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The connection of a power transformer to the grid is associated with magnetizing inrush currents that may result in power quality
issues as well as faulty relay tripping. In distributed generation, the transformer may instead be premagnetized from the source to
avoid this. In this paper, a VSI is directly coupled to a transformer. Three different strategies of premagnetization are implemented
into the control system, and the inrush currents are measured for various values of the remanent flux in the core. The results show
good reduction in the peak magnetizing inrush currents without using any external circuitry.

1. Introduction

When energizing a power transformer, the magnetizing
inrush currents that follow may be several times higher than
the rated currents for the transformer. The magnitude of the
inrush currents may cause voltage dips in the local grid,
resulting in poor power quality [1]. Also, the magnetizing
inrush currents are rich in harmonic content, usually have a
high direct current component, and may erroneously trigger
transformer overcurrent protections [2].Muchwork has been
conducted in making the protective relays recognize the
difference between overcurrents at a fault and a magnetizing
inrush current [3].

Themagnitude of the inrush currents depends on the cir-
cuit reactance, the phase angle𝛼 of the voltage source, and the
transformer remanent magnetic flux 𝜙

𝑟
. The remanent flux

in the transformer is the flux that exists in the transformer
after it is powered down. This phenomenon has long been
studied, and variousmethods andmodels can be found in the
literature. To measure the remanent flux is not easy but may
be approximated with measurements of the voltage integral
during deenergization.

Several ways to reduce or eliminate the inrush currents
have been presented. Ways to handle the issues are through
controlled switching and removal of remanent flux [4, 5],

sequential phase energization [6, 7], insertion of damping
resistors [8], capacitive loading, or thyristor switching control
[9].

Work that uses PWM inverters to inject a cancelling-out
current via the inverter during powerup of the transformer
has also been presented [10] along with methods to detect
the remanent flux by analysing the DC component during
switching [11].

Many renewable energy sources are nonsynchronous
with the grid, which will require a power electronics conver-
sion stage for grid connection. A commonly used conversion
is the voltage-source inverter (VSI), followed by an LCL-filter
and a step-up transformer. The full control of the VSI allows
the transformer magnetization to be handled by the source
rather than the grid, which can give a great advantage in
handling the magnetizing inrush currents.

In this paper, the power transformer is directly magne-
tized by a VSI. The LCL filter is put on the secondary side of
the transformer to reduce the ampacity of the filter inductors,
as discussed in [12]. No external circuitry is required for
the transformer magnetization. Three different strategies of
magnetization are experimentally evaluated with variations
in the remanent flux, and the peak inrush currents are
detected.
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Figure 1: The induced core flux 𝜙(𝑡) lags the induced voltage V
1
(𝑡) by almost 90∘. The resultant magnetizing current 𝐼

𝑚
grows rapidly when

the transformer goes into saturation.
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Figure 2: Three different typical paths in the B-H plane. 𝜙
𝑟
is assumed to be maximum for all cases. In strategy 1, the core is directly pushed

into saturation and it can take a long time before it stabilizes. In strategy 2,𝜙
𝑟
is pulled down to zero for all phases, which reduces themagnitude

of the inrush current. In strategy 3, the voltage ramping will slowly converge to the stable B-H-path while avoiding large inrush currents.

2. Theory

When a variable voltage source V
1
(𝑡) is applied to the trans-

former windings, a resulting flux 𝜙(𝑡) will be induced in the
transformer core according to Faraday’s law as follows:

V
1
(𝑡) = √2





V
1





cos (𝜔𝑡 + 𝛼) = 𝑁

𝑑𝜙 (𝑡)

𝑑𝑡

, (1)

where 𝜔 is the natural frequency of the applied voltage, 𝛼
is the start angle, and 𝑁, the number of winding turns.
The induced flux may be derived by computing the voltage
integral over time as follows:
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where 𝜙
𝑟
is the remanent flux. Figure 1 shows how this is used

to derive the classical 𝜙-𝐼
𝑚
-curve or 𝐵-𝐻-curve. It is clear

how even a small saturation in themagnetic fluxmay result in
a large magnitude of the magnetizing current 𝐼

𝑚
. As a worst

case scenario, the peak amplitude of 𝐼
𝑚
may be approximated

by [1]

𝐼
𝑚
=

1
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+ 𝑋
𝑐
(min)

[pu] , (3)

where 𝑋 is the source impedance, 𝑋
𝑝

is the winding
impedance, and 𝑋

𝑐
(min) is the minimum magnetization

impedance. When the core is completely saturated, it may be
treated as an air core, and it has been shown that 𝑋

𝑐
may be

approximated by the short-circuit impedance𝑋SC [13].
More accurately, the magnetizing inrush current is calcu-

lated by
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where 𝐵
𝑁
is the normal rated flux density, 𝐵

𝑟
is the remanent

flux density, and 𝐵
𝑆
is the saturation flux density. For more

detailed analysis, a finite-element method (FEM) model has
to be set up for the transformer.

