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Stochastic electrodynamics (SED) predicts aGaussian probability distribution for a classical harmonic oscillator in the vacuumfield.
This probability distribution is identical to that of the ground state quantum harmonic oscillator. Thus, the Heisenberg minimum
uncertainty relation is recovered in SED. To understand the dynamics that give rise to the uncertainty relation and the Gaussian
probability distribution, we perform a numerical simulation and follow the motion of the oscillator. The dynamical information
obtained through the simulation provides insight to the connection between the classic double-peak probability distribution and the
Gaussian probability distribution. Amain objective for SED research is to establish to what extent the results of quantummechanics
can be obtained.The present simulationmethod can be applied to other physical systems, and it may assist in evaluating the validity
range of SED.

1. Introduction

According to quantum electrodynamics, the vacuum is not a
tranquil place. A background electromagnetic field, called the
electromagnetic vacuum field, is always present, independent
of any external electromagnetic source [1]. The first experi-
mental evidence of the vacuum field dates back to 1947 when
Lamb and his student Retherford found an unexpected shift
in the hydrogen fine structure spectrum [2, 3]. The physical
existence of the vacuum field has inspired an interesting
modification to the classical mechanics, known as stochas-
tic electrodynamics (SED) [4]. As a variation of classical
electrodynamics, SED adds a background electromagnetic
vacuum field to the classical mechanics. The vacuum field
as formulated in SED has no adjustable parameters except
that each field mode has a random initial phase and the field
strength is set by the Planck constant, ℎ. With the aid of
this background field, SED is able to reproduce a number
of results that were originally thought to be pure quantum
effects [1, 4–8].

Despite that the classical mechanics and SED are both
theories that give trajectories of particles, the probability
distributions of the harmonic oscillator in both theories are
very different. In a study of the harmonic oscillator, Boyer

showed that themoments ⟨𝑥𝑛⟩ of an SED harmonic oscillator
are identical to those of the ground state quantum harmonic
oscillator [9]. As a consequence, the Heisenberg minimum
uncertainty relation is satisfied, and the probability distribu-
tions of an SED harmonic oscillator are a Gaussian, identical
to that of the ground state quantum harmonic oscillator.
While in classical mechanics it is most likely to find an
oscillator at the two turning points of the trajectory, hence
the double-peak probability distribution, the SED Gaussian
probability distribution has the maximum in the center (see
Figure 1). How do the dynamics differ in the two classical
theories so that the probability distributions become so
different?

Although the analytical solution of an SED harmonic
oscillator was given a long time ago, it is not straightforward
to see the dynamical properties of a single particle from
the complicated solution. Additionally, many results in SED
such as probability distribution are obtained from (ensemble)
phase averaging. Thus, they cannot be used for the interpre-
tation of a single particle’s dynamical behavior in time (some
may consider applying the central limit theorem and treat
the positions in the time sequence as independent random
variables. However, for an SED system this cannot work,
because the correlation between the motion at two points
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Figure 1: A comparison between the harmonic oscillators with and without the vacuum field. Top: without any external force except for the
vacuum field, the SED harmonic oscillator undergoes a motion that results in a Gaussian probability distribution.This motion is investigated
with our simulation. Bottom: in the absence of the vacuum field or any external drive, a harmonic oscillator that is initially displaced from
equilibrium performs a simple harmonic oscillation with constant oscillation amplitude. The resulting probability distribution has peaks at
the two turning points.

in time persists beyond many cycles of oscillation) unless
the system is proved to be ergodic. As an analytical proof of
the ergodicity is very difficult, we take a numerical approach
to study the particle’s dynamical behavior. Besides what is
already known from the analytical solution, our numerical
studies construct the probability distribution from a single
particle’s trajectory. We investigate the relation between
such a probability distribution and the particle’s dynamical
behavior. Ultimately, we want to know the underlying mech-
anism that turns the classic double-peak distribution into the
Gaussian distribution.

While most works in the field of SED are analytical,
numerical studies are rare [10–12]. The advantage of numer-
ical simulation is that it may be extended to other physical
systems with relative ease and is flexible in testing different
assumptions and approximations. For example, in most SED
analyses the effect of the Lorentz force due to the vacuum
field is often neglected as the first-order approximation [5].
However, when the field gradient is nonzero, the Lorentz
force from the magnetic field can work with the electric
field to give a nonzero drift to a charged particle, known as
the ponderomotive force. Therefore, the Lorentz force of the
vacuum field may play a significant role in SED. In fact, it is
shown in the literature that the magnetic part of the vacuum
field is responsible for the self-ionization of the atoms and
the acquisition of an energy 1020 eV in a few nanoseconds by
part of a free electron in vacuum [13, 14]. Using numerical
simulation, one can easily examine SED beyond the first-
order approximation (in this work we limit ourselves to

physical parameters where we expect the Lorentz force effects
to be minimal, as this work is compared to analytical results
where this approximation is made), and the Lorentz force
effects in SED can be investigated.

The major challenge for the numerical simulation is to
properly account for the vacuum field modes. A represen-
tative sampling of the modes is thus the key for successful
simulations. In this study, one of our goals is to use a simple
physical system, namely, the simple harmonic oscillator, to
benchmark our numericalmethod of vacuummode selection
so that it can be used to test the validity range of SED as
discussed in the following.

Over the decades, SED has been criticized for several
drawbacks [15]. Authors like Cavalleri argued that SED
can neither explain electron slit-diffraction nor derive the
nonlinear Schrödinger equation; moreover, SED implies
broad radiation and absorption spectra for rarefied gases. In
the case of the quartic anharmonic oscillator, Pesquera and
Claverie showed that SEDdisagrees with quantummechanics
[16]. Additionally, the results claimed in [17–19] were shown
to be wrong due to improper relativistic approximation [20].
While these theoretical analyses are documented in detail, it
may be useful to use numerical simulation as an independent
check in order to establish the validity range of SED, which is
one of the objectives of our work.

Meanwhile, a modified theory called stochastic electro-
dynamics with spin (SEDS) was recently proposed [15]. As
SEDS are an extension of SED with a model of electron spin
motion, it is argued that the introduction of electron spin
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can eliminate several drawbacks of SED. Among all, it is
claimed that SEDS allows the derivation of the complete and
even the generalized Schrödinger equation [21–24]. Also, it
is claimed that SEDS can explain electron slit-diffraction and
the sharp spectral lines of the rarefied gases [25]. In view of
the fact that SEDS is a modified theory from SED and may
extend its validity range, it is probably important as a next step
to apply numerical simulation to such a model as a “quasi-
experiment” and test some of its claims. Models that include
constraints can be incorporated in our numericalmodel with,
for example, Lagrange multipliers.

The organization of this paper is the following. First,
in Section 2 Boyer’s results on the SED harmonic oscillator
are briefly reviewed. Based on these results, the probability
distribution for the oscillator is derived. Second, in Section 3
details for simulating the vacuumfield and the SEDharmonic
oscillator are documented. Third, in Section 4 the trajectory
of the SED harmonic oscillator is solved numerically, and
the constructed probability distribution is compared to the
analytical probability distribution. Two sampling methods
are used in constructing the probability distribution from the
simulated trajectories. The first method is “sequential sam-
pling,” which is suitable for studying the relation between the
dynamics of the SED harmonic oscillator and its probability
distribution. The second approach is “ensemble sampling,”
which lends itself well to parallel computing and is convenient
for statistical interpretations. Lastly, in Section 6 we discuss
some potential applications of the numerical simulation in
studying other quantum phenomena. Numerical studies have
an advantage over the analytical solutions in that they can
be adopted to a range of physical systems, and we hope that
the current method of simulation may also assist in assessing
SED’s validity range.

2. Theory of Stochastic Electrodynamics

2.1. Brief Review of Boyer’s Work. In his 1975 papers [4, 9],
Boyer calculated the statistical features of an SED harmonic
oscillator, and the Heisenberg minimum uncertainty relation
is shown to be satisfied for such an oscillator. The vacuum
field used in Boyer’s work arises from the homogeneous
solution of Maxwell’s equations, which is assumed to be
zero in classical electrodynamics [4]. In an unbounded (free)
space, the vacuum field has an integral form (a detailed
account of the vacuum field in unbounded space is given in
Appendix A.1) [26]:

Evac (r, 𝑡) =
2

∑

𝜆=1

∫𝑑
3

𝑘𝜀 (k, 𝜆)
𝜂 (k, 𝜆)
2

× (𝑎 (k, 𝜆) 𝑒𝑖(k⋅r−𝜔𝑡)

+𝑎
∗

(k, 𝜆) 𝑒−𝑖(k⋅r−𝜔𝑡)) ,

(1)

𝜂 (k, 𝜆) ≡ √ ℎ𝜔

8𝜋3𝜖
0

,

𝑎 (k, 𝜆) ≡ 𝑒𝑖̃𝜃(k,𝜆),

(2)

where 𝜔 = 𝑐|k|, and 𝜃(k, 𝜆) is the random phase uniformly
distributed in [0, 2𝜋]. The integral is to be taken over all k-
space. The two unit vectors, 𝜀(k, 1) and 𝜀(k, 2), describe a
polarization basis in a plane that is perpendicular to the wave
vector k:

𝜀 (k, 𝜆) ⋅ k = 0. (3)

Furthermore, the polarization basis vectors are chosen to be
mutually orthogonal:

𝜀 (k, 1) ⋅ 𝜀 (k, 2) = 0. (4)

To investigate the dynamics of the SED harmonic oscillator,
Boyer used the dipole approximation,

k ⋅ r ≪ 1, (5)

to remove the spatial dependence in the vacuum field (1).
Therefore, the equation ofmotion for an SEDharmonic oscil-
lator used in Boyer’s analysis is

𝑚𝑥̈ = −𝑚𝜔
2

0
𝑥 + 𝑚Γ𝑥⃛ + 𝑞𝐸vac,𝑥 (𝑡) , (6)

where Γ ≡ (2𝑞
2

/3𝑚𝑐
3

)(1/4𝜋𝜖
0
) is the radiation damping

parameter,𝑚 is the mass, 𝑞 is the charge, and𝜔
0
is the natural

frequency. The 𝑥-component of the vacuum field in (6) is

𝐸vac,𝑥 (𝑡) =
2

∑

𝜆=1

∫𝑑
3

𝑘𝜀
𝑥
(k, 𝜆)

𝜂 (k, 𝜆)
2

× (𝑎 (k, 𝜆) 𝑒−𝑖𝜔𝑡 + 𝑎∗ (k, 𝜆) 𝑒𝑖𝜔𝑡) ,

(7)

and the steady-state solution is obtained as

𝑥 (𝑡) =
𝑞

𝑚

2

∑

𝜆=1

∫𝑑
3

𝑘𝜀
𝑥
(k, 𝜆)

