Hindawi Publishing Corporation
Geometry

Volume 2013, Article ID 369420, 6 pages
http://dx.doi.org/10.1155/2013/369420

Research Article

Hindawi

Galois Group at Each Point for Some Self-Dual Curves

Hiroyuki Hayashi,' and Hisao Yoshihara®

! Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
? Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan

Correspondence should be addressed to Hisao Yoshihara; yosihara@math.sc.niigata-u.ac.jp

Received 10 October 2012; Accepted 21 December 2012

Academic Editor: Michel Planat

Copyright © 2013 H. Hayashi and H. Yoshihara. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the Galois group defined by a point projection for plane curve. First, we present a sufficient condition that the group is
primitive and then determine the structure at each point for some self-dual curves.

1. Introduction

This study is a continuation of [1-4], and so forth. In general,
it is not easy to determine the Galois group Gp at every point
P for plane curve, in particular for curve with singular point.
When we determine the structure of Gp, it is important to
know whether it is primitive or not. However, there are not
so many results which are useful for our purpose (cf. [5]). In
this paper we give a geometrical criterion and then determine
the group at each point for some self-dual curves.

Let k be an algebraically closed field of characteristic zero.
We fix it as the ground field of our discussions. Let C be an
irreducible plane curve of degree d (> 2) and K = k(C)
the rational function field of C. Let (X : Y : Z) be a set
of homogeneous coordinates on P? and putP, = (0 : 0 :
1),P,=(0 :1 :0),and Py =(1 : 0 : 0). Let F(X,Y,Z) be
the defining equation of C and put f(x, y) = F(X,Y, Z)/Zd,
wherex = X/Z,y =Y/ Z.

1.1. Galois Group. Letr : C — C be the resolution of sin-
gularities of C. For a point P € P, let P be the dual line in

the dual space P> of P* corresponding to P. We define the
morphism 7p by

nP:CBQb—HE;REﬁE]PI, (1)

where £py is the point in P? corresponding to the line £pg,
which passes through P and R = #(Q) if P#R. In case P =
R, the line £pp is the tangent line to the branch of C at R.

Clearly, we have deg 7 = d—m(C) and a field extension 7rp :
k(lPl) < K = k(C), where mp(C) denotes the multiplicity
of C at P. In case P ¢ C, we understand mp(C) = 0. We
put n(P) = d — mp(C); if there is no fear of confusion, we
simply denote it by n. Since the extension depends only on P,
we denote k(IP') by Kp, that is, we have nrj, : Kp — K. Let
Lp be the Galois closure of K/Kp and Gp the Galois group
Gal(Lp/Kp).

Definition 1. We call Gp the Galois group at P for C. In case
K/Kp is a Galois extension, the point P is said to be a Galois
point.

In case k is the field of complex numbers, Gp is isomor-

phic to the monodromy group of the covering 7, : C — P'
(6, 7].

1.2. Self-Dual Curve

Definition 2. A point Q € C is said to be a cusp of C if
it is a singular point and r_l(Q) consists of a single point.
Furthermore, if p : BQ(IPZ) - P’isa blow-up and ;/t_l(Q)
is a nonsingular point of the proper transform of i~ (C), the
point Q is said to be a simple cusp.

Denote by C the dual curve of C.

Definition 3. IfC is projectively equivalent to C, then C is said
to be a self-dual curve.



Suppose C is smooth. Then, C is self-dual if and only if
d = 2. However, if C has a singular point, the condition that C
is self-dual becomes complicated. The following proposition
has been known (cf. [8]).

Proposition 4. Suppose C is one of the following curves:
(1) C has just one singular point;
(2) C is rational and has only simple cusps as singular

points.

Then, C is a self-dual curve if and only if C is projectively

equivalent to the curve defined by y = x4,

Example 5. It seems that only a few self-dual curves have been
known. Here, we present some of them

(I) Ceq: the curve defined by Y°Z4™ = X%, gcd(e, d) =
LLl1<e<d-1;
(I1) C4: the curve defined by (YZ - X*)* = X’V (cf. [9]);

(III) Cgy: the curve defined by (XY - XZ + YZ)? +
54X°Y?Z% = 0 (cf. [10]).

For the curve C(, 4),if 1 <e <d—-1,then P; = (0 : 0 : 1)
and P, = (0 : 1 : 0) are not simple cusps and C, ;) has
no flex. The curve C4) has two cusps P, and P,, where P is
not a simple cusp. The curve Cs, has three cusps: P;, P,,and
P; and the normalization is an elliptic curve. It is easy to find
the dual curve of C (ed)’ however, in the other curves we need
some consideration, for the details, see [9, 10].

