
Hindawi Publishing Corporation
Geometry
Volume 2013, Article ID 369420, 6 pages
http://dx.doi.org/10.1155/2013/369420

Research Article
Galois Group at Each Point for Some Self-Dual Curves

Hiroyuki Hayashi,1 and Hisao Yoshihara2

1 Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
2Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan

Correspondence should be addressed to Hisao Yoshihara; yosihara@math.sc.niigata-u.ac.jp

Received 10 October 2012; Accepted 21 December 2012

Academic Editor: Michel Planat

Copyright © 2013 H. Hayashi and H. Yoshihara.is is an open access article distributed under theCreativeCommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

We study the Galois group de�ned by a point projection for plane curve. First, we present a su�cient condition that the group is
primitive and then determine the structure at each point for some self-dual curves.

1. Introduction

is study is a continuation of [1–4], and so forth. In general,
it is not easy to determine the Galois group𝐺𝐺𝑃𝑃 at every point
𝑃𝑃 for plane curve, in particular for curve with singular point.
When we determine the structure of 𝐺𝐺𝑃𝑃, it is important to
know whether it is primitive or not. However, there are not
so many results which are useful for our purpose (cf. [5]). In
this paper we give a geometrical criterion and then determine
the group at each point for some self-dual curves.

Let 𝑘𝑘 be an algebraically closed �eld of characteristic �ero.
We �x it as the ground �eld of our discussions. Let 𝐶𝐶 be an
irreducible plane curve of degree 𝑑𝑑 (≥ 2) and 𝐾𝐾 𝐾 𝑘𝑘𝐾𝐶𝐶𝐾
the rational function �eld of 𝐶𝐶. Let 𝐾𝑋𝑋 𝑋 𝑋𝑋 𝑋 𝑋𝑋𝐾 be a set
of homogeneous coordinates on ℙ2 and put 𝑃𝑃1 𝐾 𝐾0 𝑋 0 𝑋
1𝐾, 𝑃𝑃2 𝐾 𝐾0 𝑋 1 𝑋 0𝐾, and 𝑃𝑃3 𝐾 𝐾1 𝑋 0 𝑋 0𝐾. Let 𝐹𝐹𝐾𝑋𝑋,𝑋𝑋, 𝑋𝑋𝐾 be
the de�ning equation of 𝐶𝐶 and put 𝑓𝑓𝐾𝑓𝑓, 𝑓𝑓𝐾 𝐾 𝐹𝐹𝐾𝑋𝑋, 𝑋𝑋, 𝑋𝑋𝐾𝑓𝑋𝑋𝑑𝑑,
where 𝑓𝑓 𝐾 𝑋𝑋𝑓𝑋𝑋, 𝑓𝑓 𝐾 𝑋𝑋𝑓𝑋𝑋.

1.1. Galois Group. Let 𝑟𝑟 𝑋 󵰒󵰒𝐶𝐶 𝐶 𝐶𝐶 be the resolution of sin-
gularities of 𝐶𝐶. For a point 𝑃𝑃 𝑃 ℙ2, let 󵰁󵰁𝑃𝑃 be the dual line in
the dual space 󵰄󵰄ℙ2 of ℙ2 corresponding to 𝑃𝑃. We de�ne the
morphism 𝜋𝜋𝑃𝑃 by

𝜋𝜋𝑃𝑃 𝑋 󵰒󵰒𝐶𝐶 𝐶 𝐶𝐶𝐶 󵰅󵰅ℓ𝑃𝑃𝑃𝑃 𝑃 󵰁󵰁𝑃𝑃 𝑃 ℙ1, (1)

where 󵰅󵰅ℓ𝑃𝑃𝑃𝑃 is the point in 󵰄󵰄ℙ2 corresponding to the line ℓ𝑃𝑃𝑃𝑃,
which passes through 𝑃𝑃 and 𝑃𝑃 𝐾 𝑟𝑟𝐾𝐶𝐶𝐾 if 𝑃𝑃𝑃𝑃𝑃. In case 𝑃𝑃 𝐾
𝑃𝑃, the line ℓ𝑃𝑃𝑃𝑃 is the tangent line to the branch of 𝐶𝐶 at 𝑃𝑃.

Clearly, we havedeg 𝜋𝜋𝑃𝑃 𝐾 𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝐾𝐶𝐶𝐾 and a �eld extension𝜋𝜋
∗
𝑃𝑃 𝑋

𝑘𝑘𝐾ℙ1𝐾 ↪ 𝐾𝐾 𝐾 𝑘𝑘𝐾󵰒󵰒𝐶𝐶𝐾, where 𝑑𝑑𝑃𝑃𝐾𝐶𝐶𝐾 denotes the multiplicity
of 𝐶𝐶 at 𝑃𝑃. In case 𝑃𝑃 𝑃 𝐶𝐶, we understand 𝑑𝑑𝑃𝑃𝐾𝐶𝐶𝐾 𝐾 0. We
put 𝑛𝑛𝐾𝑃𝑃𝐾 𝐾 𝑑𝑑 𝑑 𝑑𝑑𝑃𝑃𝐾𝐶𝐶𝐾; if there is no fear of confusion, we
simply denote it by 𝑛𝑛. Since the extension depends only on 𝑃𝑃,
we denote 𝑘𝑘𝐾ℙ1𝐾 by 𝐾𝐾𝑃𝑃, that is, we have 𝜋𝜋

∗
𝑃𝑃 𝑋 𝐾𝐾𝑃𝑃 ↪ 𝐾𝐾. Let

𝐿𝐿𝑃𝑃 be the Galois closure of 𝐾𝐾𝑓𝐾𝐾𝑃𝑃 and 𝐺𝐺𝑃𝑃 the Galois group
Gal𝐾𝐿𝐿𝑃𝑃𝑓𝐾𝐾𝑃𝑃𝐾.

De�nition 1. We call 𝐺𝐺𝑃𝑃 the Galois group at 𝑃𝑃 for 𝐶𝐶. In case
𝐾𝐾𝑓𝐾𝐾𝑃𝑃 is a Galois extension, the point 𝑃𝑃 is said to be a Galois
point.

In case 𝑘𝑘 is the �eld of complex numbers, 𝐺𝐺𝑃𝑃 is isomor-
phic to the monodromy group of the covering 𝜋𝜋𝑃𝑃 𝑋 󵰒󵰒𝐶𝐶 𝐶 ℙ1

[6, 7].

1.2. Self-Dual Curve

De�nition 2. A point 𝐶𝐶 𝑃 𝐶𝐶 is said to be a cusp of 𝐶𝐶 if
it is a singular point and 𝑟𝑟𝑑1𝐾𝐶𝐶𝐾 consists of a single point.
Furthermore, if 𝜇𝜇 𝑋 𝜇𝜇𝐶𝐶𝐾ℙ

2𝐾 𝐶 ℙ2 is a blow-up and 𝜇𝜇𝑑1𝐾𝐶𝐶𝐾
is a nonsingular point of the proper transform of 𝜇𝜇𝑑1𝐾𝐶𝐶𝐾, the
point𝐶𝐶 is said to be a simple cusp.

Denote by 󵰂󵰂𝐶𝐶 the dual curve of 𝐶𝐶.

De�nition �. If 󵰂󵰂𝐶𝐶 is projectively equivalent to𝐶𝐶, then𝐶𝐶 is said
to be a self-dual curve.



2 Geometry

Suppose 𝐶𝐶 is smooth. en, 𝐶𝐶 is self-dual if and only if
𝑑𝑑 𝑑 𝑑. However, if𝐶𝐶 has a singular point, the condition that𝐶𝐶
is self-dual becomes complicated. e following proposition
has been known (cf. [8]).

Proposition 4. Suppose 𝐶𝐶 is one of the following curves:

(1) 𝐶𝐶 has just one singular point;
(2) 𝐶𝐶 is rational and has only simple cusps as singular

points.

en, 𝐶𝐶 is a self-dual curve if and only if 𝐶𝐶 is projectively
e�uivalent to the curve de�ned by 𝑦𝑦 𝑑 𝑦𝑦𝑑𝑑.