𝜂 (k, 𝜆)
2

× (
𝑎 (k, 𝜆)
𝐶 (k, 𝜆)

𝑒
−𝑖𝜔𝑡

+
𝑎
∗

(k, 𝜆)
𝐶∗ (k, 𝜆)

𝑒
𝑖𝜔𝑡

) ,

(8)

where 𝐶(k, 𝜆) ≡ (−𝜔
2

+ 𝜔
2

0
) − 𝑖Γ𝜔

3. Additionally, using the
condition of sharp resonance,

Γ𝜔
0
≪ 1, (9)

Boyer further calculated the standard deviation of position
andmomentum from (8) by averaging over the randomphase
𝜃 [9]:

𝜎
𝑥
= √⟨𝑥2⟩̃

𝜃
− ⟨𝑥⟩
2

̃
𝜃

= √
ℎ

2𝑚𝜔
0

, (10)

𝜎
𝑝
= √⟨𝑝2⟩̃

𝜃
− ⟨𝑝⟩

2

̃
𝜃
= √

ℎ𝑚𝜔
0

2
, (11)

where the phase averaging ⟨ ⟩̃
𝜃
represents the ensemble aver-

age over many realizations. In each realization, the random
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phase 𝜃 of the vacuum field is different. The above result
satisfies the Heisenberg minimum uncertainty relation:

𝜎
𝑥
𝜎
𝑝
=
ℎ

2
. (12)

From an energy argument, Boyer showed that this uncer-
tainty relation can also be derived from a delicate balance
between the energy gain from the vacuum field and the
energy loss through radiation damping [4].

2.2. Probability Distribution. Given the knowledge of the
moments ⟨𝑥𝑛⟩̃

𝜃
, the Fourier coefficients𝐹̃

𝜃
(𝑘) of the probabil-

ity distribution𝑃̃
𝜃
(𝑥) can be determined by Taylor expanding

𝑒
−𝑖𝑘𝑥 in powers of 𝑥𝑛:

𝐹̃
𝜃
(𝑘) = ∫

+∞

−∞

𝑒
−𝑖𝑘𝑥

𝑃̃
𝜃
(𝑥) 𝑑𝑥

=

∞

∑

𝑛=0

(−𝑖𝑘)
𝑛

𝑛!
∫

+∞

−∞

𝑥
𝑛

𝑃̃
𝜃
(𝑥) 𝑑𝑥

=

∞

∑

𝑛=0

(−𝑖𝑘)
𝑛

𝑛!
⟨𝑥
𝑛

⟩̃
𝜃
.

(13)

Using (8) and the relation from Boyer’s paper [9]

⟨𝑒
±𝑖(
̃
𝜃(k,𝜆)+̃𝜃(k󸀠 ,𝜆󸀠))

⟩
̃
𝜃

= 0,

⟨𝑒
±𝑖(
̃
𝜃(k,𝜆)−̃𝜃(k󸀠 ,𝜆󸀠))

⟩
̃
𝜃

= 𝛿
𝜆
󸀠
,𝜆
𝛿
3

(k󸀠 − k) ,
(14)

the moments ⟨𝑥𝑛⟩̃
𝜃
can be evaluated:

⟨𝑥
2𝑚+1

⟩
̃
𝜃

= 0,

⟨𝑥
2𝑚

⟩
̃
𝜃

=
(2𝑚)!

𝑚!2𝑚
(

ℎ

2𝑚𝜔
0

)

𝑚

,

(15)

where𝑚 is a natural number. Consequently, only even-power
terms are contributing in (13), and the Fourier coefficients
𝐹̃
𝜃
(𝑘) can be determined:

𝐹̃
𝜃
(𝑘) =

∞

∑

𝑚=0

(−𝑖𝑘)
2𝑚

(2𝑚)!
⟨𝑥
2𝑚

⟩

=

∞

∑

𝑚=0

1

𝑚!
(
−ℎ𝑘
2

4𝑚𝜔
0

)

𝑚

= exp(− ℎ

4𝑚𝜔
0

𝑘
2

) .

(16)

Therefore, although not explicitly given, it is implied by
Boyer’s work [9] that the probability distribution of the SED
harmonic oscillator is

𝑃̃
𝜃
(𝑥) =

1

2𝜋
∫

+∞

−∞

𝑒
𝑖𝑘𝑥

𝐹̃
𝜃
(𝑘) 𝑑𝑘

= √
𝑚𝜔
0

𝜋ℎ
exp(−

𝑚𝜔
0

ℎ
𝑥
2

) ,

(17)

which is identical to the probability distribution of the quan-
tumharmonic oscillator in the ground state (this result is con-
sistent with the phase space probability distribution given in
Marshall’s work [27]).

3. Methods of Numerical Simulation

3.1. Vacuum Field in Bounded Space. While the vacuum field
in unbounded space is not subject to any boundary condition
and thus every wave vector k is allowed [4], the field
confined in a space of volume 𝑉 with zero value boundary
condition has a discrete spectrum, and a summation over
infinitely many countable wave vectors k is required [1]. In
a simulation, it is convenient to write the vacuum field in the
summation form:

Evac = ∑
k,𝜆
√
ℎ𝜔

𝜖
0
𝑉
cos (k ⋅ r − 𝜔𝑡 + 𝜃k,𝜆) 𝜀k,𝜆, (18)

where 𝑎k,𝜆 ≡ 𝑒
𝑖
̃
𝜃k,𝜆 , 𝜔 = 𝑐|k|, 𝜃k,𝜆 is the random phase

uniformly distributed in [0, 2𝜋], and 𝑉 is the volume of the
bounded space. A derivation of the summation form of the
vacuum field in bounded space is given in Appendix A.2.

Since the range of the allowed wave vectors k is over the
whole k-space, we choose to sample only the wave vectors k
whose frequencies are within the finite range [𝜔

0
− Δ/2, 𝜔

0
+

Δ/2]. Such sampling is valid as long as the chosen frequency
range Δ completely covers the characteristic resonance width
Γ𝜔
2

0
of the harmonic oscillator:

Γ𝜔
2

0
≪ Δ. (19)

On the other hand, the distribution of the allowed wave
vectors k depends on the specific shape of the bounded space.
In a cubic space of volume 𝑉, the allowed wave vectors
k are uniformly distributed at cubic grid points, and the
corresponding vacuum field is

Evac =
2

∑

𝜆=1

∑

(𝑘𝑥 ,𝑘𝑦,𝑘𝑧)

√
ℎ𝜔

𝜖
0
𝑉
cos (k ⋅ r − 𝜔𝑡 + 𝜃k,𝜆) 𝜀k,𝜆. (20)

The sampling density is uniform and has a simple relation
with the space volume 𝑉:

𝜌k =
𝑉

(2𝜋)
3
. (21)

Nevertheless, such uniform cubic sampling is not convenient
for describing a frequency spectrum, and it requires a large
number of sampled modes to reach numerical convergence.
In order to sample only the wave vectors k in the resonance
region, spherical coordinates are used. For the sampling to be
uniform, each sampled wave vector k must occupy the same
size of finite discrete volume element Δ3𝑘 = 𝑘2 sin 𝜃Δ𝑘Δ𝜃Δ𝜙.
To sample for modes in the resonance region with eachmode
occupying the same volume size, we use a set of specifically
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chosen numbers (𝜅
𝑖𝑗𝑛
, 𝜗
𝑖𝑗𝑛
, 𝜑
𝑖𝑗𝑛
) to sample the wave vectors k.

For 𝑖 = 1, . . . , 𝑁
𝜅
, 𝑗 = 1, . . . , 𝑁

𝜗
, and 𝑛 = 1, . . . , 𝑁

𝜑
,

𝜅
𝑖𝑗𝑛
=
(𝜔
0
− Δ/2)

3

3𝑐3
+ (𝑖 − 1) Δ𝜅,

𝜗
𝑖𝑗𝑛
= −1 + (𝑗 − 1) Δ𝜗,

𝜑
𝑖𝑗𝑛
= 𝑅
(0)

𝑖𝑗
+ (𝑛 − 1) Δ𝜑,

(22)

where 𝑅(0)
𝑖𝑗

is a random number uniformly distributed in
[0, 2𝜋], and the stepsizes are constant:

Δ𝜅 =
[(𝜔
0
+ Δ/2)

3

/3𝑐
3

− (𝜔
0
− Δ/2)

3

/3𝑐
3

]

𝑁
𝜅
− 1

, (23)

Δ𝜗 =
2

𝑁
𝜗
− 1

,

Δ𝜑 =
2𝜋

𝑁
𝜑

.

(24)

The random number 𝑅(0)
𝑖𝑗

is used here to make the sampling
more efficient. A set of numbers (𝜅

𝑖𝑗𝑛
, 𝜗
𝑖𝑗𝑛
, 𝜑
𝑖𝑗𝑛
) is then used

for assigning the spherical coordinates to each sampled wave
vector k:

k
𝑖𝑗𝑛
= (

𝑘
𝑥

𝑘
𝑦

𝑘
𝑧

) = (

𝑘
𝑖𝑗𝑛

sin (𝜃
𝑖𝑗𝑛
) cos (𝜙

𝑖𝑗𝑛
)

𝑘
𝑖𝑗𝑛

sin (𝜃
𝑖𝑗𝑛
) sin (𝜙

𝑖𝑗𝑛
)

𝑘
𝑖𝑗𝑛

cos (𝜃
𝑖𝑗𝑛
)

) , (25)

where

𝑘
𝑖𝑗𝑛
= (3𝜅

𝑖𝑗𝑛
)
1/3

,

𝜃
𝑖𝑗𝑛
= cos−1 (𝜗

𝑖𝑗𝑛
) ,

𝜙
𝑖𝑗𝑛
= 𝜑
𝑖𝑗𝑛
.