Remark 6. Let O be the rational map P>--»IP* giving the dual
of C, that is,

Oc(X:Y :Z)=(0xF :0yF : 0,F), )

where F is the defining equation of C. In the case where C =
C(e,4)> the map @ turns out to be a quadratic transformation

of P*:
O (X:Y:2)=(-dYZ:eZX : (d-e) XY). (3)

We use the following notation:

(i) Z,,: the cyclic group of order m;

(ii) S,;: the symmetric group of degree d;
(iii) i(X;, X,; Q): the intersection number of two curves

X, and X, at Q;

(iv) €pg: the line passing through P and Q;

(v) £p: a line passing through P;
(vi) T = T(C): the tangent line to C at Q.

2. Statement of Results

We need some preparations before stating the results. A curve
means a nonsingular projective algebraic curve. Let X; and
X, be curves and f : X, — X, a surjective morphism,
which we call a covering for short. We denote by e(R, f) the
ramification index of f at R € X,. If there is no fear of
confusion, we simply denote it by e(R).

Geometry

Definition 7. Let f : X, — X, be the covering above. If
there exists a curve X5 and coverings « : X; — X5 and
B: X; — X,suchthat f = Ba, dega > 2 and deg 8 > 2,
then f is said to be decomposable and X; an intermediate
covering. If such a curve X3 does not exist, then f is said to
be indecomposable (cf. [11]).

Definition 8. Let f : X; — X, be the covering above and
R,, ..., R, allthe ramification points for f.Pute(R;) =¢; (1 <
i < r). The covering f is said to be an s-covering over f(R;) if
there exists no ramification point in f~' f(R;) except R;. The
f is said to be an s-covering if it is an s-covering over each
f(R) A <i<r).

Definition 9. With the same notation as in Definition 8,
we call {(R,...,R,),(ey,...,e,)} (or, simply (ey,...,e,)) the
ramification data for f.

We give several sufficient conditions that f is indecom-
posable. Some of them will not be used later in this paper.

Proposition 10. Let f : X, — X, be the covering above and
n = deg f. If one of the following conditions is satisfied, then f
is indecomposable.

(1) Forsomei (1 <i<r),e;isprimeandn < 2e;.
(2) e, =n-1.

(3) X, is a rational curve, f is an s-covering except over
f(R,) and e; is prime for each i > s + 1, where

FUfR) =Ry, R

Proposition 11. With the same notation as in Proposition 10,
if f is an s-covering and satisfies one of the following conditions,
then f is indecomposable.

(1) X, is a rational curve, e, > ey, n—1 > e,, and e; is
prime for each i > 3.

(2) X, is a rational curve and e; is prime for each i > 2.

(3) X, is a rational curve and e; is prime for each i.

Hereafter, we follow the notation in Section 1. By taking
a suitable projective change of coordinates, we can assume the
projection center is P, without changing the structure of Gp.
Putting y = tx, we have Kp = k(t) and K = k(x, y) = k(t, x).
Put g(x) = f(x,tx)/x" € k(t)[x], where m = mp(C) and let
{x1,....x,} (n=n(P)) be the roots of g(x) = 0. Then, we can
consider Gp as a permutation subgroup of S,,. Note that Gp is
a transitive subgroup of S,.. Hence, Gp is a primitive group if
and only if the isotropy subgroup of an element of {x,, ..., x,}
is a maximal subgroup of S,,.

Theorem 12. The group Gp is primitive if and only if p is
indecomposable. In particular, if n(P) is a prime number, then
Gp is primitive for P € P*.

Definition 13. Assume Q € C is a smooth point or a cusp. A
line € = €p, is said to be a simple e-tangent line to C if the
following conditions are satisfied:
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TABLE 1 TABLE 3

p P, P, P, PeC\{P,P,} PeP'\Cu{pP;} P P,,P,,P, PeC\{P,,P,,P,;} PeP\C

GP dee Ze Zd Sd*l Sd GP SS SS 56
TanLe2 Claim 1. Suppose f and a ramification point R € X, satisty

P P, P, PeC\{P,P,} PeP’\C the following conditions:

Gy A S, S,

(1) if Q# P (resp., Q = P), then i(C, & Q) = e (resp., e +
m), where e > 2 and m = mp(C);

(2) the curves C and ¢ have normal crossings except at Q.