Example 5. It seems that only a few self-dual curves have been
known. Here, we present some of them

(I) 𝐶𝐶(𝑒𝑒𝑒𝑑𝑑𝑒: the curve de�ned by 𝑌𝑌𝑒𝑒𝑍𝑍𝑑𝑑𝑑𝑒𝑒 𝑑 𝑋𝑋𝑑𝑑𝑒 gcd(𝑒𝑒𝑒 𝑑𝑑𝑒 𝑑
1𝑒 1 ≤ 𝑒𝑒 ≤ 𝑑𝑑 𝑑 1;

(II) 𝐶𝐶(4𝑒: the curve de�ned by (𝑌𝑌𝑍𝑍𝑑𝑋𝑋
𝑑𝑒𝑑 𝑑 𝑋𝑋3𝑌𝑌 (cf. [9]);

(III) 𝐶𝐶54: the curve de�ned by (𝑋𝑋𝑌𝑌 𝑑 𝑋𝑋𝑍𝑍 𝑋 𝑌𝑌𝑍𝑍𝑒3 𝑋
54𝑋𝑋𝑑𝑌𝑌𝑑𝑍𝑍𝑑 𝑑 0 (cf. [10]).

For the curve 𝐶𝐶(𝑒𝑒𝑒𝑑𝑑𝑒, if 1 < 𝑒𝑒 < 𝑑𝑑 𝑑 1, then 𝑃𝑃1 𝑑 (0 ∶ 0 ∶ 1𝑒
and 𝑃𝑃𝑑 𝑑 (0 ∶ 1 ∶ 0𝑒 are not simple cusps and 𝐶𝐶(𝑒𝑒𝑒𝑑𝑑𝑒 has
no �ex. e curve 𝐶𝐶(4𝑒 has two cusps 𝑃𝑃1 and 𝑃𝑃𝑑, where 𝑃𝑃1 is
not a simple cusp.e curve𝐶𝐶54 has three cusps: 𝑃𝑃1𝑒 𝑃𝑃𝑑, and
𝑃𝑃3 and the normali�ation is an elliptic curve. It is easy to �nd
the dual curve of𝐶𝐶(𝑒𝑒𝑒𝑑𝑑𝑒; however, in the other curves we need
some consideration, for the details, see [9, 10].

Remark 6. LetΦ𝐶𝐶 be the rationalmapℙ𝑑⇢ℙ𝑑 giving the dual
of 𝐶𝐶, that is,

Φ𝐶𝐶 (𝑋𝑋 ∶ 𝑌𝑌 ∶ 𝑍𝑍𝑒 𝑑 󶀡󶀡𝜕𝜕𝑋𝑋𝐹𝐹 ∶ 𝜕𝜕𝑌𝑌𝐹𝐹 ∶ 𝜕𝜕𝑍𝑍𝐹𝐹󶀱󶀱 𝑒 (2)

where 𝐹𝐹 is the de�ning equation of 𝐶𝐶. In the case where 𝐶𝐶 𝑑
𝐶𝐶(𝑒𝑒𝑒𝑑𝑑𝑒, the mapΦ𝐶𝐶 turns out to be a quadratic transformation
of ℙ𝑑:

Φ𝐶𝐶 (𝑋𝑋 ∶ 𝑌𝑌 ∶ 𝑍𝑍𝑒 𝑑 (𝑑𝑑𝑑𝑌𝑌𝑍𝑍 ∶ 𝑒𝑒𝑍𝑍𝑋𝑋 ∶ (𝑑𝑑 𝑑 𝑒𝑒𝑒𝑋𝑋𝑌𝑌𝑒 . (3)

We use the following notation:

(i) 𝑍𝑍𝑚𝑚: the cyclic group of order𝑚𝑚;
(ii) 𝑆𝑆𝑑𝑑: the symmetric group of degree 𝑑𝑑;
(iii) 𝑖𝑖(𝑋𝑋1𝑒𝑋𝑋𝑑;𝑄𝑄𝑒: the intersection number of two curves

𝑋𝑋1 and𝑋𝑋𝑑 at𝑄𝑄;
(iv) ℓ𝑃𝑃𝑄𝑄: the line passing through 𝑃𝑃 and𝑄𝑄;
(v) ℓ𝑃𝑃: a line passing through 𝑃𝑃;
(vi) 𝑇𝑇𝑄𝑄 𝑑 𝑇𝑇𝑄𝑄(𝐶𝐶𝑒: the tangent line to 𝐶𝐶 at𝑄𝑄.

2. Statement of Results

Weneed some preparations before stating the results. A curve
means a nonsingular projective algebraic curve. Let 𝑋𝑋1 and
𝑋𝑋𝑑 be curves and 𝑓𝑓 ∶ 𝑋𝑋1 → 𝑋𝑋𝑑 a surjective morphism,
which we call a covering for short. We denote by 𝑒𝑒(𝑒𝑒𝑒 𝑓𝑓𝑒 the
rami�cation index of 𝑓𝑓 at 𝑒𝑒 𝑅 𝑋𝑋1. If there is no fear of
confusion, we simply denote it by 𝑒𝑒(𝑒𝑒𝑒.

�e�nition �. Let 𝑓𝑓 ∶ 𝑋𝑋1 → 𝑋𝑋𝑑 be the covering above. If
there exists a curve 𝑋𝑋3 and coverings 𝛼𝛼 ∶ 𝑋𝑋1 → 𝑋𝑋3 and
𝛽𝛽 ∶ 𝑋𝑋3 → 𝑋𝑋𝑑 such that 𝑓𝑓 𝑑 𝛽𝛽𝛼𝛼, deg 𝛼𝛼 𝛼 𝑑 and deg 𝛽𝛽 𝛼 𝑑,
then 𝑓𝑓 is said to be decomposable and 𝑋𝑋3 an intermediate
covering. If such a curve 𝑋𝑋3 does not exist, then 𝑓𝑓 is said to
be indecomposable (cf. [11]).

�e�nition �. Let 𝑓𝑓 ∶ 𝑋𝑋1 → 𝑋𝑋𝑑 be the covering above and
𝑒𝑒1𝑒… 𝑒 𝑒𝑒𝑟𝑟 all the rami�cation points for𝑓𝑓. Put 𝑒𝑒(𝑒𝑒𝑖𝑖𝑒 𝑑 𝑒𝑒𝑖𝑖 (1 ≤
𝑖𝑖 ≤ 𝑟𝑟𝑒. e covering 𝑓𝑓 is said to be an s-covering over𝑓𝑓(𝑒𝑒𝑖𝑖𝑒 if
there exists no rami�cation point in 𝑓𝑓𝑑1𝑓𝑓(𝑒𝑒𝑖𝑖𝑒 except 𝑒𝑒𝑖𝑖. e
𝑓𝑓 is said to be an s-covering if it is an s-covering over each
𝑓𝑓(𝑒𝑒𝑖𝑖𝑒 (1 ≤ 𝑖𝑖 ≤ 𝑟𝑟𝑒.

�e�nition �. With the same notation as in �e�nition 8,
we call {(𝑒𝑒1𝑒… 𝑒 𝑒𝑒𝑟𝑟𝑒𝑒 (𝑒𝑒1𝑒… 𝑒 𝑒𝑒𝑟𝑟𝑒} (or, simply (𝑒𝑒1,…,𝑒𝑒𝑟𝑟)) the
rami�cation data for f.

We give several sufficient conditions that 𝑓𝑓 is indecom-
posable. Some of them will not be used later in this paper.

Proposition 10. Let 𝑓𝑓 ∶ 𝑋𝑋1 → 𝑋𝑋𝑑 be the covering above and
𝑛𝑛 𝑑 deg𝑓𝑓. If one of the following conditions is satis�ed, then 𝑓𝑓
is indecomposable.