3. Magnetizing Strategies

With the VSI directly connected to the power transformer,
three different magnetization strategies have been evaluated
for start-up of the transformer:

(1) step response with remanent flux,
(2) step response without remanent flux,
(3) voltage ramping with remanent flux.

The general plots of the B-H-curves for the different
strategies are illustrated in Figure 2, but they should only be
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(a) VSI (b) Power transformer

Figure 3: The VSI and the power transformer used in the experimental set-up.
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Figure 4: (a) De-sat protection circuit. (b) 𝑉CE vs. 𝐼𝐶 from datasheet.

considered as rough estimates. To vary the remanent flux over
the entire range, the transformer is magnetized at 1 pu and
then abruptly stopped at different angles 𝛽 of the applied
voltage. Stopping at 𝛽 = 0∘ results in a maximum negative
flux 𝜙max,−, and stopping at 𝛽 = 180∘ results in a maximum
positive flux 𝜙max,+.

In the first strategy, the inverter is started abruptly, giving
fullmagnetization to the transformer.This becomes similar to
an immediate grid connection and will be used as a reference
case. In Figure 2(a), the remanent flux was positive at start-
up, and the transformer core is pushed into saturation as the
starting angle 𝛼 = 0

∘. If instead 𝛼 = 180
∘ for this case, a

minimal inrush current would have been obtained for this
phase.

In the second strategy, the inverter is started at zero
amplitude modulation 𝑚

𝑎
, which will slowly force the core

flux to zero for all the transformer legs. The switching
frequency of the inverter is much faster than the transformer

time constant, resulting in only a small pulse ripple in the
transformer core flux. This essentially results in a removal of
the remanent flux, that is, 𝜙

𝑟
= 0, and becomes a special case

of strategy 1 when 𝛼 = 90∘ or 270∘. Once the transformer has
settled, a step response is made in the induced voltage to 1 pu.
This is illustrated in Figure 2(b) where the flux is forced to
circle around origo before energization.

The third strategy starts at 𝑚
𝑎
= 0 and slowly increases

the applied voltagewith a constant ramping function until full
magnetization is reached in the transformer core.The applied
voltage can be described as

V
1
(𝑡) = V

𝑁

𝑡 − 𝑡
0

𝑇
𝑅

cos (𝜔 (𝑡 − 𝑡
0
) + 𝛼) 𝑡

0
≤ 𝑡 ≤ 𝑇

𝑅
, (5)

where V
𝑁
is the nominal voltage, 𝑇

𝑅
is the slope of the ramp,

and 𝑡 − 𝑡
0
is the duration of the voltage ramping. The major

benefit of this method is that it becomes rather insensitive
to the initial 𝜙

𝑟
, and the core flux will smoothly settle
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(d) 𝛼 = 0∘; 𝛽 = 0∘

Figure 5: Strategy 1, time plots for different firing angles 𝛼 and stop angles 𝛽.

according to Figure 2(c), while the largest inrush currents
may be avoided.

4. Experimental Set-Up

4.1. Hardware Implementation. A three-phase two-level
voltage-source inverter (VSI) has been designed as shown in
Figure 3(a). It is made from three dual-package 400GB126D
insulated-gate bipolar transistor (IGBT) modules with
2SC0108T2Ax-17 driver boards mounted on top. These
have in-built desaturation (desat) protections set to trigger
2.5 𝜇s after a fault detection of an overcurrent of 250A or
above. The de-sat protection circuit is shown in Figure 4(a).
The collector-emitter voltage, 𝑉CE, across the IGBT is
continuously detected, and if it goes above a set threshold
value 𝑉th during conduction, this is recognized as a faulty
current, and the IGBT is turned off. 𝑉CE is a function of the
the collector current 𝐼

𝐶
as shown in Figure 4(b). The IGBT

will be turned on again after a delay time, but after multiple
fault detections, it will stop to avoid overheating.

The inverter is directly connected to a three-phase
345V/1 kV YY-connected transformer, shown in Figure 3(b).
The transformer ratings are given in Table 1.

Table 1: Transformer rating.

Power rating 80 kVA
Voltage ratio 138V/1 kV
Primary winding resistance 6.8mΩ
Primary leakage reactance 0.4mH
Secondary winding resistance 48mΩ
Secondary leakage reactance 8.8mH
Magnetizing impedance (50Hz) 0.368H
Magnetizing resistance (50Hz) 27.68Ω

4.2. Software Implementation. A compactRIO NI-9014 mod-
ule with integrated RT-controller and FPGA chip has been
used to implement grid control strategies and the proposed
transformer magnetization strategies. The FPGA chip is of
model Xilinx-5 [14] with an internal clock frequency of
40MHz. The RT-controller is of the model NI-9022.