(26)

Therefore, each sampled wave vector k
𝑖𝑗𝑛

is in the resonance
region and occupies the same size of finite discrete volume
element:

Δ
3

𝑘 = 𝑘
2 sin 𝜃Δ𝑘Δ𝜃Δ𝜙 = Δ𝜅Δ𝜗Δ𝜑 = constant, (27)

where the differential equalities 𝑑𝜗 = sin 𝜃 𝑑𝜃, 𝑑𝜅 = 𝑘
2

𝑑𝑘,
and 𝑑𝜑 = 𝑑𝜙 are used. The differential limit is reached when
𝑁
𝜅
, 𝑁
𝜗
, and 𝑁

𝜑
are sufficiently large. The numerical result

converges to the analytical solution in this limit. Under the
uniform spherical sampling method (described by (22), (25),
and (26)), the expression for the vacuum field, (18), becomes

Evac =
2

∑

𝜆=1

∑

(𝜅,𝜗,𝜑)

√
ℎ𝜔

𝜖
0
𝑉
cos (k ⋅ r − 𝜔𝑡 + 𝜃k,𝜆) 𝜀k,𝜆, (28)

where k = k
𝑖𝑗𝑛
. It is worth noting that when the total

number of wave vectors𝑁k becomes very large, both uniform
spherical and cubic sampling converge to each other because

they both effectively sample all the wave vectors k in k-
space. In the limit of large sampling number 𝑁k → ∞,
the two sampling methods are equivalent (the relation 𝜌k =
1/Δ
3

𝑘 = 𝑁k/𝑉k = 𝑉/(2𝜋)
3 implies that the limit of large

sampling number (i.e., 𝑁k → ∞) is equivalent to the limit
of unbounded space (i.e.,𝑉 → ∞). At this limit, the volume
element becomes differential (denoted as 𝑑3𝑘) and is free
from any specific shape associated with the space boundary.
Therefore, all sampling methods for the allowed wave vectors
k become equivalent, and the summation approaches the
integral.This is consistent with the fact that no volume factor
𝑉 is involved in the vacuum field integral, as shown in (1)),
and (21) can be used for both sampling methods to calculate
the volume factor 𝑉 in (20) and (28):

𝑉 = (2𝜋)
3

𝜌k = (2𝜋)
3
𝑁k
𝑉k
, (29)

where

𝑉k =
4𝜋

3
(
𝜔
0
+ Δ/2

𝑐
)

3

−
4𝜋

3
(
𝜔
0
− Δ/2

𝑐
)

3

. (30)

In the simulation, the summation indices in (28) can be
rewritten as

Evac =
2

∑

𝜆=1

𝑁
𝜅

∑

𝑖=1

𝑁
𝜗

∑

𝑗=1

𝑁
𝜑

∑

𝑛=1

√
ℎ𝜔

𝜖
0
𝑉
cos (k ⋅ r − 𝜔𝑡 + 𝜃k,𝜆) 𝜀k,𝜆, (31)

where the multiple sums indicate a numerical nested loop
and the wave vector k = k

𝑖𝑗𝑛
is chosen according to the

uniform spherical sampling method. To achieve numerical
convergence, 𝑁

𝜗
and 𝑁

𝜑
need to be sufficiently large so

that the wave vector k at a fixed frequency may be sampled
isotropically. In addition, a large𝑁

𝜅
is required for represen-

tative samplings in frequency. As a result, 𝑁k = 𝑁
𝜅
𝑁
𝜗
𝑁
𝜑

needs to be very largewhen using uniform spherical sampling
for numerical simulation. To improve the efficiency of the
computer simulation, we sample k at one random angle
(𝜃
𝑖
, 𝜙
𝑖
) for each frequency. Namely, for 𝑖 = 1, . . . , 𝑁

𝜔
,

k
𝑖
= (

𝑘
𝑥

𝑘
𝑦

𝑘
𝑧

) = (

𝑘
𝑖
sin 𝜃
𝑖
cos𝜙
𝑖

𝑘
𝑖
sin 𝜃
𝑖
sin𝜙
𝑖

𝑘
𝑖
cos 𝜃
𝑖

) , (32)

where

𝑘
𝑖
= (3𝜅
𝑖
)
1/3

,

𝜃
𝑖
= cos−1 (𝜗

𝑖
) ,

𝜙
𝑖
= 𝜑
𝑖
,

(33)

𝜅
𝑖
=
(𝜔
0
− Δ/2)

3

3𝑐3
+ (𝑖 − 1) Δ𝜅,

𝜗
𝑖
= 𝑅
(1)

𝑖
,

𝜑
𝑖
= 𝑅
(2)

𝑖
.

(34)
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The stepsize Δ𝜅 is specified in (23), 𝜗 = 𝑅
(1)

𝑖
is a random

number uniformly distributed in [−1, 1], and 𝜑 = 𝑅
(2)

𝑖
is

another random number uniformly distributed in [0, 2𝜋]. As
the number of sampled frequencies 𝑁

𝜔
becomes sufficiently

large, the random angles (𝜃
𝑖
, 𝜙
𝑖
) will approach the angles

specified in uniform spherical sampling (22).
In the limit of Δ/𝜔

0
≪ 1, the above sampling method

(described by (32), (33), and (34)) and the uniform spherical
sampling method both approach a uniform sampling on a
spherical surface at the radius 𝑟

𝑘
= 𝜔
0
/𝑐. In this limit, the

addition of the condition in (19) leads to the possible choices
for the frequency range Δ:

Γ𝜔
0
≪

Δ

𝜔
0

≪ 1. (35)

Within this range (35), the expression for the vacuum field in
(18) becomes

Evac =
2

∑

𝜆=1

𝑁
𝜔

∑

𝑖=1

√
ℎ𝜔

𝜖
0
𝑉
cos (k ⋅ r − 𝜔𝑡 + 𝜃k,𝜆) 𝜀k,𝜆, (36)

where k = k
𝑖
. For large 𝑁k = 𝑁

𝜔
, the volume factor 𝑉 is

calculated using (29).
Finally, for a complete specification of the vacuum field,

(36), the polarizations 𝜀k,𝜆 need to be chosen. From (29),
we notice that large 𝑁k gives large 𝑉. Since for large 𝑉
the vacuum field is not affected by the space boundary,
there should be no preferential polarization direction and
the polarizations should be isotropically distributed. The
construction for isotropically distributed polarizations is
discussed in detail in Appendix B. Here we give the result
that satisfies the property of isotropy and the properties of
polarization (described by (3) and (4)):

𝜀k
𝑖
,1
= (

𝜀
1,𝑥

𝜀
1,𝑦

𝜀
1,𝑧

)

= (

cos 𝜃
𝑖
cos𝜙
𝑖
cos𝜒
𝑖
− sin𝜙

𝑖
sin𝜒
𝑖

cos 𝜃
𝑖
sin𝜙
𝑖
cos𝜒
𝑖
+ cos𝜙

𝑖
sin𝜒
𝑖

− sin 𝜃
𝑖
cos𝜒
𝑖

),

𝜀k
𝑖
,2
= (

𝜀
2,𝑥

𝜀
2,𝑦

𝜀
2,𝑧

)

= (

− cos 𝜃
𝑖
cos𝜙
𝑖
sin𝜒
𝑖
− sin𝜙

𝑖
cos𝜒
𝑖

− cos 𝜃
𝑖
sin𝜙
𝑖
sin𝜒
𝑖
+ cos𝜙

𝑖
cos𝜒
𝑖

sin 𝜃
𝑖
sin𝜒
𝑖

),

(37)

where𝜒 is a randomnumber uniformly distributed in [0, 2𝜋].
With the wave vectors k (described by (32), (33), and (34))
and the polarizations 𝜀k,𝜆 (described by (37)), the endpoints
of the sampled vacuum field vector are plotted on a unit
sphere, as shown in Figure 2, which illustrates the isotropy
of the distribution.

In summary, the vacuum field mode (k, 𝜆) in (36) can
be sampled by a set of four numbers (𝜅

𝑖
, 𝜗
𝑖
, 𝜑
𝑖
, 𝜒
𝑖
), which are

specified in (32), (33), (34), and (37). The only assumption
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Figure 2:The isotropic distribution of the polarization field vectors
𝜀k,1 (number of sampled frequencies number 𝑁

𝜔
= 3 × 10

3). The
endpoints of the polarization field vectors, 𝜀k,1, are plotted for a ran-
dom sampling of modes (k, 1) according to the methods described
in (32), (33), and (34).

used in determining these numbers is (35), which is equiv-
alent to the sharp resonance condition (9) used in Boyer’s
analysis.

3.2. Equation of Motion in Numerical Simulation. In the
unbounded (free) space, the equation of motion in Boyer’s
analysis is

𝑚𝑥̈ = −𝑚𝜔
2

0
𝑥 + 𝑚Γ𝑥⃛ + 𝑞𝐸vac,𝑥 (𝑡) , (38)

where the dipole approximation k ⋅ r ≪ 1 (5) is used. In the
bounded space, the equation ofmotion remains the same, but
the vacuum field formulated has the summation form (36):

Evac = ∑
k,𝜆
√
ℎ𝜔

𝜖
0
𝑉

1

2
(𝑎k,𝜆𝑒

−𝑖𝜔𝑡

+ 𝑎
∗

k,𝜆𝑒
𝑖𝜔𝑡

) 𝜀k,𝜆, (39)

where 𝑎k,𝜆 ≡ 𝑒
𝑖
̃
𝜃k,𝜆 . The steady-state solution to (38) in the

bounded space can be found following Boyer’s approach:

𝑥 (𝑡) =
𝑞

𝑚
∑

k,𝜆
√
ℎ𝜔

𝜖
0
𝑉

1

2
(
𝑎k,𝜆
𝐶k,𝜆

𝑒
−𝑖𝜔𝑡

+
𝑎
∗

k,𝜆
𝐶∗k,𝜆

𝑒
𝑖𝜔𝑡

) 𝜀k𝜆,𝑥, (40)

where𝐶k,𝜆 ≡ (−𝜔
2

+𝜔
2

0
)−𝑖Γ𝜔

3. While this analytical solution
can be evaluated using ourmethod of vacuummode selection
((32), (33), (34), and (37)), our goal with the numerical
simulation is to first reproduce Boyer’s analytical results (8)
and then later extend the methods to other physical systems.
One major obstacle for the numerical approach is the third-
order derivative in the radiation damping term,𝑚Γ𝑥⃛. To cir-
cumvent this problem,we follow the perturbative approach in
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[28–30]. According to classical electrodynamics, the equation
of motion for an electron with radiation damping is

𝑚𝑥̈ = 𝐹 + 𝑚Γ𝑥⃛, (41)

where 𝐹 is the force and Γ ≡ (2𝑒
2

/3𝑚𝑐
3

)(1/4𝜋𝜖
0
) is the

radiation damping coefficient. Under the assumption𝑚Γ𝑥⃛ ≪
𝐹, the zero-order equation of motion is

𝑚𝑥̈ ≃ 𝐹. (42)

The justification for the assumption 𝑚Γ𝑥⃛ ≪ 𝐹 is that a
point particle description of the electron is used in classical
electrodynamics [28, 30]. Using (42), the radiation damping
term may be estimated by