(1) For some 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑟𝑟𝑒, 𝑒𝑒𝑖𝑖 is prime and 𝑛𝑛 < 𝑑𝑒𝑒𝑖𝑖.
(2) 𝑒𝑒1 𝑑 𝑛𝑛 𝑑 1.
(3) 𝑋𝑋𝑑 is a rational curve, 𝑓𝑓 is an s-covering except over

𝑓𝑓(𝑒𝑒1𝑒 and 𝑒𝑒𝑖𝑖 is prime for each 𝑖𝑖 𝛼 𝑖𝑖 𝑋 1, where
𝑓𝑓𝑑1𝑓𝑓(𝑒𝑒1𝑒 𝑑 {𝑒𝑒1𝑒… 𝑒 𝑒𝑒𝑖𝑖}.

Proposition 11. With the same notation as in Proposition 10,
if𝑓𝑓 is an s-covering and satis�es one of the following conditions,
then 𝑓𝑓 is indecomposable.

(1) 𝑋𝑋1 is a rational curve, 𝑒𝑒1 𝛼 𝑒𝑒𝑑, 𝑛𝑛 𝑑 1 𝛼 𝑒𝑒𝑑, and 𝑒𝑒𝑖𝑖 is
prime for each 𝑖𝑖 𝛼 3.

(2) 𝑋𝑋1 is a rational curve and 𝑒𝑒𝑖𝑖 is prime for each 𝑖𝑖 𝛼 𝑑.
(3) 𝑋𝑋𝑑 is a rational curve and 𝑒𝑒𝑖𝑖 is prime for each 𝑖𝑖.

Hereaer, we follow the notation in Section 1. By taking
a suitable projective change of coordinates, we can assume the
projection center is 𝑃𝑃1 without changing the structure of 𝐺𝐺𝑃𝑃.
Putting 𝑦𝑦 𝑑 𝑦𝑦𝑦𝑦, we have 𝐾𝐾𝑃𝑃 𝑑 𝑘𝑘(𝑦𝑦𝑒 and 𝐾𝐾 𝑑 𝑘𝑘(𝑦𝑦𝑒 𝑦𝑦𝑒 𝑑 𝑘𝑘(𝑦𝑦𝑒 𝑦𝑦𝑒.
Put 𝑔𝑔(𝑦𝑦𝑒 𝑑 𝑓𝑓(𝑦𝑦𝑒 𝑦𝑦𝑦𝑦𝑒𝑔𝑦𝑦𝑚𝑚 𝑅 𝑘𝑘(𝑦𝑦𝑒𝑘𝑦𝑦𝑘, where 𝑚𝑚 𝑑 𝑚𝑚𝑃𝑃(𝐶𝐶𝑒 and let
{𝑦𝑦1𝑒… 𝑒 𝑦𝑦𝑛𝑛} (𝑛𝑛 𝑑 𝑛𝑛(𝑃𝑃𝑒𝑒 be the roots of 𝑔𝑔(𝑦𝑦𝑒 𝑑 0. en, we can
consider 𝐺𝐺𝑃𝑃 as a permutation subgroup of 𝑆𝑆𝑛𝑛. Note that 𝐺𝐺𝑃𝑃 is
a transitive subgroup of 𝑆𝑆𝑛𝑛. Hence, 𝐺𝐺𝑃𝑃 is a primitive group if
and only if the isotropy subgroup of an element of {𝑦𝑦1𝑒… 𝑒 𝑦𝑦𝑛𝑛}
is a maximal subgroup of 𝑆𝑆𝑛𝑛.

eorem 12. e group 𝐺𝐺𝑃𝑃 is primitive if and only if 𝜋𝜋𝑃𝑃 is
indecomposable. In particular, if 𝑛𝑛(𝑃𝑃𝑒 is a prime number, then
𝐺𝐺𝑃𝑃 is primitive for 𝑃𝑃 𝑅 ℙ𝑑.

�e�nition 1�. Assume 𝑄𝑄 𝑅 𝐶𝐶 is a smooth point or a cusp. A
line ℓ 𝑑 ℓ𝑃𝑃𝑄𝑄 is said to be a simple 𝑒𝑒-tangent line to 𝐶𝐶 if the
following conditions are satis�ed:



Geometry 3

T 1

𝑃𝑃 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 𝑃𝑃 𝑃 𝑃𝑃 𝑃 󶁁󶁁𝑃𝑃1, 𝑃𝑃2󶁑󶁑 𝑃𝑃 𝑃 𝑃2 𝑃 𝑃𝑃 𝐶 󶁁󶁁𝑃𝑃3󶁑󶁑
𝐺𝐺𝑃𝑃 𝑍𝑍𝑑𝑑𝑑𝑑𝑑 𝑍𝑍𝑑𝑑 𝑍𝑍𝑑𝑑 𝑆𝑆𝑑𝑑𝑑1 𝑆𝑆𝑑𝑑

T 2

𝑃𝑃 𝑃𝑃1, 𝑃𝑃2 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃𝑃1, 𝑃𝑃2} 𝑃𝑃 𝑃 𝑃2 𝑃 𝑃𝑃
𝐺𝐺𝑃𝑃 𝑍𝑍2 𝑆𝑆3 𝑆𝑆4

(1) if 𝑄𝑄𝑄𝑃𝑃 (resp., 𝑄𝑄 𝑄 𝑃𝑃), then 𝑖𝑖𝑖𝑃𝑃, 𝑖𝑖 𝑄𝑄𝑖 𝑄 𝑑𝑑 (resp., 𝑑𝑑 𝑒
𝑚𝑚), where 𝑑𝑑 𝑒 2 and𝑚𝑚 𝑄 𝑚𝑚𝑃𝑃𝑖𝑃𝑃𝑖;

(2) the curves𝑃𝑃 and 𝑖 have normal crossings except at𝑄𝑄.

Sometimes we call 𝑖 a simple 𝑑𝑑-tangent for short.

Note that a simple 𝑑𝑑-tangent 𝑖𝑃𝑃𝑄𝑄 yields an s-covering over
𝜋𝜋𝑃𝑃𝑖𝑄𝑄𝑖.

Lemma 14. We have the following assertions for 𝐺𝐺𝑃𝑃.

(1) If each line 𝑖𝑃𝑃 has normal crossings with𝑃𝑃 or is a simple
𝑑𝑑-tangent line to 𝑃𝑃 such that 𝑑𝑑 is a prime number, then
𝐺𝐺𝑃𝑃 is primitive (cf. [5, Lemma 4.4.4]).

(2) If there exists a simple 2-tangent line 𝑖𝑃𝑃, then 𝐺𝐺𝑃𝑃
contains a transposition.

e following lemma is well known.

Lemma 15. If a permutation group 𝐺𝐺 𝐺 𝑆𝑆𝑛𝑛 is primitive and
contains a transposition, then it is a full symmetric group.

Combining the results above, we get the following corol-
lary.

Corollary 16. If the covering 𝜋𝜋𝑃𝑃 ∶ 󵰒󵰒𝑃𝑃 𝐶 𝑃1 is one of the
coverings in Propositions 10 or 11 and 𝜋𝜋𝑃𝑃 is an s-covering over
𝜋𝜋𝑃𝑃𝑖𝑅𝑅𝑖𝑖𝑖 with 𝑑𝑑𝑖𝑖 𝑄 2 for some 𝑖𝑖 𝑖1 𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖, then 𝐺𝐺𝑃𝑃 is a
full symmetric group. In particular, if each line 𝑖𝑃𝑃 has normal
crossings with 𝑃𝑃 or is a simple 2-tangent, then 𝐺𝐺𝑃𝑃 is a full
symmetric group.

Corollary 16 implies [2, eorem 1 and 1′]. Now we can
state the structure of 𝐺𝐺𝑃𝑃 as follows.

eorem 17. For the curves𝑃𝑃 in Example 5, the Galois groups
𝐺𝐺𝑃𝑃 are as follows, where 𝑍𝑍1 indicates the trivial group

(I) the case 𝑃𝑃 𝑄 𝑃𝑃𝑖𝑑𝑑,𝑑𝑑𝑖 (see Table 1);
(II) the case 𝑃𝑃 𝑄 𝑃𝑃𝑖4𝑖 (see Table 2);
(III) the case 𝑃𝑃 𝑄 𝑃𝑃54 (see Table 3).