Sometimes we call € a simple e-tangent for short.

Note that a simple e-tangent £, yields an s-covering over

ﬂp(Q)-

Lemma 14. We have the following assertions for Gp.

(1) Ifeach line£p has normal crossings with C or is a simple
e-tangent line to C such that e is a prime number, then
Gp is primitive (cf. [5, Lemma 4.4.4]).

(2) If there exists a simple 2-tangent line €p, then Gp
contains a transposition.

The following lemma is well known.

Lemma 15. If a permutation group G C S,, is primitive and
contains a transposition, then it is a full symmetric group.

Combining the results above, we get the following corol-
lary.

Corollary 16. If the covering mp : C — P is one of the
coverings in Propositions 10 or 11 and mp is an s-covering over
p(R;) with e; = 2 for somei (1 < i < r), then Gp is a
full symmetric group. In particular, if each line £, has normal
crossings with C or is a simple 2-tangent, then Gp is a full
symmetric group.

Corollary 16 implies [2, Theorem 1 and 1']. Now we can
state the structure of Gp as follows.

Theorem 17. For the curves C in Example 5, the Galois groups
Gp are as follows, where Z| indicates the trivial group

(I) the case C = C, 4) (see Table 1);
(IT) the case C = Cy (see Table 2);
(III) the case C = Cs, (see Table 3).

Remark 18. For the curves in Theorem 17, P is a Galois point
ifand only if Gp is a cyclic group. However, the same assertion
does not hold true in general, see, for example, [3].

3. Proofs

First, we prove Propositions 10 and 11.

(1) fisan s-covering over f(R).
(2) e(R) is prime.

If there exists an intermediate covering 8 : X; — X, then
B is unramified at R" = a(R).

Proof. Suppose f3 is ramified at R'. Then, since e(R) is prime,
we have e(R’, B) = e(R, f), hence R’ is not a branch point for
a. Then, there will appear another ramification point for f in

FH(f(R)). This is a contradiction. O

The proof of Proposition 10 is as follows. Suppose f is
decomposable and there exists a covering  : X; — X,
as in Definition 7. First, we prove the assertion (1). Since ¢;

is prime, f is unramified at R;- by Claim 1. Hence, we have
e(R;,a) = e(R;, f). Since there exists at least two points in
B (f(R;)), we have n = deg f > 2e(R;, f), which contradicts
the assumption. Next we prove (2). Clearly « and f3 are
ramified at R; and R;, respectively. Put B, = f(R,;). Then,
since e, = n — 1, B7'(B,) consists of one or two points. In
the former case, (x_l(ﬁ_l(Bl)) consists of two points, on the
other hand in the latter case o' (By;) (i = 1,2) consists of one
point, where 87 (B,) = {B,}, B,}. In each case we infer the
inequality n = deg f > (n — 1) + 2, which is a contradiction.
We go to the proof of (3). Then, by Claim 1, B; (i > 2) is not
a branch point for 8. Thus, B, is the only branch point for 3.
Then, by Hurwitz’s formula, we have 2g(X3) -2 = -2b + ¢,
where g(X3) is the genus of X3, b is the degree of 3, and
¢ < b - 1. Since g(X3) = 0, this inequality implies b = 1,
which is a contradiction.

Next we prove Proposition 11. In each case we use the
reduction to absurdity, that is, suppose f is decomposable.

So we use the notation R:» = a(R;) (1 <i <r).Inthe case (I),
by Claim 3, 8 is unramified at R,,- (i = 3). Since X, and X5 are
rational, from Hurwitz’s formula, we infer that 8 is ramified
with the index e(R;,/S) = e(R,z,ﬁ) = deg f3. Then, since there
exists no ramification points in f -1 f(R;)) except R; (i =
1,2), « must branch at R,1 and R/z. However, there exists

an unramified point in fﬁl( f(R,)), this is a contradiction.
Therefore, f isindecomposable. In the case (II), by Claim 1, 8

is unramified at R; fori > 2. Since X is rational, by Hurwitz’s
formula, we have a contradiction. In the case (III) similarly,
by Claim 1, f3 is unramified at every point; however, since X,
is rational, 8 must be an identity, which is a contradiction.
This completes the proof of Proposition 11.