The VSI is controlled by sinusoidal pulse-width modu-
lation (SPWM), where a sinusoidal reference waveform is
compared with sawtooth carrier waveforms to generate the
output logic to the IGBTs. It is possible to control the start
angle 𝛼 and stop angle 𝛽 as well as the voltage ramping
slope.



ISRN Electronics 5

0 50 100 150 200 250 300 350

Pe
ak

 cu
rr

en
t (

A
)

Firing angle 𝛼 (∘)

250
200
150
100

50
0

−50

−100

−150

−200

−250

(a) 𝛽 = 0∘

0 50 100 150 200 250 300 350
Firing angle 𝛼 (∘)

Pe
ak

 cu
rr

en
t (

A
)

250
200
150
100

50
0

−50

−100

−150

−200

−250

(b) 𝛽 = 90∘

Phase A
Phase B
Phase C

0 50 100 150 200 250 300 350

Pe
ak

 cu
rr

en
t (

A
)

Firing angle 𝛼 (∘)

250
200
150
100

50
0

−50

−100

−150

−200

−250

(c) 𝛽 = 180∘

Phase A
Phase B
Phase C

0 50 100 150 200 250 300 350

Pe
ak

 cu
rr

en
t (

A
)

Firing angle 𝛼 (∘)

250
200
150
100

50
0

−50

−100

−150

−200

−250

(d) 𝛽 = 270∘

Figure 6: Strategy 1, varying the firing angle 𝛼 for different stop angles 𝛽.
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Figure 7: Strategy 2, time plots.
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Figure 9: Strategy 3, varying the number of cycles from zero to full magnetization.
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Figure 10: Strategy 3, varying the number of cycles to full magnetization. The start angle 𝛼 is always set to 0∘, but it will have little impact on
the current peaks for the voltage ramping strategy.

5. Results and Discussion

The transformer was magnetized to its rated voltage of 1 kV
using the three different strategies proposed above, while
measuring the peak magnetizing inrush currents. In strategy
1, the transformerwas stopped at different angles𝛽 to evaluate
the variations in the remanent flux. In strategy 2, this becomes
redundant, as 𝜙

𝑟
always converges to zero before start-up. In

strategy 3, 𝛽 = 0∘ and 𝛽 = 180∘ are used to evaluate 𝜙max,−
and 𝜙max,+.

5.1. Strategy 1 Results. In Figure 5, the magnetizing inrush
currents are plotted for two different 𝛼 and 𝛽 in phase A.
These samples are shown to illustrate the worst scenarios with
maximum remanent flux in the core. As expected, the highest
inrush currents are obtained when 𝛼 is shifted half a period
from 𝛽, and here the peak currents easily reach above 250A.
To minimize the peak currents for this strategy, 𝛼 should
be in phase with 𝛽, which here results in peak currents of
about 100A. It is clear from Figures 5(a) and 5(c) how de-sat
protection is activated, which otherwise could have resulted
in much higher currents.

In Figure 6, the peak current values are sampled and
displayed, for fixed values of 𝛽. The variation between phases
is due to not only 𝛼 and 𝛽, but also unbalances in the
transformer core, where the center leg will have a lower
reluctance path than the outer legs.Thiswas not compensated
for in the transformer design.

5.2. Strategy 2 Results. In strategy 2, the remanent flux is
essentially removed, resulting in the special case of strategy 1
when 𝛽 = 0∘ for phase A. Also the remanent fluxes for phases
B and C are removed, which was not the case in strategy 1.
In Figure 7, currents are displayed for the two worst case
scenarios in phase A, 𝛼 = 0∘ and 𝛼 = 180∘. The worst inrush
currents are less than half compared to those in strategy 1

and never sufficiently high to trigger the de-sat protection.
In Figure 8, the peak phase currents are shown while varying
𝛼.

5.3. Strategy 3 Results. In Figure 9, the applied voltage starts
from zero and is linearly ramped to 1 pu. In Figure 9(a), the
ramping time duration is one fundamental cycle (20ms);
in Figure 9(b) this is increased to 3 cycles (60ms) and in
Figure 9(c) 5 cycles. 𝛽 was set to 0∘ for all cases, but it has
negligible impact for this strategy. Already at 1 cycle ramping
time, the peak current has reduced by half compared to that in
strategy 1, and it continues to drop for longer time durations.

Inrush current peak vs. number of cycles is displayed in
Figure 10. As the ramping time increases, the inrush currents
are effectively removed.

6. Conclusions

The magnitude of the magnetizing inrush currents for a
power transformer with direct VSI connection has been
evaluated, where no external circuitry for the grid connec-
tion is required. Three magnetization strategies have been
suggested and experimentally investigated: step response
with remanent flux, step response without remanent flux,
and voltage ramping. A de-sat protection is used to limit
the highest currents. By removing the remanent flux, the
peak inrush current is reduced to at least half in the worst
cases. However, with voltage ramping, the peak currents
may be more or less completely removed depending on the
time duration of voltage ramping. All strategies are easy to
implement in the FPGA-based control system.
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