Remark 18. For the curves ineorem 17, 𝑃𝑃 is a Galois point
if and only if𝐺𝐺𝑃𝑃 is a cyclic group.However, the same assertion
does not hold true in general, see, for example, [3].

3. Proofs

First, we prove Propositions 10 and 11.

T 3

𝑃𝑃 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3} 𝑃𝑃 𝑃 𝑃2 𝑃 𝑃𝑃
𝐺𝐺𝑃𝑃 𝑆𝑆3 𝑆𝑆5 𝑆𝑆6

Claim 1. Suppose 𝑓𝑓 and a rami�cation point 𝑅𝑅 𝑃 𝑅𝑅1 satisfy
the following conditions:

(1) 𝑓𝑓 is an s-covering over 𝑓𝑓𝑖𝑅𝑅𝑖.
(2) 𝑑𝑑𝑖𝑅𝑅𝑖 is prime.

If there exists an intermediate covering 𝛽𝛽 ∶ 𝑅𝑅3 𝐶 𝑅𝑅2, then
𝛽𝛽 is unrami�ed at 𝑅𝑅′ 𝑄 𝑅𝑅𝑖𝑅𝑅𝑖.

Proof. Suppose 𝛽𝛽 is rami�ed at 𝑅𝑅′. en, since 𝑑𝑑𝑖𝑅𝑅𝑖 is prime,
we have 𝑑𝑑𝑖𝑅𝑅′, 𝛽𝛽𝑖 𝑄 𝑑𝑑𝑖𝑅𝑅, 𝑓𝑓𝑖, hence 𝑅𝑅′ is not a branch point for
𝑅𝑅. en, there will appear another rami�cation point for 𝑓𝑓 in
𝑓𝑓𝑑1𝑖𝑓𝑓𝑖𝑅𝑅𝑖𝑖. is is a contradiction.

e proof of Proposition 10 is as follows. Suppose 𝑓𝑓 is
decomposable and there exists a covering 𝛽𝛽 ∶ 𝑅𝑅3 𝐶 𝑅𝑅2
as in �e�nition 7. First, we prove the assertion (1). Since 𝑑𝑑𝑖𝑖
is prime, 𝛽𝛽 is unrami�ed at 𝑅𝑅′𝑖𝑖 by Claim 1. Hence, we have
𝑑𝑑𝑖𝑅𝑅𝑖𝑖, 𝑅𝑅𝑖 𝑄 𝑑𝑑𝑖𝑅𝑅𝑖𝑖, 𝑓𝑓𝑖. Since there exists at least two points in
𝛽𝛽𝑑1𝑖𝑓𝑓𝑖𝑅𝑅𝑖𝑖𝑖𝑖, we have 𝑛𝑛 𝑄 𝑛𝑛𝑛𝑓𝑓 𝑒 2𝑑𝑑𝑖𝑅𝑅𝑖𝑖, 𝑓𝑓𝑖, which contradicts
the assumption. Next we prove (2). Clearly 𝑅𝑅 and 𝛽𝛽 are
rami�ed at 𝑅𝑅1 and 𝑅𝑅

′
1, respectively. Put 𝐵𝐵1 𝑄 𝑓𝑓𝑖𝑅𝑅1𝑖. en,

since 𝑑𝑑1 𝑄 𝑛𝑛 𝑑 1, 𝛽𝛽𝑑1𝑖𝐵𝐵1𝑖 consists of one or two points. In
the former case, 𝑅𝑅𝑑1𝑖𝛽𝛽𝑑1𝑖𝐵𝐵1𝑖𝑖 consists of two points, on the
other hand in the latter case 𝑅𝑅𝑑1𝑖𝐵𝐵1𝑖𝑖𝑖 𝑖𝑖𝑖 𝑄 1, 2𝑖 consists of one
point, where 𝛽𝛽𝑑1𝑖𝐵𝐵1𝑖 𝑄 𝑃𝐵𝐵11, 𝐵𝐵12}. In each case we infer the
inequality 𝑛𝑛 𝑄 𝑛𝑛𝑛𝑓𝑓 𝑒 𝑖𝑛𝑛 𝑑 1𝑖 𝑒 2, which is a contradiction.
We go to the proof of (3). en, by Claim 1, 𝐵𝐵𝑖𝑖 𝑖𝑖𝑖 𝑒 2𝑖 is not
a branch point for 𝛽𝛽. us, 𝐵𝐵1 is the only branch point for 𝛽𝛽.
en, by Hurwitz’s formula, we have 2𝑔𝑔𝑖𝑅𝑅3𝑖 𝑑 2 𝑄 𝑑2𝑏𝑏 𝑒 𝑏𝑏,
where 𝑔𝑔𝑖𝑅𝑅3𝑖 is the genus of 𝑅𝑅3, 𝑏𝑏 is the degree of 𝛽𝛽, and
𝑏𝑏 𝑖 𝑏𝑏 𝑑 1. Since 𝑔𝑔𝑖𝑅𝑅3𝑖 𝑒 0, this inequality implies 𝑏𝑏 𝑄 1,
which is a contradiction.

Next we prove Proposition 11. In each case we use the
reduction to absurdity, that is, suppose 𝑓𝑓 is decomposable.
So we use the notation 𝑅𝑅′𝑖𝑖 𝑄 𝑅𝑅𝑖𝑅𝑅𝑖𝑖𝑖 𝑖1 𝑖 𝑖𝑖 𝑖 𝑖𝑖𝑖. In the case (I),
by Claim 3, 𝛽𝛽 is unrami�ed at 𝑅𝑅′𝑖𝑖 𝑖𝑖𝑖 𝑒 3𝑖. Since𝑅𝑅2 and𝑅𝑅3 are
rational, from Hurwitz’s formula, we infer that 𝛽𝛽 is rami�ed
with the index 𝑑𝑑𝑖𝑅𝑅′1, 𝛽𝛽𝑖 𝑄 𝑑𝑑𝑖𝑅𝑅′2, 𝛽𝛽𝑖 𝑄 𝑛𝑛𝑛 𝛽𝛽. en, since there
exists no rami�cation points in 𝑓𝑓𝑑1𝑖𝑓𝑓𝑖𝑅𝑅𝑖𝑖𝑖𝑖 except 𝑅𝑅𝑖𝑖 𝑖𝑖𝑖 𝑄
1, 2𝑖, 𝑅𝑅 must branch at 𝑅𝑅′1 and 𝑅𝑅′2. However, there exists
an unrami�ed point in 𝑓𝑓𝑑1𝑖𝑓𝑓𝑖𝑅𝑅2𝑖𝑖, this is a contradiction.
erefore,𝑓𝑓 is indecomposable. In the case (II), by Claim 1, 𝛽𝛽
is unrami�ed at𝑅𝑅′𝑖𝑖 for 𝑖𝑖 𝑒 2. Since𝑅𝑅3 is rational, by Hurwitz’s
formula, we have a contradiction. In the case (III) similarly,
by Claim 1, 𝛽𝛽 is unrami�ed at every point; however, since𝑅𝑅2
is rational, 𝛽𝛽 must be an identity, which is a contradiction.
is completes the proof of Proposition 11.

e proof of eorem 12 is as follows: suppose 𝐺𝐺𝑃𝑃 is not
primitive and let 𝐺𝐺𝑥𝑥 be the isotropy group of 𝑥𝑥 𝑄 𝑥𝑥1 in 𝐺𝐺𝑃𝑃.
en, there exists a subgroup 𝐻𝐻 of 𝐺𝐺𝑃𝑃 such that 𝐺𝐺𝑥𝑥 ⊊ 𝐻𝐻 ⊊



4 Geometry

𝐺𝐺𝑃𝑃. Let𝐶𝐶𝐻𝐻 be the nonsingularmodel of the intermediate �eld
which corresponds to𝐻𝐻 by the Galois correspondence.en,
there exist the coverings 𝛼𝛼 𝛼 󵰒󵰒𝐶𝐶 𝐶 𝐶𝐶𝐻𝐻 and 𝛽𝛽 𝛼 𝐶𝐶𝐻𝐻 𝐶 ℙ1

such that 𝜋𝜋𝑃𝑃 = 𝛽𝛽𝛼𝛼. us, 𝜋𝜋𝑃𝑃 is decomposable. e converse
assertion is clear from the Galois correspondence.

e proof of Lemma 14 is simple. In view of �e�nition
13, we see that the assertion (1) is another expression of (3)
in Proposition 11. e assertion (2) may be well known (cf.
[7]).