𝑚Γ𝑥⃛ ≃ Γ𝐹̇, (43)

which can be iterated back to the original equation (41) and
get a perturbative expansion:

𝑚𝑥̈ ≃ 𝐹 + Γ𝐹̇. (44)

Thus, in this approximated equation of motion we replace the
third derivative of position𝑥 by the first derivative of the force
𝐹. Applying (44) to (38), the equation of motion becomes

𝑚𝑥̈ ≃ −𝑚𝜔
2

0
𝑥 − 𝑚Γ𝜔

2

0
𝑥̇ + 𝑞𝐸vac,𝑥 (𝑡) + 𝑞Γ𝐸̇vac,𝑥 (𝑡) . (45)

The order of magnitude for each term on the right-hand side
is

𝑂(𝑚𝜔
2

0
𝑥) = 𝑚𝜔

2

0
𝑥
0
, (46)

𝑂 (𝑞𝐸vac,𝑥) = 𝑒𝐸0, (47)

𝑂(𝑚Γ𝜔
2

0
𝑥̇) = (Γ𝜔

0
)𝑚𝜔
2

0
𝑥
0
, (48)

𝑂(𝑞Γ𝐸̇vac,𝑥) = (Γ𝜔0) 𝑞𝐸0, (49)

where 𝑥
0
and 𝐸

0
are the order of magnitude for the particle

motion𝑥 and the vacuumfield𝐸vac,𝑥.The order ofmagnitude
for the time scale of particle motion is given by 1/𝜔

0
because

of the sharp resonance condition (9). In order to compare
the two radiation damping terms ((48) and (49)), we use a
random walk model to estimate 𝑥

0
and 𝐸

0
. For a fixed time

𝑡 = 𝑡
0
, the order ofmagnitude for𝐸vac,𝑥(𝑡0) and𝑥(𝑡0) (see (39)

and (40)) is equal to 𝐸
0
and 𝑥

0
. Written as complex numbers,

the mathematical form of 𝐸vac,𝑥(𝑡0) and 𝑥(𝑡0) is analogous
to a two-dimensional random walk on the complex plane
with random variable Θ

{k,𝜆}, where {k, 𝜆} denotes a set of
modes (k, 𝜆). Averaging over {k, 𝜆}, the order of magnitude
for 𝐸vac,𝑥(𝑡0) and 𝑥(𝑡0) can be estimated by the root-mean-
squared distance of𝐸vac,𝑥(𝑡0) and 𝑥(𝑡0). In a two-dimensional
random walk model [31], the root-mean-squared distance
𝐷rms is given by

𝐷rms = √𝑁𝑠 ⋅ Δ𝑠, (50)

where 𝑁
𝑠
is the number of steps taken and Δ𝑠 is a typical

stepsize; for 𝐷(𝐸)rms, Δ𝑠 = (1/2)√(ℎ𝜔
0
/𝜖
0
𝑉), and for 𝐷(𝑥)rms,

Δ𝑠 = (1/2)((𝑞/𝑚Γ𝜔
3

0
)√(ℎ𝜔

0
/𝜖
0
𝑉)). Hence, the order of

magnitude, 𝐸
0
and 𝑥

0
, may be estimated as (using 𝑉 =

(2𝜋)
3

𝑁
𝜔
/𝑉k and 𝑉k ≃ 4𝜋𝜔

2

0
(Γ𝜔
2

0
)/𝑐
3 ((29) and (30)), the

value of 𝑥
0
in (51) can be estimated as 𝑥

0
≃ √3/𝜋√ℎ/2𝑚𝜔

0
,

which is consistent with Boyer’s calculation for the standard
deviation of position in (10))

𝐸
0
≃ 𝐷
(𝐸)

rms = √2𝑁𝜔 ⋅
1

2
√
ℎ𝜔
0

𝜖
0
𝑉
,

𝑥
0
≃ 𝐷
(𝑥)

rms = √2𝑁𝜔 ⋅
1

2
(

𝑞

𝑚Γ𝜔3
0

√
ℎ𝜔
0

𝜖
0
𝑉
) .

(51)

The order of magnitude for the two radiation damping terms
is evaluated accordingly:

𝑂(𝑚Γ𝜔
2

0
𝑥̇) ≃ 𝑞√

𝑁
𝜔

2
⋅ √

ℎ𝜔
0

𝜖
0
𝑉
,

𝑂 (𝑞Γ𝐸̇vac,𝑥) ≃ (Γ𝜔0) 𝑞√
𝑁
𝜔

2
⋅ √

ℎ𝜔
0

𝜖
0
𝑉
.

(52)

Using the sharp resonance condition Γ𝜔
0
≪ 1 (9), we approx-

imate the equation of motion (45) to its leading order:

𝑚𝑥̈ ≃ −𝑚𝜔
2

0
𝑥 − 𝑚Γ𝜔

2

0
𝑥̇ + 𝑞𝐸vac,𝑥 (𝑡) . (53)

As an additional note, given the estimation of𝐸
0
and𝑥
0
in

(51), the three force terms in (53) have the following relation:

𝑂(𝑚𝜔
2

0
𝑥) ≫ 𝑂(𝑚Γ𝜔

2

0
𝑥̇) ≃ 𝑂 (𝑞𝐸vac,𝑥) . (54)

Thus, the linear restoring force𝑚𝜔2
0
𝑥 is the dominating drive

for an SEDharmonic oscillator, while the vacuumfield 𝑞𝐸vac,𝑥
and radiation damping 𝑚Γ𝜔

2

0
𝑥̇ act as perturbations. The

balance between the vacuum field and the radiation damping
constrains the oscillation amplitude to fluctuate in the vicinity
of 𝑥
0
.
Finally, as we have established an approximated equation

of motion (53) for numerical simulation, the total integration
time 𝜏int (i.e., how long the simulation is set to run) needs to
be specified. Upon inspection, two important time scales are
identified from the analytical solution of (53):

𝑥 (𝑡) = 𝑒
−Γ𝜔
2

0
𝑡/2

(𝐴𝑒
𝑖𝜔
𝑅
𝑡

+ 𝐴
∗

𝑒
−𝑖𝜔
𝑅
𝑡

)

+
𝑞

𝑚
∑

k,𝜆
√
ℎ𝜔

𝜖
0
𝑉

1

2
(
𝑎k,𝜆
𝐵k,𝜆

𝑒
−𝑖𝜔𝑡

+
𝑎
∗

k,𝜆
𝐵∗k,𝜆

𝑒
𝑖𝜔𝑡

) 𝜀k𝜆,𝑥,
(55)

where 𝐴 is a coefficient determined by the initial conditions
and

𝜔
𝑅
≡ 𝜔
0

√1 − (
Γ𝜔
0

2
)

2

,

𝐵k,𝜆 ≡ (−𝜔
2

+ 𝜔
2

0
) − 𝑖 (Γ𝜔

2

0
) 𝜔,

𝑎k,𝜆 ≡ 𝑒
𝑖
̃
𝜃k,𝜆 .

(56)
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The first term in (55) represents the transient motion and
the second term represents the steady-state motion. The
characteristic time for the transient motion is

𝜏tran =
2

Γ𝜔2
0

. (57)

Thus, the simulation should run beyond 𝜏tran if one is inter-
ested in the steady-state motion. As the steady-state solution
is a finite discrete sum of periodic functions, it would have
a nonphysical repetition time 𝜏rep. The choice of 𝜏int should
satisfy 𝜏int ≤ 𝜏rep to avoid repetitive solutions. A detailed
discussion about 𝜏rep can be found in Appendix C. Here we
give a choice of 𝜏int,

𝜏int =
2𝜋

Δ𝜔
, (58)

where Δ𝜔 is the frequency gap and it can be estimated using
(23), (33), and (34),

Δ𝜔 ≃
𝑐(3𝜅
0
)
1/3

3

Δ𝜅

𝜅
0

, (59)

where 𝜅
0
≡ (1/3)(𝜔

0
/𝑐)
3.

To summarize, (53) is the approximated equation of
motion to be used in numerical simulation.The vacuum field
𝐸vac,𝑥 in (53) is given by (39).The specifications of the vacuum
field modes (k, 𝜆), polarizations 𝜀k,𝜆, and other relevant vari-
ables can be found in Section 3.1. To approximate (38) by (53),
two conditions need to be used, namely, the dipole approxi-
mation (5) and the sharp resonance condition (9).Theparam-
eters 𝑞, 𝑚, and 𝜔

0
simulation should be chosen to satisfy

these two conditions, as these two conditions are also used in
Boyer’s analysis. Lastly, the integration time 𝜏int for the sim-
ulation is chosen to be within the range 𝜏trans ≪ 𝜏int ≤ 𝜏rep,
where 𝜏tran and 𝜏rep are given in (57) and (58), respectively.

4. Simulation Results

In Section 2, it was shown that the probability distribution
for an SED harmonic oscillator is a Gaussian. In Section 3, we
develop themethods for a numerical simulation to investigate
the dynamics of the SED harmonic oscillator and how it gives
rise to the Gaussian probability distribution. In this section,
the results of the simulation are presented, and the relation
between the trajectory and the probability distribution is
discussed.

To construct the probability distribution from a particle’s
trajectory, two sampling methods are used. The first method
is sequential sampling and the second method is ensemble
sampling. In sequential sampling the position or velocity is
recorded in a time sequence from a single particle’s trajectory,
while in ensemble sampling the same is recorded only at
the end of the simulation from an ensemble of particle
trajectories.The recorded positions or velocities are collected
in histogram and then converted to a probability distribution
for comparison to the analytical result (17). Whereas the
sequential sampling illustrates the relationship between the
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Figure 3: A comparison between particle trajectory and the tem-
poral evolution of the vacuum field. Top: the vacuum field (red) is
compared to the trajectory of the SED harmonic oscillator (black).
Bottom: a magnified section of the trajectory shows that there is no
fixed phase or amplitude relation between the particle trajectory and
the instantaneous driving field. The modulation time for the field is
also shown to be longer than that for the motion of the harmonic
oscillator.

buildup of probability distribution and the dynamics of par-
ticle trajectory, the ensemble sampling is convenient for sta-
tistical interpretation. In addition, the ensemble sampling is
suitable for parallel computing, which can be used to improve
the computation efficiency.