The proof of Theorem 12 is as follows: suppose Gp is not
primitive and let G, be the isotropy group of x = x; in Gp.
Then, there exists a subgroup H of Gp such that G, ¢ H ¢



Gp. Let Cp; be the nonsingular model of the intermediate field
which corresponds to H by the Galois correspondence. Then,
there exist the coveringsa : C — Cpand  : Cy; — P!
such that mp = Pa. Thus, 7p is decomposable. The converse
assertion is clear from the Galois correspondence.

The proof of Lemma 14 is simple. In view of Definition
13, we see that the assertion (1) is another expression of (3)
in Proposition 11. The assertion (2) may be well known (cf.
[7]).

Now we proceed to the proof of Theorem 17. The
structure of Gp depends on the covering 7p and 77p depends
on the position of P. We prove by examining the cases where
P lies on the tangent line to C at the cusp or at the flex.
Hereafter, we assume C is the curve in Theorem 17. Since C
is a self-dual curve and has only cusps as the singularity, the
following remark is clear.

Remark 19. Suppose a line € satisfies the following condi-
tions:

(1) € does not pass through any cusp;
(2) € is not the tangent line to C at the flex.

Then, € is a simple 2-tangent line to C or £ and C have normal
crossings.

Proof of the Case (I). Assume C = C, 4). It has the following
property.

Claim 2. The tangent line Tp (resp,Tp) is Y =
0 (resp, Z = 0)and Tp N Tp = {P;}, which does
not lie on C. In case e = 1 (resp.,d — 1), C has one flex at
P, (resp., P,). On the other hand,incasel <e<d-1,C
has no flex.

Proof. Calculating the Hessian of X~ Yoz (cf. [12]), we
infer readily the assertions. O

If P = P, P,, or P3, then Gp, can be determined directly.

In fact, if P = Py, then consider the affine part Z # 0 of C, that

is, the affine defining equation is y° — x? = 0. Then, putting

y = tx, we get £° — x*°° = 0, hence Gp = Z, . The other
case P = P, is similarly determined. If P = Pj, then consider

the affine part X #0, we get y°z*

get 9757 = 1, hence Gp = Z,. As we have seen above, these
points are Galois ones.

Next we treat the case P € C \ {P;, P,}. First, we prove
the subcase 1 < e < d — 1. Since C is a self-dual curve and
has no flex, we see that, if a line €, passes through neither P,
nor P,, then it has normal crossings with C or it is a simple 2-
tangent line to C. Furthermore, by Hurwitz’s formula, we see
there exists a simple 2-tangent. Then, by (1) in Proposition
11 and Lemma 15, we have G, = S;_;. Next we prove the
subcase e = 1. Then, P, (resp., P,) is a flex (resp., cusp) and
the tangent line at P, (resp., P,) does not meet C except at
P, (resp., P,).Ifaline £ does not pass through P,, then it has
normal crossings with C or it is a simple 2-tangent line to C.
By (2) in Proposition 11 and Lemma 15, we have G, = S;_;.
The proof of the case e = d — 1 is the same.

= 1. Putting z = ty, we
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Now we prove the case where P € P*\ C and P # P,. If
P etpp andl < e <d-1,then mp has two ramification
points R, and R, such that e(R;) = e, e(R,) = d — e and
p(R;) = mp(R,). Thus, 7p is not an s-covering. If £, passes
through neither P nor P,, then €, is a simple 2-tangent to
C or has normal crossings with C. By (3) in Proposition 10,
7p is indecomposable. Since there exists a simple 2-tangent
€p, we conclude Gp = S;. Incase P € €5 p ande = 1 or
d—1,mpisan s-coveringand e; = d — 1 and e, = 2, hence
by (2) in Proposition 10, Gp is primitive and there exists a
simple 2-tangent line €5, thus we conclude Gp = S;. In view
of Remark 19, we conclude easily from the similar argument

that Gp = S; when P € P*\ {CU £ }.

Proof of the Case (II). Assume C = Cy). It has the following
property.

Claim 3. The Tp (resp.,Tp ) isY = 0 (resp,Z = 0) and
Tp NTp, = {Ps}, which does not lie on C. Furthermore,
Tp NC = {P,} and Tp,NC = {P,,(1 : 1 : 0)}. The C has
one flex F of order 1, that is, i(C, T; F) = 3 and Ty does not
pass though P;.

Proof. The last assertion is checked by Hurwitz’s formula and
the others are simple. O

Remark 20. The coordinates of the flex F are computed as
(=576 : —4096 : 135).