Now we proceed to the proof of eorem 17. e
structure of 𝐺𝐺𝑃𝑃 depends on the covering 𝜋𝜋𝑃𝑃 and 𝜋𝜋𝑃𝑃 depends
on the position of 𝑃𝑃. We prove by examining the cases where
𝑃𝑃 lies on the tangent line to 𝐶𝐶 at the cusp or at the �ex.
Hereaer, we assume 𝐶𝐶 is the curve in eorem 17. Since 𝐶𝐶
is a self-dual curve and has only cusps as the singularity, the
following remark is clear.

Remark 19. Suppose a line ℓ satis�es the following condi-
tions:

(1) ℓ does not pass through any cusp;
(2) ℓ is not the tangent line to 𝐶𝐶 at the �ex.

en, ℓ is a simple 2-tangent line to𝐶𝐶 or ℓ and𝐶𝐶 have normal
crossings.

Proof of the Case (I). Assume 𝐶𝐶 = 𝐶𝐶(𝑒𝑒𝑒𝑒𝑒𝑒. It has the following
property.

Claim 2. e tangent line 𝑇𝑇𝑃𝑃1 (resp.𝑒 𝑇𝑇𝑃𝑃2𝑒 is 𝑌𝑌 =
0 (resp.𝑒 𝑍𝑍 = 0𝑒 and 𝑇𝑇𝑃𝑃1 ∩ 𝑇𝑇𝑃𝑃2 = {𝑃𝑃3}, which does
not lie on 𝐶𝐶. In case 𝑒𝑒 = 1 (resp.𝑒 𝑒𝑒 𝑑 1𝑒, 𝐶𝐶 has one �ex at
𝑃𝑃1 (resp.𝑒 𝑃𝑃2𝑒. On the other hand, in case 1 < 𝑒𝑒 < 𝑒𝑒 𝑑 1, 𝐶𝐶
has no �ex.

Proof. Calculating the Hessian of 𝑋𝑋𝑒𝑒 𝑑 𝑌𝑌𝑒𝑒𝑍𝑍𝑒𝑒𝑑𝑒𝑒 (cf. [12]), we
infer readily the assertions.

If 𝑃𝑃 = 𝑃𝑃1𝑒 𝑃𝑃2, or 𝑃𝑃3, then 𝐺𝐺𝑃𝑃 can be determined directly.
In fact, if𝑃𝑃 = 𝑃𝑃1, then consider the affine part𝑍𝑍𝑍0 of𝐶𝐶, that
is, the affine de�ning e�uation is 𝑦𝑦𝑒𝑒 𝑑 𝑥𝑥𝑒𝑒 = 0. en, putting
𝑦𝑦 = 𝑦𝑦𝑥𝑥, we get 𝑦𝑦𝑒𝑒 𝑑 𝑥𝑥𝑒𝑒𝑑𝑒𝑒 = 0, hence 𝐺𝐺𝑃𝑃 ≅ 𝑍𝑍𝑒𝑒𝑑𝑒𝑒. e other
case 𝑃𝑃 = 𝑃𝑃2 is similarly determined. If 𝑃𝑃 = 𝑃𝑃3, then consider
the affine part 𝑋𝑋𝑍0, we get 𝑦𝑦𝑒𝑒𝑧𝑧𝑒𝑒𝑑𝑒𝑒 = 1. Putting 𝑧𝑧 = 𝑦𝑦𝑦𝑦, we
get 𝑦𝑦𝑒𝑒𝑑𝑒𝑒𝑦𝑦𝑒𝑒 = 1, hence 𝐺𝐺𝑃𝑃 ≅ 𝑍𝑍𝑒𝑒. As we have seen above, these
points are Galois ones.

Next we treat the case 𝑃𝑃 𝑃 𝐶𝐶 𝑃 {𝑃𝑃1𝑒 𝑃𝑃2}. First, we prove
the subcase 1 < 𝑒𝑒 < 𝑒𝑒 𝑑 1. Since 𝐶𝐶 is a self-dual curve and
has no �ex, we see that, if a line ℓ𝑃𝑃 passes through neither 𝑃𝑃1
nor𝑃𝑃2, then it has normal crossings with𝐶𝐶 or it is a simple 2-
tangent line to 𝐶𝐶. Furthermore, by Hurwitz’s formula, we see
there exists a simple 2-tangent. en, by (1) in Proposition
11 and Lemma 15, we have 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆𝑒𝑒𝑑1. Next we prove the
subcase 𝑒𝑒 = 1. en, 𝑃𝑃1 (resp.𝑒 𝑃𝑃2𝑒 is a �ex (resp., cusp) and
the tangent line at 𝑃𝑃1 (resp.𝑒 𝑃𝑃2𝑒 does not meet 𝐶𝐶 except at
𝑃𝑃1 (resp.𝑒 𝑃𝑃2𝑒. If a line ℓ𝑃𝑃 does not pass through𝑃𝑃2, then it has
normal crossings with 𝐶𝐶 or it is a simple 2-tangent line to 𝐶𝐶.
By (2) in Proposition 11 and Lemma 15, we have 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆𝑒𝑒𝑑1.
e proof of the case 𝑒𝑒 = 𝑒𝑒 𝑑 1 is the same.

Now we prove the case where 𝑃𝑃 𝑃 ℙ2 𝑃 𝐶𝐶 and 𝑃𝑃𝑍𝑃𝑃3. If
𝑃𝑃 𝑃 ℓ𝑃𝑃1𝑃𝑃2 and 1 < 𝑒𝑒 < 𝑒𝑒 𝑑 1, then 𝜋𝜋𝑃𝑃 has two rami�cation
points 𝑅𝑅1 and 𝑅𝑅2 such that 𝑒𝑒(𝑅𝑅1𝑒 = 𝑒𝑒, 𝑒𝑒(𝑅𝑅2𝑒 = 𝑒𝑒 𝑑 𝑒𝑒 and
𝜋𝜋𝑃𝑃(𝑅𝑅1𝑒 = 𝜋𝜋𝑃𝑃(𝑅𝑅2𝑒. us, 𝜋𝜋𝑃𝑃 is not an s-covering. If ℓ𝑃𝑃 passes
through neither 𝑃𝑃1 nor 𝑃𝑃2, then ℓ𝑃𝑃 is a simple 2-tangent to
𝐶𝐶 or has normal crossings with 𝐶𝐶. By (3) in Proposition 10,
𝜋𝜋𝑃𝑃 is indecomposable. Since there exists a simple 2-tangent
ℓ𝑃𝑃, we conclude 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆𝑒𝑒. In case 𝑃𝑃 𝑃 ℓ𝑃𝑃1𝑃𝑃2 and 𝑒𝑒 = 1 or
𝑒𝑒 𝑑 1, 𝜋𝜋𝑃𝑃 is an s-covering and 𝑒𝑒1 = 𝑒𝑒 𝑑 1 and 𝑒𝑒2 = 2, hence
by (2) in Proposition 10, 𝐺𝐺𝑃𝑃 is primitive and there exists a
simple 2-tangent line ℓ𝑃𝑃, thus we conclude 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆𝑒𝑒. In view
of Remark 19, we conclude easily from the similar argument
that 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆𝑒𝑒 when 𝑃𝑃 𝑃 ℙ2 𝑃 {𝐶𝐶 𝐶 ℓ𝑃𝑃1𝑃𝑃2}.

Proof of the Case (II). Assume 𝐶𝐶 = 𝐶𝐶(4𝑒. It has the following
property.