4.1. Particle Trajectory and the Probability Distribution. By
solving (53) numerically, the steady-state trajectory for the
SED harmonic oscillator is obtained and shown in Figure 3.
For a comparison, the temporal evolution of the vacuum field
(39) is also included.The ordinary differential equation (53) is
solved using the adaptive 5th order Cash-Karp Runge-Kutta
method [32], and the integration stepsize is set as small as
one-twentieth of the natural period, (1/20)(2𝜋/𝜔

0
), to avoid

numerical aliasing. The charge 𝑞, mass 𝑚, natural frequency
𝜔
0
, and vacuum field frequency range Δ are chosen to be

𝑞 = 𝑒,

𝑚 = 10
−4

𝑚
𝑒
,

𝜔
0
= 10
16 rad/s,

Δ = 220 × Γ𝜔
2

0
,

(60)

where 𝑒 is the electron charge, 𝑚
𝑒
is the electron mass, and

Γ𝜔
2

0
is the resonance width of the harmonic oscillator. The

choice of 𝑚 = 10
−4

𝑚
𝑒
is made to bring the modulation time

and the natural period of the harmonic oscillator closer to
each other. In other words, the equation ofmotion (53) covers
time scales at two extremes, and the choice of mass 𝑚 =

10
−4

𝑚
𝑒
brings these two scales closer so that the integration
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time ismanageable without losing the physical characteristics
of the problem.

Here we would like to highlight some interesting features
of the simulated trajectory (Figure 3). First, there appears to
be no fixed phase or amplitude relation between the particle
trajectory and the instantaneous driving field. Second, the
rate of amplitude modulation in the particle trajectory is
slower than that in the driving field. To gain insights into
these dynamical behaviors, we study the steady-state solution
of (55) in the Green function form [33]:

𝑥 (𝑡)

=
𝑞

𝑚𝜔
𝑅

∫

𝑡

−∞

𝐸vac,𝑥 (𝑡
󸀠

) 𝑒
−Γ𝜔
2

0
(𝑡−𝑡
󸀠
)/2 sin (𝜔

𝑅
(𝑡 − 𝑡
󸀠

)) 𝑑𝑡
󸀠

,

(61)

where 𝜔
𝑅
≡ 𝜔
0
√1 − (Γ𝜔

0
/2)
2. The solution indicates that the

effect of the driving field𝐸vac,𝑥(𝑡
󸀠

) at any given time 𝑡󸀠 lasts for
a time period of 1/Γ𝜔2

0
beyond 𝑡󸀠. In other words, the particle

motion 𝑥(𝑡) at time 𝑡 is affected by the vacuum field 𝐸vac,𝑥(𝑡
󸀠

)

from all the previous moments (𝑡󸀠 ≤ 𝑡). As the vacuum field
fluctuates in time, the fields at two points in time only become
uncorrelated when the time separation is much longer than
one coherence time (the coherence time of the vacuumfield is
𝜏coh = 2𝜋/|𝜔 − 𝜔0|max, see (64)).This property of the vacuum
field reflects on the particle trajectory, and it explains why the
particle trajectory has no fixed phase or amplitude relation
with the instantaneous driving field. Another implication of
(61) is that it takes a characteristic time 1/Γ𝜔2

0
for the particle

to dissipate the energy gained from the instantaneous driving
field. Thus, even if the field already changes its amplitude, it
would still take a while for the particle to follow.This explains
why the amplitude modulation in the particle trajectory is
slower compared to that in the driving field (however, in
case of slow field modulation when the field bandwidth is
shorter than the resonance width of the harmonic oscillator,
themodulation time of the field and the particle trajectory are
the same).

The sequential sampling of a simulated trajectory gives
the probability distributions in Figure 4. While Boyer’s result
is obtained through ensemble (phase) averaging, the Gaus-
sian probability distribution shown here is constructed from
a single trajectory and is identical to the probability distribu-
tion of a ground state quantum harmonic oscillator.

To understand how the trajectory gives rise to a Gaussian
probability distribution, we investigate the particle dynamics
at two time scales. At short time scale, the particle oscillates
in a harmonic motion. The oscillation amplitude is constant,
and the period is 𝑇 = 2𝜋/𝜔

0
. Such an oscillation makes

a classical double-peak probability distribution. At large
time scale, the oscillation amplitude modulates. As a result,
different parts of the trajectory have double-peak probability
distributions associated with different oscillation amplitudes,
which add to make the final probability distribution a Gaus-
sian distribution, as shown in Figure 5. To verify this idea, we
attempt to reconstruct the Gaussian probability distribution
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Figure 4: The probability distribution constructed from a single
particle’s trajectory (number of sampled frequencies𝑁

𝜔
= 2 × 10

4).
Left: the position and momentum probability distributions for the
SED harmonic oscillator (black dot) and the ground state quantum
harmonic oscillator (red and blue lines) are compared. Right: an
illustration of the sequential sampling shows how positions are
recorded at a regular time sequence (red cross). Note that at small
time scale the oscillation amplitude is constant, but at large time
scale it modulates.

from the double-peak probability distributions at different
sections of the trajectory. We approach this problem by
numerically sampling the oscillation amplitudes at a fixed
time-step. To determine the appropriate sampling time-step,
we inspect the steady-state solution (55) in its complex form:

𝑥 (𝑡) =
𝑞

𝑚
∑

k,𝜆
√
ℎ𝜔

𝜖
0
𝑉

𝑎k,𝜆
𝐵k,𝜆

𝑒
−𝑖𝜔𝑡

𝜀k𝜆,𝑥. (62)

Since the frequency components can be sampled symmetri-
cally around𝜔

0
, we factorize 𝑥(𝑡) into an amplitude term𝐴(𝑡)

and an oscillation term 𝑒
−𝑖𝜔
0
𝑡:

𝑥 (𝑡) = 𝐴 (𝑡) 𝑒
−𝑖𝜔
0
𝑡

,

𝐴 (𝑡) = ∑

k,𝜆
(𝜀k𝜆,𝑥

𝑞

𝑚
√
ℎ𝜔

𝜖
0
𝑉

𝑎k,𝜆
𝐵k,𝜆

)𝑒
−𝑖(𝜔−𝜔

0
)𝑡

.

(63)

The complex components 𝑒−𝑖(𝜔−𝜔0)𝑡 rotate in the complex
plane at different rates 𝜔 − 𝜔

0
. At any given time, the con-

figuration of these components determines the magnitude of
𝐴(𝑡), as shown in Figure 6. As time elapses, the configuration
evolves and the amplitude 𝐴(𝑡) changes with time. When the
elapsed time Δ𝑡 is much shorter than the shortest rotating
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Figure 5: Contributions of different oscillation amplitudes in the
final probability distribution. Top: several sections (red) of a steady-
state trajectory (black) are shown. A section is limited to the dura-
tion of the characteristicmodulation time.The oscillation amplitude
changes significantly beyond the characteristic modulation time,
so different sections of the trajectory obtain different oscillation
amplitudes. Bottom: the probability distributions of each section of
the trajectory are shown. As the oscillation amplitude is approx-
imately constant in each section, the corresponding probability
distribution (red bar) is close to the classic double-peak distribution.
The probability distributions in different sections of the trajectory
contribute to different areas of the final probability distribution
(black dashed line). The final probability distribution is constructed
from the steady-state trajectory.

period 2𝜋/|𝜔 − 𝜔
0
|max, the change in the amplitude 𝐴(𝑡) is

negligible:

𝐴 (𝑡 + Δ𝑡) ≃ 𝐴 (𝑡) for Δ𝑡 ≪ 𝜏coh, (64)

where 𝜏coh = 2𝜋/|𝜔 − 𝜔
0
|max. Here we denote this shortest

rotating period as coherence time (the coherence time 𝜏coh
as defined here is equivalent to the temporal width of
the first-order correlation function (autocorrelation). As the
autocorrelation of the simulated trajectory is the Fourier
transform of the spectrum according to Wiener-Khinchin
theorem, it has a temporal width the same as the coherence
time 𝜏coh calculated here) 𝜏coh. For our problem at hand, it is
clear that the sampling of oscillation amplitudes should use a
time-step greater than 𝜏coh.

A representative sampling of the oscillation amplitudes
with each sampled amplitude separated by 3𝜏coh is shown
in Figure 7. In this figure, the histogram of the sampled
oscillation amplitudes shows that the occurrence of large or
small amplitudes is rare. Most of the sampled amplitudes
have a medium value. This is because the occurrence of
extreme values requires complete alignment ormisalignment
of the complex components in 𝐴(𝑡). For most of the time,
the complex components are in partial alignment and thus
give a medium value of𝐴(𝑡). Interestingly, the averaged value
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Figure 6: A schematic illustration of the oscillation amplitude as
a sum of different frequency components in the complex plane.
At a particular time 𝑡 = 𝑡

0
, an oscillation amplitude 𝐴(𝑡

0
) (blue

solid arrow) is formed by a group of frequency components (blue
dashed arrow), which rotate in the complex plane at different rates.
After a time Δ𝑡 ≪ 𝜏coh, the angles of the frequency components
(red dashed arrow) change only a little. Therefore, the oscillation
amplitude𝐴(𝑡

0
+Δ𝑡) (red solid arrow) does not changemuch within

the coherence time.

of 𝐴(𝑡) is close to the oscillation amplitude 𝑥
0
as predicted

by the random walk model (51). Using the amplitude dis-
tribution given in Figure 7, a probability distribution can
be constructed by adding up the double-peak probability
distributions:

𝑃 (𝑥) = ∑

𝐴

𝑃
𝐴
(𝑥) = ∫𝑃

𝐴
(𝑥) 𝑓 (𝐴) 𝑑𝐴, (65)

where 𝐴 is oscillation amplitude, 𝑓(𝐴) is the amplitude dis-
tribution, and 𝑃

𝐴
(𝑥) is the corresponding double-peak prob-

ability distribution. This constructed probability distribution
is a Gaussian and is identical to the simulation result shown
in Figure 4. The reconstruction of the Gaussian probability
distribution indicates the transitioning from double-peak
distribution to theGaussian distribution due to the amplitude
modulation driven by the vacuum field.

4.2. Phase Averaging and Ensemble Sampling. In many SED
analyses [4–7, 9, 34], the procedure of random phase aver-
aging is often used to obtain the statistical properties of the
physical system. A proper comparison between numerical
simulation and analysis should thus be based on ensemble
sampling. In each realization of ensemble sampling, the par-
ticle is prepared with identical initial conditions, but the vac-
uum field differs in its initial random phase 𝜃k,𝜆. The differ-
ence in the initial random phase 𝜃k,𝜆 corresponds to the dif-
ferent physical realizations in randomphase averaging. At the
end of the simulation, physical quantities such as position and
momentum are recorded from an ensemble of trajectories.

