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Scattered coincidences degrade image contrast and compromise quantitative accuracy in positron emission tomography (PET). A
number of approaches to estimating and correcting scattered coincidences have been proposed, but most of them are based on
estimating and subtracting a scatter sinogram from the measured data. We have previously shown that both true and scattered
coincidences can be treated similarly by using Compton scattering kinematics to define a locus of scattering which may in turn
be used to reconstruct the activity distribution using a generalized scatter maximum-likelihood expectation maximization (GS-
MLEM) algorithm. The annihilation position can be further confined by taking advantage of the patient outline (or a geometrical
shape that encompasses the patient outline). The proposed method was tested on a phantom generated using GATE. The results
have shown that for scatter fractions of 10–60% this algorithm improves the contrast recovery coefficients (CRC) by 4 to 28.6% for a
source and 5.1 to 40% for a cold sourcewhile the relative standard deviation (RSD)was reduced. Including scattered photons directly
into the reconstruction eliminates the need for (often empirical) scatter corrections, and further improvements in the contrast and
noise properties of the reconstructed images can be made by including the patient outline in the reconstruction algorithm as a
constraint.

1. Introduction

Scattered photons are a significant source of image quality
degradation and lead to quantitative errors in positron
emission tomography (PET) [1]. The scatter fraction can be
as high as 40–60% when a tomograph operates in 3D mode
without slice-defining septa and in large patients, making this
of greater consequence for cardiac imaging [2–4]. In conven-
tional PET reconstruction methods, scattered coincidences
are assumed to be noise and consequently a number of ways
for estimating and correcting scattered coincidences in mea-
sured data have been proposed. However, most of these tech-
niques are based on the estimation and subtraction of scatter
from the projection data instead of exploring the possibilities
of using scattered coincidences in the reconstruction [2,
5]. During the scatter correction process, artifacts may be

introduced in the source distribution due to inaccurate esti-
mation of the scatter sonogram [1] while at the same time,
the system’s sensitivity will be reduced and image noise will
be amplified [2, 6].

The energy resolution of PET detectors has improved
in [7, 8] recently, making it conceivable to use the energy
and detected location of the coincident photons to develop
a spatial distribution of the annihilation positions. Scattered
coincidences are thus a latent source of concealed informa-
tion which can be used to improve PET image quality.

In our previous study, we have shown that true coinci-
dences can be considered to be a subset of scattered coinci-
dences and that a GS-MLEM algorithm can use both true
and scattered events to reconstruct the source distribution
[9]. This method takes advantage of the kinematics of
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Figure 1: A diagram illustrating a Compton scattering event. A
positron annihilates at the green dot and generates two 511 keV
photons. One is observed by detector A and the other one undergoes
a Compton interaction and is finally detected by detector B. The
possible scattering positions can be described by the two circular
arcs (TCA) defined by the kinematics of Compton scattering.

Compton scattering by connecting the coincidence detectors
with two arcs (2D) (rather than the conventional straight
line assumption which is only true for unscattered photons)
which describe the locus of scattering. It can be shown
that the point of annihilation is encompassed in 2D by the
two circular arcs (TCA) or in 3D by a surface, described
by the rotation of these arcs around an axis connecting
the detectors; see Figure 1. Including scattered coincidences
directly in the image reconstruction eliminates the need
for scatter correction. It also improves the image quality,
particularly when the data is sparse and may increases the
system’s sensitivity since a lower energy threshold can be
used and more data will be measured [10]. This work has
been presented, in part, at the World Congress on Medical
Physics and Biomedical Engineering in 2012 [11] and the
2012 IEEE Nuclear Science Symposium andMedical Imaging
Conference [12].

We hypothesize that the annihilation position can be
further confined by making use of the patient outline (or a
geometrical shape that encompasses the patient outline) as
a further spatial constraint. In this work, we evaluated the
contrast and noise properties of the constrained GS-MLEM
algorithm with a patient/phantom outline constraint as well
as the dependency of the proposed method on the accuracy
of the patient/phantom outline constraints employed.

