𝑗𝑗
𝑒𝑒𝑖𝑖𝑖𝑖
⎞
⎠

2⎤⎥⎥⎥⎥⎦
. (1)

e formula reports fractions of links related to nodes
within amodule 𝑖𝑖 and fractions of links coming from all other
modules relatively to module 𝑖𝑖. erefore, a good partition
into modules leads 𝑄𝑄 to approach 1; vice versa, the presence
of random links between nodes (i.e., poor modularity) would
make the two terms not too different, thus delivering a 𝑄𝑄

close to 0. Figure 3 shows cores detected in cPIN, while Figure
4 shows a community map for it.

3.2. Timescale Decomposition. Biological processes embeds
dynamics that respond to different timescales; a major prob-
lem is how to measure them, in particularly in relation to
interactive associations [21]. One way to introduce dynamics
at the interactome scale is to integrate gene expression values
ideally obtained through time course measurements. How-
ever, when such coupled measurements are not available,
the problem of deciphering network dynamics is of difficult
solution. In a companion paper [22], a special network
decomposition approach elucidating both coarse and �ne
timescales throughwavelets [23–26]was proposed.While the
focus in previous work was on some particular pathways, a
generalization is put forth here.

Using wavelets depends on the entities to be measured,
and those ones allowing for suitable timescale decomposition
can be good candidates. Such entities, in our case, can be
identi�ed by topological features that once measured at each
protein (e.g., node) contribute to quantifying a vector-valued
signal.e latter can then be decomposed by wavelets. In our
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F 5: Timescale interactions computed for sPIN by betweenness (a), cluster, coe�cient, and degree (c). �ach color identi�es a di�erent
timescale under which detection occurred through wavelets.

application, every entry of the feature vector computed from
the PIN and to be decomposed across timescales represents a
topological property.

An example, apart from the usually exploited degree
feature, is provided by betweenness [27–29]. is centrality
measure is computed at each network node and increases
depending on the volume of crossing at the node, that
is, shortest paths (geodesics) going from an origin to a
destination through the node relative to the total number of
geodesics observed between start and end nodes. For distinct
nodes 𝑣𝑣𝑣 𝑣𝑣𝑣 𝑣𝑣 𝑣 𝑣𝑣, 𝜋𝜋𝑠𝑠𝑠𝑠 the number of the shortest paths from
𝑠𝑠 to 𝑡𝑡, and 𝜋𝜋𝑠𝑠𝑠𝑠(𝑣𝑣) the number of the shortest paths passing
through 𝑣𝑣, it holds that

𝐵𝐵 (𝑣𝑣) = 󵠈󵠈
𝑠𝑠≠ 𝑣𝑣≠ 𝑡𝑡𝑡𝑡𝑡

𝜋𝜋𝑠𝑠𝑠𝑠 (𝑣𝑣)
𝜋𝜋𝑠𝑠𝑠𝑠

. (2)

Another problem is how to establish signi�cant variation
between timescales in the wavelet values. e approach
proposed in our previousmethodological paper was centered
around two steps: (a) denoising [30–33] applied to get rid of
disturbances of random nature; (b) clustering [34] aimed to
discriminate between signi�cant and nonsigni�cant values.

e variability in the measures was initially analyzed
through the IQR (interquartile range) robust statistic in order
to select the most variable fraction of the data (the half that
was selected was called coreset), while discarding the residual
part (the box values proximal to themedian). A second parti-
tioning was then made of the selected data fraction. In order
to control the coreset timescale speci�city, some clusters were
retrieved. However, also the remaining scattered values were
evaluated, that is, the values not assigned to clusters.

A tight clustering technique was adopted, based on a
mix of hierarchical and 𝑘𝑘-means approaches integrated by
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(a)

(b)

F 6: Timescale interactions computed by degree (a) and betweenness (b) for ttPIN. �ach color identi�es a di�erent timescale under
which detection occurred through wavelets.

bootstrap to form stable clusters. Overall, clusters did not
�nd signi�cant protein modules through which to analy�e
connectivity or inherent association power of biological
relevance. Clusters were also computed over the entire sets of
values (without IQR split into coreset and scattered values),

and yet did not deliver biological evidence. Conversely,
the analysis of the scattered feature values proved to be
more fruitful in terms of reference to timescale speci�city,
especially for the impact on pathway proximity rather than
on network connectivity.
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3.3. Transient versus Permanent Interactions. A �nal aspect
is how to measure transiency and permanence of interaction
dynamics. e emphasis went on their speci�c interaction
dynamics relative to modular connectivity computed within
and between timescales, together with pathway proximity.
Graphical evidence was reported through Figures 5 and 6.
Basically, a scanwas �rst produced through the entire wavelet
resolution spectrum for each module under differential
conditions then followed by back projection to the PIN
of the established associations between particular protein
interactions and timescales.

us, the cases for which interactive dynamics are
simultaneously present at multiple timescales were visual-
ized, together with the links that are possibly appearing
between them. S1 (see S1 in the supplementary available
at http://dx.doi.org/10.1155/2013/307608) reports timescale
proximity at pathway level (signaling), which complements
the graphical evidences reported at modular network scale.
S2 reports the histograms of wavelet-decomposed feature
signals (levels and their differences) and diagnostic plots;
S3 reports module connectivities detected from each feature
across timescales; and S4 reports GO annotation for the
identi�ed interactions.

Figure 5 shows timescale-speci�c interactions computed
from feature-dependent modules in sPIN. Note that the
diversity of colors identi�es the different timescales that have
been detected by the algorithms. Figure 6 reports instead
much denser modules, with reference to ttPIN. In terms
of comparative evaluation, while Figures 3 and 4 refer to
cores and communities, respectively, and these are typical
modules found in many studies aer applying very well-
known methodologies, the proposed approach shows their
limitations in detecting resolutions or timescales. erefore,
by involving topological properties computed over special-
ized PINs, and in particular the information coming from
the biological processes, the induced connectivity dynamics
between proteins can be emphasized and suitably repre-
sented. From a biological point of view, this passage might be
important for a series of reasons, (a) the possibility to adopt
a differential network analysis based on a comparison of
PINs evaluated before and aer certain perturbations; (b) the
assessment of PIN module con�guration changes that might
explain phenotypical alterations based on well-characterized
protein dynamics.

4. Concluding Remarks

Fragments of PIN offer interesting inference perspectives.
e most important aspect is that in reduced dimensionality
and complexity, some specialized module functions could
be analyzed and possibly validated with reference to speci�c
aspects related to a target pathway or biological process.
e second aspect of potential interest is the development
of differential network analysis in response to conditions
that may affect network dynamics. Finally, time and space
dimensions are two entities that de�ne network dynamics
and oen are overlooked; the timescale analysis here pro-
posed is an example of computational analysis that might

provide relevant information to build more accurate pro�les.
Without observing protein interactomic dynamics frommea-
surements directly at the experimental level, thus embedding
the dynamics from their generating timescales, an attempt
to computationally dissect the interactome was made, then
separating the effects induced by all the biological processes
that were found to be involved. e differences that were
detected �nd justi�cation in a variety of reasons that cannot
be inferred from the plain interactome data; however, aer
examining each separate PIN, a result was that in some
cases the timescale dynamics can be revealed through the
employed PIN topologies.
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