The ensemble sampling of the simulation gives the proba-
bility distributions in Figure 8. The position and momentum
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7 for better visualization.
This result confirms that the underlyingmechanism for theGaussian
probability distribution is the addition of a series of double-peak
probability distributions according to the amplitude distribution
given by the vacuum field. It is also worth noting that the most
frequent oscillation amplitude in the amplitude distribution is at the
half-maximum of the position distribution (black dot).

distributions satisfy the Heisenberg minimum uncertainty as
predicted by Boyer’s analysis. In addition, Boyer proposed a
mechanism for the minimum uncertainty using an energy-
balance argument. Namely, he calculated the energy gain
from the vacuum field and the energy loss through radiation
damping, and he found that the delicate balance results in the
minimumuncertainty relation [4].We confirm this balancing
mechanism by turning off the radiation damping in the
simulation and see that theminimumuncertainty relation no
longer holds (see Figure 9).

Unlike sequential sampling, ensemble sampling has the
advantage that the recorded data are fully uncorrelated. As
a result, the integration time does not need to be very long
compared to the coherence time 𝜏coh. However, since only
one data point is recorded from each trajectory, a simulation
with ensemble sampling actually takes longer time than with
sequential sampling. For example, a typical simulation run
with sequential sampling takes 2.3 hours to finish (for number
of sampled frequencies 𝑁

𝜔
= 2 × 10

4), but with ensemble
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Figure 8: The probability distribution constructed from an ensem-
ble sampling (number of particles𝑁

𝑝
= 2 × 10

5, number of sampled
frequencies 𝑁

𝜔
= 2 × 10

3). Left: the position and momentum
probability distributions are shown for the SED harmonic oscillator
(black dot) and the ground state quantum harmonic oscillator
(red and blue line). The ensemble sampling corresponds to the
procedure of random phase averaging ((10) and (11)), so the width of
the probability distributions should satisfy Heisenberg’s minimum
uncertainty relation (𝜎

𝑥
𝜎
𝑝
= ℎ/2) as predicted by the analysis. Right:

an illustration of the ensemble sampling shows how positions (red
cross) are recorded from an ensemble of trajectories (black line).

sampling it takes 61 hours (for number of particles 𝑁
𝑝
=

2 × 10
5 and number of sampled frequencies𝑁

𝜔
= 5 × 10

2).
A remedy to this problem is to use parallel computing for the
simulation. The parallelization scheme (the parallelization
of the simulation program is developed and benchmarked
with assistance from the University of Nebraska, Holland
Computing Center. The program is written in Fortran and
parallelized using message passing interface (MPI) [32, 35].
The compiler used in this work is the GNU Compiler
Collection (GCC) gcc-4.4.1 and the MPI wrapper used is
openmpi-1.4.3.) for our simulation with ensemble sam-
pling is straightforward, since each trajectory is independent
except for the random initial phases 𝜃k,𝜆. To reduce the
amount of interprocessor communication and computation
overhead, each processor is assigned an equal amount of
work.Theparallelized program is benchmarked and shows an
inverse relation between the computation time and the num-
ber of processors (see Figure 10). As the computation speedup
is defined as 𝑆

𝑝
= 𝑇
1
/𝑇
𝑝
, where 𝑇

1
is the single processor

computation time and 𝑇
𝑝
is the multiprocessor computation

time, the inverse relation shown in Figure 10 indicates ideal
performance of linear speedup. As an additional note, the
parallelized code is advantageous for testing the numerical
convergence of the simulation. In Figure 11, the convergence
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The energy converges as the number of sampled frequencies 𝑁
𝜔

increases. At𝑁
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= 5 × 10

2 (blue cross), the deviation between the
energy of the SED harmonic oscillator and the ground state energy
of the quantum oscillator is 1%.

of the ensemble-averaged energy as a function of sampled
frequency number is shown.As highlighted in the figure, only
𝑁
𝜔
= 5 × 10

2 sampled modes need to be used for the
simulation to agree with the analytical result.The fact that𝑁

𝜔

is low indicates that our method of vacuummode selection is
efficient.

5. Conclusions

The analytical probability distribution of an SED harmonic
oscillator is obtained in Section 2. The details of our numer-
ical methods including vacuum mode selection are docu-
mented in Section 3. Agreement is found between the simu-
lation and the analytical results, as both sequential sampling
and ensemble sampling give the same probability distribution
as the analytical result (see Figures 4 and 8). Numerical
convergence is reached with a low number of sampled
vacuum field mode (𝑁

𝜔
= 5 × 10

2), which is an indication
that our method of vacuum mode selection ((32), (33), (34),
and (37)) is effective in achieving a representative sampling.

As the probability distribution constructed from a sin-
gle trajectory is a Gaussian and satisfies the Heisenberg
minimum uncertainty relation, we investigate the relation
between the Gaussian probability distribution and the par-
ticle’s dynamical properties. As a result, the amplitude modu-
lation of the SED harmonic oscillator at the time scale of 𝜏coh
is found to be the cause for the transitioning from the double-
peak probability distribution to the Gaussian probability
distribution (see Figures 5, 7, and 12).
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6. Discussions: Application of Simulation to
Other Physical Systems

In quantum mechanics, the harmonic oscillator has excited,
coherent, and squeezed states. A natural extension of our
current work is to search for the SED correspondence of such
states. Currently, we are investigating how a Gaussian pulse
with different harmonics of 𝜔

0
will affect the SED harmonic

oscillator. Can the SEDharmonic oscillator support a discrete
excitation spectrum, and if so, how does it compare with
the prediction from quantum mechanics? Such a study is
interesting in the broader view of Milonni’s comment that
SED is unable to account for the discrete energy levels of
interacting atoms [1] and also Boyer’s comment that at present
the line spectra of atoms are still unexplained in SED [36].

The methods of our numerical simulation may be appli-
cable to study other quantum systems that are related to the
harmonic oscillator, such as a charged particle in a uniform
magnetic field and the anharmonic oscillator [5, 34]. For the
first example, classically, a particle in a uniformmagnetic field
performs cyclotron motion. Such a system can be viewed as
a two-dimensional oscillator, having the natural frequency
set by the Larmor frequency. On the other hand, a quantum
mechanical calculation for the same system reveals Landau
quantization. The quantum orbitals of cyclotron motion are
discrete and degenerate. Such a system presents a challenge
to SED. For the second example, a harmonic potential can be

modified to include anharmonic terms of various strengths.
Heisenberg considered such a system a critical test in the early
development of quantummechanics [37, 38]. We think that a
study of the anharmonic oscillator is thus a natural extension
of our current study and may serve as a test for SED.

Lastly, over the last decades there has been a sustained
interest to explain the origin of electron spin and the mecha-
nism behind the electron double-slit diffractionwith SED [15,
39–41]. Several attempts were made to construct a dynamical
model that accounts for electron spin. In 1982, de la Peña
calculated the phase averaged mechanical angular momen-
tum of a three-dimensional harmonic oscillator. The result
deviates from the electron spin magnitude by a factor of 2
[39]. One year later, Sachidanandam derived the intrinsic
spin one-half of a free electron in a uniform magnetic field
[40]. Whereas Sachidanandam’s calculation is based on the
phase averaged canonical angular momentum, his result is
consistent with Boyer’s earlier work where Landau diamag-
netism is derived via the phase averaged mechanical angular
momentum of an electron in a uniform magnetic field [5].
Although these results are intriguing, the most important
aspect of spin, the spin quantization, has not been shown.
If passed through a Stern-Gerlach magnet, will the electrons
in the SED description split into two groups of trajectories
(electron Stern-Gerlach effect is an interesting but controver-
sial topic in its own right. Whereas Bohr and Pauli asserted
that an electron beam cannot be separated by spin based
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Figure 13: Schematic illustration of a vacuum field based mecha-
nism for electron double-slit diffraction. Several authors have pro-
posed different SED mechanisms that explain the electron double-
slit diffraction. The central idea is that the vacuum field in one slit
is affected by the presence of the other slit. As the vacuum field
perturbs the electron’s motion, an electron passing through only one
slit can demonstrate a dynamical behavior that reflects the presence
of both slits. Such a mechanism may reconcile the superposition
principle with the concept of particle trajectory.

on the concept of classical trajectories [42], Batelaan et al.
[43, 44] and Dehmelt argue that one can do so with cer-
tain Stern-Gerlach-like devices [45, 46])? At this point, the
dynamics become delicate and rather complex. To further
investigate such a model of spin, a numerical simulation may
be helpful.

On the other hand, over the years claims have been
made that SED can predict double-slit electron diffraction
[4, 15, 41]. In order to explain the experimentally observed
electron double-slit diffraction (see [47, 48] for a movie
of the single electron buildup of a double-slit diffraction
pattern) [49–51], different mechanisms motivated by SED
were proposed [15, 41], but no concrete calculation has been
given except for a detailed account of the slit-diffracted
vacuumfield [52]. In 1999, Kracklauer suggested that particles
steered by the modulating waves of the SED vacuum field
should display a diffraction pattern when passing through
a slit, since the vacuum field itself is diffracted [41]. In
recent years, another diffraction mechanism is proposed
by Cavalleri et al. in relation to a postulated electron spin
motion [15]. Despite these efforts, Boyer points out in a recent
review article that at present there is still no concrete SED
calculation on the double-slit diffraction [36]. Boyer suggests
that as the correlation function of the vacuum field near
the slits is modified by the slit boundary, the motion of the
electron near the slits should be influenced as well. Can the
scattering of the vacuum field be the physical mechanism
behind the electron double-slit diffraction (see Figure 13)? As
Heisenberg’s uncertainty relation is a central feature in all
matter diffraction phenomena, any proposed mechanism for
electron double-slit diffraction must be able to account for
Heisenberg’s uncertainty relation. In the physical system of

the harmonic oscillator, SED demonstrates a mechanism that
gives rise to the Heisenberg minimum uncertainty. We hope
that the current simulation method may help in providing a
detailed investigation on the proposed SED mechanisms for
the electron slit-diffraction.

Appendices

A. The Vacuum Field in Unbounded and
Bounded Space

In “unbounded” space, the modes are continuous and the
field is expressed in terms of an integral. In “bounded” space,
the modes are discrete and the field is expressed in terms
of a summation. In both cases, the expression for the field
amplitude needs to be obtained (see Appendices A.1 andA.2).
The integral expression helps comparison with analytical
calculations in previous papers [4–7, 9], while the summation
expression is what we use in our numerical work.