2. Materials and Methods

2.1. Outline Constraint Reconstruction Theory. In PET, the
three main sources of photon scatter are (1) the patient, (2)
detectors, and (3) the gantry and surrounding environment.
Patient scatter generally dominates in human imaging, and
in this work we assume that the patient is the only scattering
source and ignore the relatively small contribution due to
scattering in the gantry and detectors [13, 14].

In such a scenario, the possible annihilation positions can
be further constrained by connecting the intersection points
between the TCA and the patient outline, C (the furthest
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Figure 2: In this case, one of the TCA interacts with the patient
at point D (closer to A) and C (further from A). If the extent of
the scatter volume is known (the patient outline), the possible
annihilation area may be further confined to the area C-D-E
encompassed by line CA, TCA, and the outline of the patient.

from the unscattered photon detector A) and D (closer to
the unscattered photon detector A), with the unscattered
photon detector A. The position of annihilation is confined
to the area encompassed by the TCA, the patient/phantom
outline, and the line AC (area CDE as shown in Figure 2). If
both circular arcs of a TCA for a coincidence intersect with
the patient/phantom outlines, the areas used to confine the
annihilation positions can be calculated for each circular arc
separately in a similar way.

The patient outline can be estimated by a variety of
means. One way is to use an external X-ray source or optical
system (either laser based or photogrammetric). In PET/CT
or PET/MRI systems the anatomical image provided by the
CT or MRI could be used. Alternatively it may be possible
to estimate the constraints using an approximation of the
patient outline based on initial iterations or by using a basic
geometric shape (say a circle or ellipse) as shown in Figure 3.
The size of the circle could be chosen based on a simple
measurement (or estimate) of the patient size or based on the
early iteration images.

2.2. Constrained GS-MLEM Algorithm. Before building the
patient outline constraint into the GS-MLEM algorithm, the
expected number of coincidences in which an unscattered
photon is observed at A while the other photon is observed
at B following a Compton scattering through an angle 𝜃 is
determined from
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In the above expression the total number of photons which
could reach point 𝑆 is obtained by integrating the source 𝑓

𝑥

from line segment 𝐴 to 𝐶. The possibility that the photons
at 𝑆 undergo a Compton scattering event is proportional to
the electron density at this point weighted by the differential
Klein-Nishina electronic cross section. The outer integral is



ISRN Biomedical Imaging 3

Detector A

Detector B
C

D

E

S
𝜃

Figure 3: The patient outline is replaced by an ellipse which is
slightly larger than the patient outline and intersects with TCA at
point C (the furthest from the unscattered photon detector) and
point D (closer to the unscattered photon detector). The possible
annihilation positions are confined to the area C-D-E encompassed
by line CA, TCA, and the ellipse calculated in the same way as the
case of patient/phantom outline.

calculated over all possible scattered points which have been
constrained by the patient outline, where 𝜏 is the acquisition
time and 𝜇 is the linear attenuation coefficient.

To reduce the large computational workload, we ignore
the attenuation and the electron density and assume that
the expected number of detected coincidences is linearly
proportional to the product of the differential Klein-Nishina
electronic cross section and the total activity within area CDE
as given by

⟨𝑃
𝑎𝑏
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𝑑𝜎
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𝐶
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where𝐶 is a constant. Putting this data model into the system
model and following the same maximization process as in
[4], we can derive the constrained GS-MLEM algorithm in
list mode [15, 16] as follows:
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, 𝑖 = 1, . . . , 𝑝, (3)

where 𝑝 is the total number of pixels in the image, 𝑁 is the
total number of coincidences, 𝑛 is the iteration number, and
𝑎
𝑗,𝑖

is the system matrix accounting for the probability that
the 𝑗th coincidence detected in the list mode entry comes
from pixel 𝑖. To incorporate the patient outline as a constraint
in the algorithm, the sum over 𝑖 in the denominator of the
second factor in the right hand side is only calculated within
the confined areas.

2.3. PhantomEvaluation. Tomake the comparison consistent
with our previous study [9], the same PET scanner and
phantom (see Figure 4) are simulated by GATE in this work
[17, 18].The simulated system had a perfect energy resolution
with the energy window of the system set from 170 to 511 keV.
Noise and dead time were not modeled in the simulation
process.