Claim 3. e 𝑇𝑇𝑃𝑃1 (resp.𝑒 𝑇𝑇𝑃𝑃2𝑒 is 𝑌𝑌 = 0 (resp.𝑒 𝑍𝑍 = 0𝑒 and
𝑇𝑇𝑃𝑃1 ∩ 𝑇𝑇𝑃𝑃2 = {𝑃𝑃3}, which does not lie on 𝐶𝐶. Furthermore,
𝑇𝑇𝑃𝑃1 ∩ 𝐶𝐶 = {𝑃𝑃1} and 𝑇𝑇𝑃𝑃2 ∩ 𝐶𝐶 = {𝑃𝑃2𝑒 (1 𝛼 1 𝛼 0𝑒}. e 𝐶𝐶 has
one �ex 𝐹𝐹 of order 1, that is, 𝑖𝑖(𝐶𝐶𝑒 𝑇𝑇𝐹𝐹; 𝐹𝐹𝑒 = 3 and 𝑇𝑇𝐹𝐹 does not
pass though 𝑃𝑃3.

Proof. e last assertion is checked by Hurwitz’s formula and
the others are simple.

Remark 20. e coordinates of the �ex 𝐹𝐹 are computed as
(𝑑576 𝛼 𝑑4096 𝛼 135𝑒.

Clearly, if𝑃𝑃 = 𝑃𝑃1 or𝑃𝑃2, then𝐺𝐺𝑃𝑃 ≅ 𝑍𝑍2. If𝑃𝑃 𝑃 𝐶𝐶𝑃{𝑃𝑃1𝑒 𝑃𝑃2},
then 𝑛𝑛 = 3, hence 𝐺𝐺𝑃𝑃 is primitive. We divide the proof into
three cases:

(1) 𝑃𝑃 = 𝐹𝐹;
(2) 𝑃𝑃 = (1 𝛼 1 𝛼 0𝑒;
(3) 𝑃𝑃 is the other point.

In any case, by Hurwitz’s formula, we infer that there
exists at least one simple 2-tangent line passing through 𝑃𝑃,
hence 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆3. en consider the case 𝑃𝑃 𝑃 ℙ2 𝑃 𝐶𝐶. If
𝑃𝑃 𝑃 ℓ𝑃𝑃1𝑃𝑃2 , then𝜋𝜋𝑃𝑃 has rami�cation points𝑅𝑅1 and𝑅𝑅2 such that
𝑒𝑒(𝑅𝑅1𝑒 = 𝑒𝑒(𝑅𝑅2𝑒 = 2 and 𝜋𝜋𝑃𝑃(𝑅𝑅1𝑒 = 𝜋𝜋𝑃𝑃(𝑅𝑅2𝑒. us, 𝜋𝜋𝑃𝑃 is not an s-
covering. Consider 𝜋𝜋𝑃𝑃 for the most special case ℓ𝑃𝑃1𝑃𝑃2 ∩ 𝑇𝑇𝐹𝐹 =
{𝑃𝑃}. We infer from Hurwitz’s formula that the rami�cation
data is (3𝑒 24𝑒 𝛼= (3𝑒 2𝑒 2𝑒 2𝑒 2𝑒. By (3) in Proposition 10, we
have 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆4. ere are several cases of position of 𝑃𝑃 which
yield di�erent rami�cation data; however, it is easy to see that
there exists 𝑖𝑖 such that 𝑒𝑒𝑖𝑖 = 2. en from Propositions 10 or
11, we conclude 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆4.

Proof of the Case (III). Assume 𝐶𝐶 = 𝐶𝐶54. It has the following
property.ere exists a projective transformation 𝜎𝜎 such that
𝜎𝜎(𝐶𝐶𝑒 = 𝐶𝐶 and 𝜎𝜎(𝑋𝑋𝑒 𝑌𝑌𝑒 𝑍𝑍𝑒 = (𝑌𝑌𝑒𝑋𝑋𝑒 𝑑𝑍𝑍𝑒, (𝑑𝑋𝑋𝑒𝑍𝑍𝑒 𝑌𝑌𝑒 or
(𝑍𝑍𝑒 𝑌𝑌𝑒𝑋𝑋𝑒 so that 𝜎𝜎 interchanges 𝑃𝑃𝑖𝑖 (𝑖𝑖 = 1𝑒 2𝑒 3𝑒.

Claim 4. e �exes of 𝐶𝐶 are 𝐹𝐹1 = (4 𝛼 𝑑1 𝛼 4𝑒𝑒 𝐹𝐹2 = (1 𝛼
𝑑4 𝛼 4𝑒, and 𝐹𝐹3 = (4 𝛼 𝑑4 𝛼 1𝑒, hence the tangent lines to 𝐶𝐶
at them are 𝐿𝐿1 𝛼 𝑋𝑋 𝑋 𝑋𝑌𝑌 𝑋 𝑍𝑍 = 0𝑒 𝐿𝐿2 𝛼 𝑋𝑋𝑋 𝑋 𝑌𝑌 𝑑 𝑍𝑍 = 0, and
𝐿𝐿3 𝛼 𝑑𝑋𝑋 𝑋 𝑌𝑌 𝑋 𝑋𝑍𝑍 = 0, respectively. On the other hand, the
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tangent lines to 𝐶𝐶 at 𝑃𝑃1, 𝑃𝑃2, and 𝑃𝑃3 are 𝐿𝐿4 ∶ 𝑋𝑋 𝑋 𝑋𝑋, 𝐿𝐿5 ∶
𝑋𝑋 𝑋 𝑋𝑋, and 𝐿𝐿6 ∶ 𝑋𝑋 𝑋 𝑋𝑋, respectively. ere exist just three
points𝑄𝑄𝑖𝑖 (𝑖𝑖 𝑋 1, 2, 3𝑖 satisfying the following conditions:

(1) 𝑄𝑄𝑖𝑖 ∉ 𝐶𝐶;
(2) if ℓ 𝑋 ℓ𝑄𝑄𝑖𝑖

does not pass through any cusp, then ℓ and𝐶𝐶
have normal crossings or there exist two points 𝑄𝑄𝑄 𝑄
𝐶𝐶 satisfying 𝑖𝑖(𝐶𝐶, ℓ𝑖 𝑄𝑄𝑄𝑖 𝑖 3.

Such 𝑄𝑄𝑖𝑖 is an intersection 𝐿𝐿𝑗𝑗 ∩ 𝐿𝐿𝑘𝑘, where {𝑖𝑖, 𝑗𝑗, 𝑘𝑘𝑖 𝑋 {1, 2, 3𝑖,
indeed 𝑄𝑄1 𝑋 (1 ∶ −7 ∶ 1𝑖, 𝑄𝑄2 𝑋 (7 ∶ −1 ∶ 1𝑖, and 𝑄𝑄3 𝑋
(1 ∶ −1 ∶ 7𝑖. erefore, if 𝑃𝑃 𝑄 𝑃2 ⧵ {𝐶𝐶,𝑄𝑄1,𝑄𝑄2,𝑄𝑄3𝑖, then
there exists a line ℓ passing through 𝑃𝑃 such that ℓ is a simple
2-tangent line to 𝐶𝐶.

Proof. Making use of the results in [10] and observing the
self-duality of 𝐶𝐶, we can check the assertions by direct
computations.

Now let us begin the proof. If 𝑃𝑃 𝑋 𝑃𝑃1, then 𝑛𝑛 𝑋 3,
hence 𝐺𝐺𝑃𝑃 is primitive. e lines ℓ𝑃𝑃1𝑃𝑃2 and ℓ𝑃𝑃1𝑃𝑃3 yield the
rami�cation points of order three of 𝜋𝜋𝑃𝑃, hence we infer from
Hurwitz’s formula that there exists 𝑖𝑖 such that 𝑒𝑒𝑖𝑖 𝑋 2. us,
we get 𝐺𝐺𝑃𝑃1 ≅ 𝑆𝑆3. For 𝑃𝑃 𝑋 𝑃𝑃2 or 𝑃𝑃3, using the projective
transformation 𝜎𝜎 above, we see 𝐺𝐺𝑃𝑃𝑖𝑖 ≅ 𝑆𝑆3 (𝑖𝑖 𝑋 2, 3𝑖.