Clearly, it P = P, or P,,then Gp = Z,. If P € C\{P}, P,},
then n = 3, hence Gp is primitive. We divide the proof into
three cases:

(1) P=F;
2)P=(1:1:0);
(3) P is the other point.

In any case, by Hurwitzs formula, we infer that there
exists at least one simple 2-tangent line passing through P,
hence Gp = S;. Then consider the case P ¢ P’ \ C. If
P € ¢p p , then7p has ramification points R; and R, such that
e(R;) = e(R,) = 2and p(R;) = mp(R,). Thus, 7p is not an s-
covering. Consider 7, for the most special case £ p N Ty =
{P}. We infer from Hurwitz’s formula that the ramification
data is (3, 24) := (3,2,2,2,2). By (3) in Proposition 10, we
have Gp = S,. There are several cases of position of P which
yield different ramification data; however, it is easy to see that
there exists i such that e; = 2. Then from Propositions 10 or
11, we conclude Gp = §,.

Proof of the Case (11I). Assume C = Cs,. It has the following
property. There exists a projective transformation o such that
0(C) = Cand 0(X,Y,Z2) = (V,X,-2), (-X,Z,Y) or
(Z,Y, X) so that o interchanges P; (i = 1,2,3).

Claim 4. The flexesof Care F; = (4 : -1 : 4), F, = (1 :
-4 :4),and F; = (4 : =4 : 1), hence the tangent lines to C
atthemareL, : X +8Y +Z=0, L, : 8X+Y - Z =0, and
Ly : =X +Y +8Z = 0, respectively. On the other hand, the
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tangent lines to C at P, P,,and Pyare L, : X =Y, L :
X =Z,and Lg : Y = Z, respectively. There exist just three
points Q; (i = 1,2, 3) satistying the following conditions:

(1) Qi ¢ G
(2) if€ = £, does not pass through any cusp, then ¢and C

have normal crossings or there exist two points Q' €
C satisfying i(C, &, Q') > 3.

Such Q; is an intersection Lj N Ly, where {1, j, k} = {1,2,3},
indeedQ; =(1: -7 : 1), Qy=(7:-1:1),and Q; =
(1 : =1 : 7). Therefore, if P € P*\ {C,Q,,Q,,Q;}, then
there exists a line £ passing through P such that € is a simple
2-tangent line to C.

Proof. Making use of the results in [10] and observing the
self-duality of C, we can check the assertions by direct
computations. O

Now let us begin the proof. If P = P, thenn = 3,
hence Gp is primitive. The lines €5 p and £p p_yield the
ramification points of order three of 7, hence we infer from
Hurwitz’s formula that there exists i such that e; = 2. Thus,
we get Gp = S;. For P = P, or P, using the projective
transformation o above, we see Gp = S; (i = 2, 3).

Next consider the case P € C\ {P,, P,, P;}. Then we have
n = 5, hence Gp is primitive. Using Hurwitz’s formula or the
self-duality of C, we see that there exists a simple 2-tangent
line to C, thus we have Gp = S;.

Finally, we consider the remaining case P € P> \ C.

Claim 5. Let n; be the number of ramification points with
index i. Then we have n, + 2n; + 3n, = 12, where n, <
3. In particular, if n, = 3 (resp.,2), then P = (1
1 : 1) (resp.,Q;), furthermore; n; = 0 (resp.,3) and n,
3 (resp.,0).

Proof. The former assertion is clear from Claim 4 and
Hurwitz’s formula. The proof of the latter assertion is as
follows: observing Claim 4, we infer that, if n, = 3, then P
isunique (1 : 1 : 1), which is the intersections of the three
lines Ly, L5, and Lg (Figure 1). Similarly observing Claim 4,
we infer that if n, = 2, then P = Q,, Q, or Q5. In this case,
we have i(C, £pp ; P;) = 3, hence ny = 3. O

Claim 6. If 7p is an s-covering, then 7rp is indecomposable.