A.1. Unbounded Space. The homogeneous solution of
Maxwell’s equations in unbounded space is equivalent to the
solution for a wave equation:

E (r, 𝑡)

=
1

2

2

∑

𝜆=1

∫𝑑
3

𝑘𝜀 (k, 𝜆)

× (𝐴 (k, 𝜆) 𝑒𝑖(k⋅r−𝜔𝑡) + 𝐴∗ (k, 𝜆) 𝑒−𝑖(k⋅r−𝜔𝑡)) ,

B (r, 𝑡)

=
1

2𝑐

2

∑

𝜆=1

∫𝑑
3

𝑘 (k̂ × 𝜀 (k, 𝜆))

× (𝐴 (k, 𝜆) 𝑒𝑖(k⋅r−𝜔𝑡) + 𝐴∗ (k, 𝜆) 𝑒−𝑖(k⋅r−𝜔𝑡)) ,
(A.1)

where 𝐴(k, 𝜆) is the undetermined field amplitude for the
mode (k, 𝜆) and has the unit of electric field (V/m), k̂ is
defined as the unit vector of k, and the two vectors, 𝜀(k, 1)
and 𝜀(k, 2), describe an orthonormal polarization basis in a
plane that is perpendicular to the wave vector k.

Without loss of generality, a random phase 𝑒𝑖̃𝜃(k,𝜆) can
be factored out from the field amplitude 𝐴(k, 𝜆) =

𝐴(k, 𝜆)𝑒𝑖̃𝜃(k,𝜆):

E (r, 𝑡)

=
1

2

2

∑

𝜆=1

∫𝑑
3

𝑘𝜀 (k, 𝜆)

× (𝐴 (k, 𝜆) 𝑒𝑖(k⋅r−𝜔𝑡)𝑒𝑖̃𝜃(k,𝜆)

+𝐴
∗

(k, 𝜆) 𝑒−𝑖(k⋅r−𝜔𝑡)𝑒−𝑖̃𝜃(k,𝜆)) ,
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B (r, 𝑡)

=
1

2𝑐

2

∑

𝜆=1

∫𝑑
3

𝑘𝜉 (k, 𝜆)

× (𝐴 (k, 𝜆) 𝑒𝑖(k⋅r−𝜔𝑡)𝑒𝑖̃𝜃(k,𝜆)

+𝐴
∗

(k, 𝜆) 𝑒−𝑖(k⋅r−𝜔𝑡)𝑒−𝑖̃𝜃(k,𝜆)) ,

(A.2)

where 𝜉(k, 𝜆) ≡ k̂ × 𝜀(k, 𝜆). The field amplitude 𝐴(k, 𝜆) can
be determined through the phase averaged energy density:

⟨𝑢⟩̃
𝜃
=
𝜖
0

2
⟨|E|2⟩

̃
𝜃

+
1

2𝜇
0

⟨|B|2⟩
̃
𝜃

, (A.3)

where 𝜖
0
is the vacuum permittivity, 𝜇

0
is the vacuum

permeability, and 𝜃 is the random phase in (A.2). To evaluate
the phase averaged energy density ⟨𝑢⟩̃

𝜃
, we first calculate |E|2

and |B|2 using (A.2):

|E|2 (r, 𝑡)

= E (r, 𝑡)E∗ (r, 𝑡)

=
1

4
∑

𝜆,𝜆
󸀠

∫𝑑
3

𝑘∫𝑑
3

𝑘
󸀠

(𝜀 (k, 𝜆) ⋅ 𝜀 (k󸀠, 𝜆󸀠)) 𝑓,

|B|2 (r, 𝑡)

= B (r, 𝑡)B∗ (r, 𝑡)

=
1

4𝑐2
∑

𝜆,𝜆
󸀠

∫𝑑
3

𝑘∫𝑑
3

𝑘
󸀠

(𝜉 (k, 𝜆) ⋅ 𝜉 (k󸀠, 𝜆󸀠)) 𝑓,

(A.4)

where 𝑓 ≡ 𝑓(k, 𝜆; k󸀠, 𝜆󸀠; r, 𝑡),

𝑓 (k, 𝜆; k󸀠, 𝜆󸀠; r, 𝑡)

= 𝐴 (k, 𝜆) 𝐴∗ (k󸀠, 𝜆󸀠) 𝑒𝑖(k⋅r−𝜔𝑡+̃𝜃(k,𝜆))

× 𝑒
−𝑖(k󸀠 ⋅r−𝜔󸀠𝑡+̃𝜃(k󸀠 ,𝜆󸀠))

+ 𝐴 (k, 𝜆) 𝐴 (k󸀠, 𝜆󸀠) 𝑒𝑖(k⋅r−𝜔𝑡+̃𝜃(k,𝜆))

× 𝑒
𝑖(k󸀠 ⋅r−𝜔󸀠𝑡+̃𝜃(k󸀠 ,𝜆󸀠))

+ 𝐴
∗

(k, 𝜆) 𝐴∗ (k󸀠, 𝜆󸀠) 𝑒−𝑖(k⋅r−𝜔𝑡+̃𝜃(k,𝜆))

× 𝑒
−𝑖(k󸀠 ⋅r−𝜔󸀠𝑡+̃𝜃(k󸀠 ,𝜆󸀠))

+ 𝐴
∗

(k, 𝜆) 𝐴 (k󸀠, 𝜆󸀠) 𝑒−𝑖(k⋅r−𝜔𝑡+̃𝜃(k,𝜆))

× 𝑒
𝑖(k󸀠 ⋅r−𝜔󸀠𝑡+̃𝜃(k󸀠 ,𝜆󸀠))

.

(A.5)

The random phase average can be calculated with the follow-
ing relation [9]:

⟨𝑒
±𝑖(
̃
𝜃(k,𝜆)+̃𝜃(k󸀠 ,𝜆󸀠))

⟩
̃
𝜃

= 0,

⟨𝑒
±𝑖(
̃
𝜃(k,𝜆)−̃𝜃(k󸀠 ,𝜆󸀠))

⟩
̃
𝜃

= 𝛿
𝜆
󸀠
,𝜆
𝛿
3

(k󸀠 − k) .
(A.6)

Applying (A.6) to (A.5), we obtain

⟨𝑓 (k, 𝜆; k󸀠, 𝜆󸀠; r, 𝑡)⟩
̃
𝜃

= 𝐴 (k, 𝜆) 𝐴∗ (k󸀠, 𝜆󸀠) 𝑒𝑖(k⋅r−𝜔𝑡)

× 𝑒
−𝑖(k󸀠 ⋅r−𝜔󸀠𝑡)

𝛿
𝜆
󸀠
,𝜆
𝛿
3

(k󸀠 − k)

+ 𝐴
∗

(k, 𝜆) 𝐴 (k󸀠, 𝜆󸀠) 𝑒−𝑖(k⋅r−𝜔𝑡)

× 𝑒
𝑖(k󸀠 ⋅r−𝜔󸀠𝑡)

𝛿
𝜆
󸀠
,𝜆
𝛿
3

(k󸀠 − k) .

(A.7)

Consequently, ⟨|E|2⟩̃
𝜃
and ⟨|B|2⟩̃

𝜃
can be evaluated using

(A.4) and (A.7):

⟨|E|2⟩
̃
𝜃

=
1

4
∑

𝜆,𝜆
󸀠

∫𝑑
3

𝑘∫𝑑
3

𝑘
󸀠

(𝜀 (k, 𝜆) ⋅ 𝜀 (k󸀠, 𝜆󸀠)) ⟨𝑓⟩̃
𝜃

=
1

2

2

∑

𝜆=1

∫𝑑
3

𝑘 |𝐴 (k, 𝜆)|2,

⟨|B|2⟩
̃
𝜃

=
1

4𝑐2
∑

𝜆,𝜆
󸀠

∫𝑑
3

𝑘∫𝑑
3

𝑘
󸀠

(𝜉 (k, 𝜆) ⋅ 𝜉 (k󸀠, 𝜆󸀠)) ⟨𝑓⟩̃
𝜃

=
1

2𝑐2

2

∑

𝜆=1

∫𝑑
3

𝑘 |𝐴 (k, 𝜆)|2.

(A.8)

The above calculation leads to a relation between the field
amplitude𝐴(k, 𝜆) and the phase averaged energy density ⟨𝑢⟩̃

𝜃

in unbounded space:

⟨𝑢⟩̃
𝜃
=
𝜖
0

2

2

∑

𝜆=1

∫𝑑
3

𝑘 |𝐴 (k, 𝜆)|2. (A.9)

Now, if we postulate that the vacuum energy is ℎ𝜔/2 for each
mode (k, 𝜆), then in a bounded cubic space of volume 𝑉 the
vacuum energy density is

𝑢vac =
1

𝑉
∑

k,𝜆

ℎ𝜔

2

=
1

𝑉
∑

k,𝜆

ℎ𝜔

2
(
𝐿
𝑥

2𝜋
Δ𝑘
𝑥
)(

𝐿
𝑦

2𝜋
Δ𝑘
𝑦
)(

𝐿
𝑧

2𝜋
Δ𝑘
𝑧
)

=

2

∑

𝜆=1

1

(2𝜋)
3
∑

k
Δ
3

𝑘
ℎ𝜔

2
.

(A.10)
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In the limit of unbounded space (i.e., 𝑉 → ∞), the volume
element Δ3𝑘 becomes differential (i.e., Δ3𝑘 → 𝑑

3

𝑘) and the
vacuum energy density becomes

𝑢vac =
2

∑

𝜆=1

1

(2𝜋)
3
∫𝑑
3

𝑘
ℎ𝜔

2
. (A.11)

Comparing this result with (A.9), we find

󵄨󵄨󵄨󵄨𝐴vac (k, 𝜆)
󵄨󵄨󵄨󵄨
2

=
ℎ𝜔

(2𝜋)
3

𝜖
0

. (A.12)

Assuming 𝐴vac(k, 𝜆) is a positive real number, the vacuum
field amplitude in unbounded space is determined:

𝐴vac (k, 𝜆) = √
ℎ𝜔

8𝜋3𝜖
0

. (A.13)

Therefore, the vacuum field in unbounded space is found to
be
Evac (r, 𝑡)

=
1

2

2

∑

𝜆=1

∫𝑑
3

𝑘𝜀 (k, 𝜆)√ ℎ𝜔

8𝜋3𝜖
0

× (𝑒
𝑖(k⋅r−𝜔𝑡)

𝑒
𝑖
̃
𝜃(k,𝜆)

+ 𝑒
−𝑖(k⋅r−𝜔𝑡)

𝑒
−𝑖
̃
𝜃(k,𝜆)

) ,

Bvac (r, 𝑡)

=
1

2𝑐

2

∑

𝜆=1

∫𝑑
3

𝑘𝜉 (k, 𝜆)√ ℎ𝜔

8𝜋3𝜖
0

× (𝑒
𝑖(k⋅r−𝜔𝑡)

𝑒
𝑖
̃
𝜃(k,𝜆)

+ 𝑒
−𝑖(k⋅r−𝜔𝑡)

𝑒
−𝑖
̃
𝜃(k,𝜆)

) ,

(A.14)

which is (1).