Next consider the case 𝑃𝑃 𝑄 𝐶𝐶⧵ {𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3𝑖. en we have
𝑛𝑛 𝑋 5, hence 𝐺𝐺𝑃𝑃 is primitive. Using Hurwitz’s formula or the
self-duality of 𝐶𝐶, we see that there exists a simple 2-tangent
line to 𝐶𝐶, thus we have 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆5.

Finally, we consider the remaining case 𝑃𝑃 𝑄 𝑃2 ⧵ 𝐶𝐶.

Claim 5. Let 𝑛𝑛𝑖𝑖 be the number of rami�cation points with
index 𝑖𝑖. en we have 𝑛𝑛2 + 2𝑛𝑛3 + 3𝑛𝑛4 𝑋 12, where 𝑛𝑛4 ≤
3. In particular, if 𝑛𝑛4 𝑋 3 (resp., 2𝑖, then 𝑃𝑃 𝑋 (1 ∶
1 ∶ 1𝑖 (resp., 𝑄𝑄𝑖𝑖𝑖, furthermore; 𝑛𝑛3 𝑋 0 (resp., 3𝑖 and 𝑛𝑛2 𝑋
3 (resp., 0𝑖.

Proof. e former assertion is clear from Claim 4 and
Hurwitz’s formula. e proof of the latter assertion is as
follows: observing Claim 4, we infer that, if 𝑛𝑛4 𝑋 3, then 𝑃𝑃
is unique (1 ∶ 1 ∶ 1𝑖, which is the intersections of the three
lines 𝐿𝐿4, 𝐿𝐿5, and 𝐿𝐿6 (Figure 1). Similarly observing Claim 4,
we infer that if 𝑛𝑛4 𝑋 2, then 𝑃𝑃 𝑋 𝑄𝑄1, 𝑄𝑄2 or 𝑄𝑄3. In this case,
we have 𝑖𝑖(𝐶𝐶, ℓ𝑃𝑃𝑃𝑃𝑖𝑖 𝑖 𝑃𝑃𝑖𝑖𝑖 𝑋 3, hence 𝑛𝑛3 𝑋 3.

Claim 6. If 𝜋𝜋𝑃𝑃 is an s-covering, then 𝜋𝜋𝑃𝑃 is indecomposable.

Proof. By Claim 5 the rami�cation index is 2, 3, or 4. Suppose
𝜋𝜋𝑃𝑃 is decomposable. en, deg 𝛽𝛽 𝑋 2 or 3. By Claim 1, 𝛽𝛽 is
unrami�ed at 𝑅𝑅𝑄𝑖𝑖 𝑋 𝛼𝛼(𝑅𝑅𝑖𝑖𝑖, where 𝑒𝑒𝑖𝑖 𝑋 2 or 3. By Claim 5, we
have 𝑛𝑛4 ≤ 3. As we have seen in the proof of Proposition 10,
𝛽𝛽 cannot be rami�ed at only one point. us, we have 𝑛𝑛4 ≠ 1.
If 𝑛𝑛4 𝑋 0, then the proof is clear by (3) in Proposition 11.
If 𝑛𝑛4 𝑋 2, then 𝑃𝑃 𝑋 𝑄𝑄𝑖𝑖 (𝑖𝑖 𝑋 1, 2, 3𝑖. In case deg 𝛽𝛽 𝑋 2,
𝛽𝛽 is rami�ed at 𝑅𝑅𝑄1 and 𝑅𝑅𝑄2. Since deg 𝛼𝛼 𝑋 3, this cannot
occur. In case deg 𝛽𝛽 𝑋 3, 𝛽𝛽 is rami�ed at 𝑅𝑅𝑄1 and 𝑅𝑅𝑄2 with
𝑒𝑒(𝑅𝑅𝑄1, 𝛽𝛽𝑖 𝑋 𝑒𝑒(𝑅𝑅𝑄2, 𝛽𝛽𝑖 𝑋 2; however, these do not satisfy
Hurwitz’s formula. If 𝑛𝑛4 𝑋 3, then 𝑃𝑃 𝑋 (1 ∶ 1 ∶ 1𝑖
and from Claim 4 and Hurwitz’s formula we infer that the
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rami�cation data is (43, 23𝑖 ∶𝑋 (4, 4, 4, 2, 2, 2𝑖. Suppose 𝜋𝜋𝑃𝑃
is decomposable. en, deg 𝛽𝛽 𝑋 2 or 3. If deg 𝛽𝛽 𝑋 2, then
𝛽𝛽 is rami�ed at 𝑅𝑅𝑄𝑖𝑖, (𝑖𝑖 𝑋 1, 2, 3𝑖. However, since deg 𝛼𝛼 𝑋 3,
this case cannot occur. en, we have deg 𝛽𝛽 𝑋 3. We see
easily that 𝛽𝛽 is rami�ed at 𝑅𝑅𝑄𝑖𝑖 with 𝑒𝑒(𝑅𝑅

𝑄
𝑖𝑖, 𝛽𝛽𝑖 𝑋 2 (𝑖𝑖 𝑋 1, 2, 3𝑖.

However, this does not satisfy Hurwitz’s formula. erefore,
𝜋𝜋𝑃𝑃 is indecomposable.

Now we resume the proof. We prove by examining the
cases:

(i) 𝑃𝑃 𝑋 (1 ∶ 1 ∶ 1𝑖;
(ii) 𝑃𝑃 𝑋 𝑄𝑄𝑖𝑖 (𝑖𝑖 𝑋 1, 2, 3𝑖;
(iii) 𝑃𝑃 𝑄 ℓ𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗 (1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 3𝑖, 𝑃𝑃≠ (1 ∶ 1 ∶ 1𝑖, and

𝑃𝑃≠𝑄𝑄𝑖𝑖 (𝑖𝑖 𝑋 1, 2, 3𝑖;
(iv) 𝑃𝑃 is the point not appearing in the above case.