No. 1

No. 2

No. 3

No. 4

Figure 4: A cylindrical water phantom with three hot areas (yellow
color) and one cold area (black color) was simulated. The radii for
the 1 to 4 circles are 1.5mm, 3mm, 4.5mm, and 6mm, respectively.
We set the activity ratio R between the hot and background to 4.

In this initial evaluation of the proposed method, only
the coincidences scattered within the phantom were used in
the reconstruction. The image quality was evaluated using
the contrast recovery coefficient (CRC) and relative standard
deviation (RSD) which reflects the contrast and noise proper-
ties of the reconstructed images. The local contrast recovery
coefficient (CRC) for hot disk was defined by

CRClocal =
((𝐻/𝐵) − 1)

𝑅 − 1
, (4)

where𝐻 is the average valuewithin the hot disk,𝐵 is themean
value of the background, and 𝑅 is the experimentally set hot-
to-background ratio. Similarly, CRClocal is defined for a cold
area by

CRClocal = 1 −
𝐶

𝐵
, (5)

where 𝐶 represents the mean value in the cold region.
An evaluation point on the CRC curves was determined

by the shortest distance from the CRC curve to the point
defined by the ideal CRC = 1 and RSD = 0.

2.3.1. Evaluation of Images Reconstructed Using the Proposed
Method with Different Scattering Fraction Data. The image
quality of the image reconstructed with the phantom outline
constraint was compared to the results using GS-MLEM
without the phantom outline constraint and to the conven-
tional LOR-MLEM method given in [9]. Coincidences with
scattering fractions ranging from 0 to 60% were randomly
simulated by GATE. To be consistent with our previous
results, 3 × 105 true coincidences and scattered coincidences
with the required scatter fraction were generated. Here,
the actual phantom outline (a circle with a radius 40mm)
was employed in the reconstruction process as the outline
constraint.

2.3.2. Evaluation on the Different Outline Constraint Approx-
imations on Image Quality. The improvement in the con-
trast and noise properties of the reconstructed images was
related to the accuracy of the patient/phantom outline used.
When the phantom outline constraints chosen are smaller
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Figure 5: The CRC curves of no. 3 (the largest hot) source were
calculated with GS-MLEM with phantom outline constraints, GS-
MLEMmethod and the conventional LOR-MLEM approach.

than the actual phantom outline, the confined area may
not encompass the annihilation position, which will reduce
the image contrast and introduce artifacts. Thus, the min-
imum but still most accurate outline constraint would be
the actual patient/phantom outline. A larger area can be
used to constrain the annihilation position but will not
be optimal. When the constraint outline approaches that
of the detector positions, the outline constraint based GS-
MLEM algorithm will approach the nonoutline constraint
based algorithms. To evaluate the effect of different constraint
sizes on the reconstructed image quality, we characterize
the patient/phantom outline sizes as a function of the ratio
of difference between the tested outline constraint and the
actual phantom outline size. We therefore tested the effect of
various phantom outline constraints using a circle with radii
of 42mm, 45mm, 50mm, and 60mm, being 5%, 12.5%, 25%,
and 50% larger than the actual phantom outline, respectively.
A total of 6× 105 coincidences with 50% scatter fraction were
generated by GATE and reconstructed using the proposed
method with the different outline constraints. The images
were also reconstructed using the same dataset but with GS-
MLEM without the phantom outline constraint and with the
conventional LOR-MLEM algorithm, as well as with 3× 105
true coincidences using conventional LOR-MLEM algorithm
as a comparison.