Proof. By Claim 5 the ramification index is 2, 3, or 4. Suppose
mp is decomposable. Then, deg 8 = 2 or 3. By Claim 1, fis
unramified at R; = a(R;), where ¢; = 2 or 3. By Claim 5, we
have n, < 3. As we have seen in the proof of Proposition 10,
B cannot be ramified at only one point. Thus, we have n, # 1.
If n, = 0, then the proof is clear by (3) in Proposition 11.
Ifn, = 2,then P = Q; (i = 1,2,3). In case degff = 2,
B is ramified at R, and R,. Since dega = 3, this cannot
occur. In case deg3 = 3, 8 is ramified at R, and R, with
e(R;, B) = e(R,, PB) = 2; however, these do not satisfy
Hurwitz’s formula. If n, = 3,then P = (1 : 1 : 1)
and from Claim 4 and Hurwitz’s formula we infer that the

FIGURE 1

ramification data is (43,23) = (4,4,4,2,2,2). Suppose 7p
is decomposable. Then, deg 8 = 2 or 3. If deg 8 = 2, then

B is ramified at R;, (i = 1,2,3). However, since dega = 3,
this case cannot occur. Then, we have deg 8 = 3. We see

easily that f is ramified at R; with e(R;, B)=2(3{=1273).
However, this does not satisfy Hurwitz’s formula. Therefore,
7p is indecomposable. O

Now we resume the proof. We prove by examining the
cases:

HP=(1:1:1);
(i) P=Q; (1=1,2,3);
(iii) P € Cpp, (1 <4, j <3),P#+(1 : 1
P#Q; (i=1,2,3);
(iv) P is the point not appearing in the above case.

1), and

By Claims 5 and 6, the proof is complete for (i) and (iv). So
let us treat the case (ii). By Claim 6, Gp is primitive. However,
there exists no simple 2-tangent line. Take Q; = (1 : =7 : 1)
and consider the affine part Z # 0. The defining equation is
(xy-x+y)’+54x*y* = 0. Puttingu = x—1,v = y+7and v =
tu, we geth(t,u) := (tu2 - 8u + 2tu — 15)3+ 54(u+ 1)(tu—
7)* = 0. Here, we consider the Galois group obtained by the
special valuet = 2. By the aid of a software, for example, PARI,
we see that the polynomial h(2, u) = u* —4u—15)° + 54(u +
D(2u—7)* in Q[u] is irreducible and the Galois group of this
polynomialis S¢. Let 1 (¢), ..., ug(t) be the roots of h(t,u) = 0
with respect to u. Note that u,;(t) (1 < i < 6) is regular near
t = 2 and {u,(2),...,uqs(2)} are the roots of h(2,u) = 0. We
can find ¢; € Q(1 < i < 6) satisfying the conditions: #(t) =
cuy (t) + -+ + coug(t) (resp., 5(2) = cqup(2) + -+ + cgutg(2))
is a generator of the minimal splitting field of h(t, u) (resp.,
h(2,u)) over k(t) (resp., Q). Suppose the degree of i(t) is less
than 6!. Then, so is #(2), which is a contradiction. Hence we
have [k(t,u) : k(t)] = 6!, thus we conclude G, = S;. The
proofs of the other two cases Q, and Q5 are almost the same.



The proof of the case (iii) is as follows: here we notice
that if P € {Zpipj, i#j, (i,j = 1,2,3), then mp is not an s-
covering. First we consider the special case where P is in some
Ty, for example, €p p N Ty = {P}. Then the ramification

data is {(F,, P}, P,, P3,Rs, R, R,), (4,3,2)} and 7p(P,) =
7p(P,). Suppose 7p is decomposable. Then, by Claim 1, 8 :
X; — P' is unramified at a(P;) and R;,(i > 5). Namely,
B is ramified at just two points. Then, the ramification data
of Bis {(a(F,),a(Py)), (2,2)} or {(a(F;), x(P;)), (3, 3)}, where
deg 3 = 2 or 3, respectively. However, it is easy to see that this
is impossible considering o and 7, so 71 is indecomposable.
Since there existe; = 2 (i = 5,6,7), we conclude Gp = S;. On
the other hand, if P is not in Tk, for eachi (i = 1,2, 3), then,
by (3) in Proposition 10, f is indecomposable. Since there
exists a simple 2-tangent, we have Gp = Sq.
Thus, we complete all the proofs.

Remark 21. In the list of Theorem 17 only two kinds of group
appear. Of course, other kinds will appear in other examples,
for example, let us take the Fermat quartic X* + Y* + Z* = 0.
Then, there exist 12 points such that Gy, is the dihedral group
of order 8 (cf. [13]).

Problem. Concerning the Galois groups for C, 4 (1 < e <
d — 1), full symmetric group S; degenerates into the cyclic
group. How does the symmetric group degenerate for various
curves?
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