ByClaims 5 and 6, the proof is complete for (i) and (iv). So
let us treat the case (ii). ByClaim 6, 𝐺𝐺𝑃𝑃 is primitive. However,
there exists no simple 2-tangent line. Take𝑄𝑄1 𝑋 (1 ∶ −7 ∶ 1𝑖
and consider the affine part 𝑋𝑋≠0. e de�ning equation is
(𝑥𝑥𝑥𝑥−𝑥𝑥+𝑥𝑥𝑖3+54𝑥𝑥2𝑥𝑥2 𝑋 0. Putting 𝑢𝑢 𝑋 𝑥𝑥−1, 𝑢𝑢 𝑋 𝑥𝑥+7 and 𝑢𝑢 𝑋
𝑡𝑡𝑢𝑢, we get ℎ(𝑡𝑡, 𝑢𝑢𝑖 ∶𝑋 (𝑡𝑡𝑢𝑢2 − 8𝑢𝑢 + 2𝑡𝑡𝑢𝑢 − 15𝑖3+ 54(𝑢𝑢+ 1𝑖(𝑡𝑡𝑢𝑢−
7𝑖2 𝑋 0. Here, we consider the Galois group obtained by the
special value 𝑡𝑡 𝑋 2. By the aid of a soware, for example, PARI,
we see that the polynomial ℎ(2, 𝑢𝑢𝑖 𝑋 (2𝑢𝑢2 −4𝑢𝑢−15𝑖3 +54(𝑢𝑢+
1𝑖(2𝑢𝑢−7𝑖2 inℚ[𝑢𝑢𝑢 is irreducible and the Galois group of this
polynomial is 𝑆𝑆6. Let 𝑢𝑢1(𝑡𝑡𝑖,𝑡 , 𝑢𝑢6(𝑡𝑡𝑖 be the roots of ℎ(𝑡𝑡, 𝑢𝑢𝑖 𝑋 0
with respect to 𝑢𝑢. Note that 𝑢𝑢𝑖𝑖(𝑡𝑡𝑖 (1 ≤ 𝑖𝑖 ≤ 6𝑖 is regular near
𝑡𝑡 𝑋 2 and {𝑢𝑢1(2𝑖,𝑡 , 𝑢𝑢6(2𝑖𝑖 are the roots of ℎ(2, 𝑢𝑢𝑖 𝑋 0. We
can �nd 𝑐𝑐𝑖𝑖 𝑄 ℚ(1 ≤ 𝑖𝑖 ≤ 6𝑖 satisfying the conditions: 󵰑󵰑𝑢𝑢(𝑡𝑡𝑖 𝑋
𝑐𝑐1𝑢𝑢1(𝑡𝑡𝑖 + 𝑡 + 𝑐𝑐6𝑢𝑢6(𝑡𝑡𝑖 (resp., 󵰑󵰑𝑢𝑢(2𝑖 𝑋 𝑐𝑐1𝑢𝑢1(2𝑖 + 𝑡 + 𝑐𝑐6𝑢𝑢6(2𝑖)
is a generator of the minimal splitting �eld of ℎ(𝑡𝑡, 𝑢𝑢𝑖 (resp.,
ℎ(2, 𝑢𝑢𝑖) over 𝑘𝑘(𝑡𝑡𝑖 (resp.,ℚ). Suppose the degree of 󵰑󵰑𝑢𝑢(𝑡𝑡𝑖 is less
than 6!. en, so is 󵰑󵰑𝑢𝑢(2𝑖, which is a contradiction. Hence we
have [𝑘𝑘(𝑡𝑡, 𝑢𝑢𝑖 ∶ 𝑘𝑘(𝑡𝑡𝑖𝑢 𝑋 6!, thus we conclude 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆6. e
proofs of the other two cases𝑄𝑄2 and𝑄𝑄3 are almost the same.
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e proof of the case (iii) is as follows: here we notice
that if 𝑃𝑃 𝑃 𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑗𝑗 , 𝑖𝑖 𝑖 𝑗𝑗, 𝑖𝑖𝑖, 𝑗𝑗 𝑖 𝑖, 𝑖, 𝑖𝑖, then 𝜋𝜋𝑃𝑃 is not an s-
covering. First we consider the special case where𝑃𝑃 is in some
𝑇𝑇𝐹𝐹𝑖𝑖 , for example, 𝑃𝑃𝑃𝑖𝑃𝑃𝑖 ∩ 𝑇𝑇𝐹𝐹𝑖 𝑖 {𝑃𝑃𝑃𝑃 en the rami�cation
data is {𝑖𝐹𝐹𝑖, 𝑃𝑃𝑖, 𝑃𝑃𝑖, 𝑃𝑃𝑖, 𝑅𝑅5, 𝑅𝑅6, 𝑅𝑅7𝑖, 𝑖4, 𝑖

𝑖, 𝑖𝑖𝑖𝑃 and 𝜋𝜋𝑃𝑃𝑖𝑃𝑃𝑖𝑖 𝑖
𝜋𝜋𝑃𝑃𝑖𝑃𝑃𝑖𝑖. Suppose 𝜋𝜋𝑃𝑃 is decomposable. en, by Claim 1, 𝛽𝛽 𝛽
𝑋𝑋𝑖 → ℙ𝑖 is unrami�ed at 𝛼𝛼𝑖𝑃𝑃𝑖𝑖 and 𝑅𝑅′𝑖𝑖, 𝑖𝑖𝑖 𝑖 5𝑖. Namely,
𝛽𝛽 is rami�ed at just two points. en, the rami�cation data
of𝛽𝛽 is {𝑖𝛼𝛼𝑖𝐹𝐹𝑖𝑖, 𝛼𝛼𝑖𝑃𝑃𝑖𝑖𝑖, 𝑖𝑖, 𝑖𝑖𝑃 or {𝑖𝛼𝛼𝑖𝐹𝐹𝑖𝑖, 𝛼𝛼𝑖𝑃𝑃𝑖𝑖𝑖, 𝑖𝑖, 𝑖𝑖𝑃, where
deg 𝛽𝛽 𝑖 𝑖 or 𝑖, respectively. However, it is easy to see that this
is impossible considering 𝛼𝛼 and 𝜋𝜋𝑃𝑃, so 𝜋𝜋𝑃𝑃 is indecomposable.
Since there exist 𝑒𝑒𝑖𝑖 𝑖 𝑖 𝑖𝑖𝑖 𝑖 5, 6, 7𝑖, we conclude𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆6. On
the other hand, if 𝑃𝑃 is not in 𝑇𝑇𝐹𝐹𝑖𝑖 for each 𝑖𝑖 𝑖𝑖𝑖 𝑖 𝑖, 𝑖, 𝑖𝑖, then,
by (3) in Proposition 10, 𝑓𝑓 is indecomposable. Since there
exists a simple 𝑖-tangent, we have 𝐺𝐺𝑃𝑃 ≅ 𝑆𝑆6.

us, we complete all the proofs.

Remark 21. In the list ofeorem 17 only two kinds of group
appear. Of course, other kinds will appear in other examples,
for example, let us take the Fermat quartic𝑋𝑋4 + 𝑌𝑌4 + 𝑍𝑍4 𝑖 0.
en, there exist 12 points such that𝐺𝐺𝑃𝑃 is the dihedral group
of order 8 (cf. [13]).

Problem. Concerning the Galois groups for 𝐶𝐶𝑖𝑒𝑒,𝑒𝑒𝑖 𝑖𝑖 < 𝑒𝑒 <
𝑒𝑒 𝑑 𝑖𝑖, full symmetric group 𝑆𝑆𝑒𝑒 degenerates into the cyclic
group. How does the symmetric group degenerate for various
curves?

Acknowledgments

e authors would like to express their thanks to Oka for
teaching the example of self-dual curve 𝐶𝐶54. ey thank also
the referee(s) for carefully reading the paper and giving the
suitable suggestions for improvements.

References

[1] K. Miura, “Field theory for function �elds of singular plane
quartic curves,” Bulletin of the Australian Mathematical Society,
vol. 62, no. 2, pp. 193–204, 2000.

[2] H. Yoshihara, “Function �eld theory of plane curves by dual
curves,” Journal of Algebra, vol. 239, no. 1, pp. 340–355, 2001.

[3] H. Yoshihara, “Galois points for plane rational curves,” Far East
Journal of Mathematical Sciences, vol. 25, no. 2, pp. 273–284,
2007.

[4] H. Yoshihara, “Rational curve with Galois point and extendable
Galois automorphism,” Journal of Algebra, vol. 321, no. 5, pp.
1463–1472, 2009.

[5] J.-P. Serre, Topics in Galois eory, vol. 1 of Research Notes in
Mathematics, Jones & Bartlett, Boston, Mass, USA, 1992.

[6] F. Cukierman, “Monodromy of projections,” Matemática Con-
temporânea, vol. 16, pp. 9–30, 1999 (Portuguese), 15th School
of Algebra.

[7] J. Harris, “Galois groups of enumerative problems,” Duke
Mathematical Journal, vol. 46, no. 4, pp. 685–724, 1979.

[8] H. Yoshihara, “Applications of Plücker’s formula,” Sûgaku, vol.
32, no. 4, pp. 367–369, 1980 (Japanese).

[9] S. Iitaka, K. Ueno, and Y. Namikawa, Descartes No Seishin To
Daisûkika, NipponHyoron Sha, Tokyo, Japan, 1980.

[10] M. Oka, “Elliptic curves from sextics,” Journal of the Mathemat-
ical Society of Japan, vol. 54, no. 2, pp. 349–371, 2002.

[11] G. P. Pirola and E. Schlesinger, “Monodromy of projective
curves,” Journal of Algebraic Geometry, vol. 14, no. 4, pp.
623–642, 2005.

[12] W. Fulton, Algebraic Curves, Mathematics Lecture Notes Series,
Benjamin, New York, NY, USA, 1969.

[13] K. Miura and H. Yoshihara, “Field theory for function �elds
of plane quartic curves,” Journal of Algebra, vol. 226, no. 1, pp.
283–294, 2000.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