3. Results

3.1. Evaluation of Images Reconstructed Using the Proposed
Method with Different Scattering Fraction Data. To illustrate
the performance of the proposed method, we plot the CRC
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Figure 6: The CRC curves of no. 4 (cold) source were calculated
with GS-MLEM with phantom outline constraints, GS-MLEM
method and the conventional LOR-MLEM approach.

versus RSD for different methods/or data for the no. 3 (the
largest hot) disk in Figure 5 and the no. 4 (cold) disk in
Figure 6, respectively. The results show that the CRC curves
for images reconstructed using GS-MLEM with phantom
outline constraint method are always above those of the
unconstrained GS-MLEM method and the conventional
LOR-MLEM approach. The optimal CRC curve for the
conventional LOR-MLEMmethod is at zero scatter fraction,
and the curves decrease with increasing scattering fraction.
In contrast to that, the CRC curve for the GS-MLEM,
both with and without phantom outline constraint, generally
increases with increasing scatter fraction. This trend, for
the hot disk, changes beyond the point where the CRC
curves for the constrained and unconstrained GS-MLEM
intersect. However, this contrast reduction is not obvious
and only occurs beyond the evaluation point. The same
trend for the cold disk is not observed. The figures show
that the GS-MLEM algorithm with phantom outline con-
straints improved the CRC properties of the reconstructed
images by 0.6 to 3.8% compared with GS-MLEM without
the phantom outline constraint for scatter fraction ranging
from 10% to 60%. For the same scatter fractions, the results
were 4% to 28.6% greater than the corresponding curves
reconstructed using the LOR-MLEM algorithm.The noise of
images reconstructed using the GS-MLEM algorithm with
phantom outline constraint was 0.7% to 2.6% lower than
the corresponding curves using an unconstrainedGS-MLEM
algorithm and was 2.4 to 14.7% less than that produced by
the LOR-MLEM method. For the cold disk, with a scatter
fraction of 10% to 60%, the evaluation point for the cold
disk using GS-MLEM with phantom outline constraint had
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Figure 7: (a) shows the image using 6× 105 coincidences with a 50% scattering fraction by the proposed method (GS-MLEM plus
patient/phantom constraint method). (b) shows the image using the same data as (a) and by GS-MLEMwithout phantom outline constraint;
(c) shows the image using the same true 3× 105 coincidences plus 3× 105 scattered coincidences that fall into the 350 to 511 keV energy window
and was reconstructed using the conventional LOR-MLEM algorithm as a comparison. The second row shows profiles of the above images
passing through the center of the images in the horizontal and vertical directions, respectively.

a CRC of 1.1% to 11.6% greater than the curves calculated only
using GS-MLEM and was 5.1% to 40% greater than the LOR-
MLEM method for the corresponding scatter fraction. The
noise at the evaluation point for images reconstructed using
GS-MLEMwith phantomoutline constraintwas 0.5% to 3.6%
less than that obtained using an unconstrained GS-MLEM
andwas 1.5% to 11.8% less than that calculated using the LOR-
MLEMmethod with the same scatter fraction.

Figure 7(a) displays the image reconstructed from 6× 105
coincidences with a 50% scatter fraction using theGS-MLEM
method, constrained by the phantom outline. Figure 7(b)
shows the image produced using the same number of
coincidences and algorithm as in Figure 7(a) but without
the outline constraint. As a comparison, the same 3× 105
true coincidenceswere combinedwith scattered coincidences
from a 3× 105 dataset and reconstructed using a conventional
LOR-MLEM algorithm with a 350 to 511 keV energy window.
The results shown in Figure 7 demonstrate that constrained

GS-MLEM (Figure 7(a)) has the best image quality with a
more uniform background and sharper edges than those of
the unconstrainedGS-MLEM(Figure 7(b)) which in turn has
a better image quality than that of the conventional LOR-
MLEMmethod (Figure 7(c)).