A.2. Bounded Space. The solution of homogeneousMaxwell’s
equations in bounded space has the summation form:

E (r, 𝑡) = 1

2
∑

k,𝜆
(𝐴k,𝜆𝑒

𝑖(k⋅r−𝜔𝑡)
+ 𝐴
∗

k,𝜆𝑒
−𝑖(k⋅r−𝜔𝑡)

) 𝜀k,𝜆,

B (r, 𝑡) = 1

2𝑐
∑

k,𝜆
(𝐴k,𝜆𝑒

𝑖(k⋅r−𝜔𝑡)
+ 𝐴
∗

k,𝜆𝑒
−𝑖(k⋅r−𝜔𝑡)

) 𝜉k,𝜆,

(A.15)

where 𝜉k,𝜆 = k̂ × 𝜀k,𝜆, 𝐴k,𝜆 is the undetermined field
amplitude for themode (k, 𝜆) and has the unit of electric field
(V/m), k̂ is defined as the unit vector of k, and the two vec-
tors, 𝜀k,1 and 𝜀k,2, describe an orthonormal polarization basis
in a plane that is perpendicular to the wave vector k.

Using the relation (if the twomodes are not identical (i.e.,
k󸀠 ̸= k or 𝜆󸀠 ̸= 𝜆), then 𝑒𝑖𝜃k,𝜆 and 𝑒𝑖𝜃k󸀠 ,𝜆󸀠 are independent, which
leads to the factorization ⟨𝑒𝑖(̃𝜃k,𝜆±̃𝜃k󸀠 ,𝜆󸀠 )⟩̃

𝜃
= ⟨𝑒
𝑖𝜃k,𝜆⟩̃
𝜃
⟨𝑒
±𝑖𝜃k󸀠 ,𝜆󸀠 ⟩̃

𝜃
=

0)

⟨𝑒
±𝑖(
̃
𝜃k,𝜆+̃𝜃k󸀠 ,𝜆󸀠 )⟩

̃
𝜃

= 0

⟨𝑒
±𝑖(
̃
𝜃k,𝜆−̃𝜃k󸀠 ,𝜆󸀠 )⟩

̃
𝜃

= 𝛿
𝜆
󸀠
,𝜆
𝛿k󸀠 ,k,

(A.16)

we can follow the same argument in Appendix A.1 and obtain
the phase averaged energy density in bounded space:

⟨𝑢⟩̃
𝜃
=
𝜖
0

2
∑

k,𝜆

󵄨󵄨󵄨󵄨𝐴k,𝜆
󵄨󵄨󵄨󵄨
2

, (A.17)

where 𝐴k,𝜆 = 𝐴k,𝜆𝑒
𝑖
̃
𝜃k,𝜆 . Again, if we postulate that the

vacuum energy is ℎ𝜔/2 for each mode (k, 𝜆), then in a
bounded space of volume 𝑉 the vacuum energy density is

𝑢vac =
1

𝑉
∑

k,𝜆

ℎ𝜔

2
. (A.18)

Comparing (A.17) and (A.18), the vacuum field amplitude in
bounded space is determined:

𝐴vack,𝜆 = √
ℎ𝜔

𝜖
0
𝑉
. (A.19)

Therefore, the RED vacuum field in bounded space is

Evac (r, 𝑡) =
1

2
∑

k,𝜆
(√

ℎ𝜔

𝜖
0
𝑉
𝑒
𝑖(k⋅r−𝜔𝑡)

𝑒
𝑖
̃
𝜃k,𝜆 + 𝑐.𝑐.) 𝜀k,𝜆,

Bvac (r, 𝑡) =
1

2𝑐
∑

k,𝜆
(√

ℎ𝜔

𝜖
0
𝑉
𝑒
𝑖(k⋅r−𝜔𝑡)

𝑒
𝑖
̃
𝜃k,𝜆 + 𝑐.𝑐) 𝜉k,𝜆.

(A.20)

B. Isotropic Polarization Vectors

A wave vector chosen along the 𝑧-axis,

k̃ = (
𝑘̃
𝑥

𝑘̃
𝑦

𝑘̃
𝑧

) = (

0

0

𝑘

) , (B.1)

has an orthonormal polarization basis in the 𝑥𝑦-plane:

𝜀̃k,1 = (
cos𝜒
sin𝜒
0

) , 𝜀̃k,2 = (
− sin𝜒
cos𝜒
0

) , (B.2)

where the random angle 𝜒 is uniformly distributed in [0, 2𝜋].
To obtain the wave vector k in (32), k̃ can be first rotated
counterclockwise about the 𝑦-axis by an angle 𝜃 and then
counterclockwise about the 𝑧-axis by an angle 𝜙. The corre-
sponding rotation matrix is described by

𝑅̂ = 𝑅̂
(𝑧)

𝜙
𝑅̂
(𝑦)

𝜃

= (

cos𝜙 − sin𝜙 0

sin𝜙 cos𝜙 0

0 0 1

)(

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
)

= (

cos 𝜃 cos𝜙 − sin𝜙 cos𝜙 sin 𝜃
cos 𝜃 sin𝜙 cos𝜙 sin𝜙 sin 𝜃
− sin 𝜃 0 cos 𝜃

) ,

(B.3)
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Figure 14: Repetition time of a beat wave. A beat wave (black solid
line) ismade of two frequency components (red and blue solid lines).
The oscillation periods of the two frequency components are 𝑇

1
=

1.5 and 𝑇
2
= 2; thus the repetition time is 𝜏rep = [𝑇

1
, 𝑇
2
]LCM = 6.

Note that the periodicity of the envelope (black dashed line) is 𝜏env =
12, which is different from the repetition time 𝜏rep = 6.

and k is obtained accordingly:

k = 𝑅̂k̃ = (
𝑘 sin 𝜃 cos𝜙
𝑘 sin 𝜃 sin𝜙
𝑘 cos 𝜃

) . (B.4)

In the same manner, we can rotate 𝜀̃k,1 and 𝜀̃k,2 with the rota-
tion matrix 𝑅̂ and obtain an isotropically distributed (after
the rotation, the uniformly distributed circle will span into a
uniformly distributed spherical surface) polarization basis as
described in (37):

𝜀k,1 = 𝑅̂𝜀̃k,1 = (

cos 𝜃 cos𝜙 cos𝜒 − sin𝜙 sin𝜒
cos 𝜃 sin𝜙 cos𝜒 + cos𝜙 sin𝜒

− sin 𝜃 cos𝜒
) ,

𝜀k,2 = 𝑅̂𝜀̃k,2 = (

− cos 𝜃 cos𝜙 sin𝜒 − sin𝜙 cos𝜒
− cos 𝜃 sin𝜙 sin𝜒 + cos𝜙 cos𝜒

sin 𝜃 sin𝜒
) .

(B.5)

C. Repetitive Time

A field composed of finite discrete frequencies,

𝐸 (𝑡) =

𝑁

∑

𝑘=1

𝐸
𝑘
cos (𝜔

𝑘
𝑡) , (C.1)

repeats itself at the least common multiple (LCM) of all the
periods of its frequency components:

𝐸 (𝑡 + 𝜏rep) = 𝐸 (𝑡) , (C.2)

𝜏rep = [𝑇1, 𝑇2, . . . , 𝑇𝑁]LCM, (C.3)

where 𝑇
𝑘
= 2𝜋/𝜔

𝑘
. An example of a two-frequency beat wave

is given in Figure 14. Given the frequency spectrum of 𝐸(𝑡),
one can draw a relation between the repetition time 𝜏rep and
the greatest common divider (GCD) of the frequencies:

𝜏rep =
2𝜋

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑁
)GCD

. (C.4)

The derivation of the relation in (C.4) is the following. First,
we factorize the sum of all the frequencies into two terms:

𝜔
1
+ 𝜔
2
+ ⋅ ⋅ ⋅ + 𝜔

𝑁

=
2𝜋

𝑇
1

+
2𝜋

𝑇
2

+ ⋅ ⋅ ⋅ +
2𝜋

𝑇
𝑁

=
2𝜋

[𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
]LCM

(𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑁
) ,

(C.5)

where 𝑛
𝑘
are positive integers,

𝑛
𝑘
=
[𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
]LCM

𝑇
𝑘

. (C.6)

Now, it is true that (𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑁
)GCD = 1; otherwise it would

lead to a contradiction to (C.6). Therefore, one can conclude
that

Δ𝜔gcd ≡ (𝜔1, 𝜔2, . . . , 𝜔𝑁)GCD

=
2𝜋

[𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
]LCM

.

(C.7)

From (C.3) and (C.7), the relation in (C.4)

𝜏rep =
2𝜋

Δ𝜔gcd
(C.8)

is drawn. Since the simulation should only be carried out
through an integration time 𝜏int ≤ 𝜏rep to avoid repetitive
solutions, in our case the choice of the integration time (58)

𝜏int =
2𝜋

Δ𝜔
, (C.9)

whereΔ𝜔 is the smallest frequency gap (Δ𝜔 ≤ Δ𝜔gcd), suffices
our purpose. The frequency gap as a function of 𝜅 can be
estimated using (33):

Δ𝜔 (𝜅) = 𝜔 (𝜅) − 𝜔 (𝜅 − Δ𝜅)

= 𝑐(3𝜅)
1/3

− 𝑐(3𝜅)
1/3

(1 −
Δ𝜅

𝜅
)

1/3

.

(C.10)

Applying the sharp resonance condition (9) to (23) and (34),
it can be further shown that Δ𝜅 is much smaller than 𝜅

0
and

𝜅 ≃ 𝜅
0
:

Δ𝜅

𝜅
0

= (
3

𝑁k − 1
)
Δ

𝜔
0

≪ 1,

𝜅 = 𝜅
0
+ 𝑂(

Δ

𝜔
0

) ,

(C.11)
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where 𝜅
0
= (1/3)(𝜔

0
/𝑐)
3. Therefore, the size of Δ𝜔(𝜅) is

approximately fixed within the sampled frequency range Δ,
and the smallest frequency gap Δ𝜔 can be approximated as

Δ𝜔 ≃
𝑐(3𝜅
0
)
1/3

3

Δ𝜅

𝜅
0

. (C.12)
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