3.2. Evaluation of the Dependency of the Proposed Algorithm
on the Accuracy of the Outline Constraints. Images with dif-
ferent phantom outline constraints were also reconstructed
to evaluate the dependency of the proposed algorithm on the
accuracy of the phantom outline constraints.TheCRC curves
of the no. 3 (the largest hot) disk for different phantomoutline
constraints as a function of the relative background standard
deviation were obtained by varying the number of iterations
as shown in Figure 8.The same result for the no. 4 (cold) disk
can be seen in Figure 9. For the hot disk, the CRC curves
for the GS-MLEMmethod with phantom outline constraints
decrease as the phantom outline constraints increase up to
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Figure 8: The CRC curves of no. 3 (largest hot) disk calculated
using GS-MLEM with different phantom outline constraints. The
CRC for 3× 105 true coincidences and 6× 105 coincidences with
50% scattered fraction using conventional LOR-MLEM were also
reconstructed as a comparison.

the point where the CRC curves for the GS-MLEM method
intersect with those of true coincidences. This intersection
was not observed for the cold disk, but the same trend
was observed. All the CRC curves with phantom outline
constraints were above those that did not use phantom
outline constraints. The CRC and RSD for the evaluation
points on each CRC curve are plotted as a function of the
relative increase of radii of the phantom outline constraints
to the phantom’s actual radius, for the hot and cold disks in
Figures 10 and 11, respectively. As the relative radius increased
from5% to 50%, theCRC for the hot disk reduced by 2%while
noise increased by 0.5%. For the cold disk, the CRC reduced
by 4.5% and noise increased by 1.3%. For both the hot and
cold disks, the CRC varied slowly when the relative radius
was increased by less than 12.5% (corresponding to an outline
constraint with radius 45mm), when compared to the change
for the relative radius increase from 12.5 to 50%.

4. Discussion

In our previous study [9–11] and this work, we have shown
that scattered coincidences are not just noise and can be used
in the imaging reconstruction by taking advantage of the
individual photon energy. Conti et al. have taken advantage
of the time difference of scattered photons in a time of
flight (TOF) PET and applied this knowledge to refine the
physics model to describe the annihilation position [10].
In this work, we included the patient/phantom outline as
a constraint to the physics model to further confine the
possible annihilation position. The results have shown that
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Figure 9: The CRC curves of no. 4 (cold) disk calculated using
GS-MLEM with different phantom outline constraints. The CRC
for 3× 105 true coincidences and 6× 105 coincidences with 50%
scattered fraction using conventional LOR-MLEM were also recon-
structed as a comparison.
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Figure 10: The CRC and noise properties of no. 3 (largest hot) disk
as a function of relative increase of radii of the phantom outline
constraints for the evaluation points of Figure 8.

the contrast of the reconstructed image was improved while
noise was reduced. Since this method no longer considers
scatter coincidences as noise, more data is available, and a
lower energy window can be applied, thus improving both
the system sensitivity and image quality.

The results for the evaluation of different outline con-
straints on image quality have shown that uncertainties in
defining the patient/phantom outline are not a significant
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Figure 11: The CRC and noise properties of no. 4 (cold) disk
as a function of relative increase of radii of the phantom outline
constraints for the evaluation points of Figure 9.

obstacle when implementing the proposed method. This
method is based on the assumption that the patient scat-
tering dominates over detector, gantry, and surrounding
environment scattering, which is true in human imaging.
In this initial test of the proposed method, we carried out
this work in 2D, and only the coincidences scattered within
phantom were selected to show the principle of the proposed
method and at the same time to reduce the complexity of
the mathematics.This approach could be implemented in 3D
where it could be of even greater value.

The TCA are calculated using the detector positions and
the scattering angle which is closely related to the scattered
photon energy using Compton equation. The accuracy with
which the locus of the TCA assigns the possible scattering
positions and encompasses the annihilation position will
therefore depend on the energy resolution of the detectors.
The area defined using a scattered photon energy with a large
uncertainty may not encompass its annihilation position or
may overestimate the confined area, resulting in artifacts or
blurring of the reconstructed images. The effects of energy
resolution on the proposedmethodwill be investigated in the
future work.

5. Conclusion

Previous work demonstrated that scattered coincidences can
be directly included in the reconstruction process.The results
of this study show that further improvements in the contrast
and noise properties of the reconstructed images can be
made by including the patient outline in the reconstruction
algorithm as a constraint. While these results are promising,
we are currently investigating ways of correcting for attenua-
tion and improving the limited energy resolution of current
detectors, both ofwhichwill need to be resolved before scatter
reconstruction can be used for clinical applications.
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