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A group of asymmetric difference schemes to approach the fourth-order parabolic equation is given. According to these schemes
and the Crank-Nicolson scheme, an alternating segment Crank-Nicolson scheme with intrinsic parallelism is constructed. The
truncation errors and the stability are discussed. Numerical simulations show that this new scheme has unconditional stability and
high accuracy and convergency, and it is in preference to the implicit scheme method.

1. Introduction

With the rapid development of high-performance computers,
the need to construct parallel algorithms has long been
desired. In recent years, the alternating schemes have been
studied extensively in the literature. In 1983, Evans and
Abdullah first developed the Alternating Group Explicit
(AGE) scheme [1] for parabolic equation, which shows
that it is possible to design parallel difference method by
constructing a new difference scheme. Afterward, using the
explicit scheme, the implicit scheme, and the Crank-Nicolson
scheme, the Alternating Segment Explicit-Implicit (ASE-I)
scheme [2] and the Alternating Segment Crank-Nicolson
(ASC-N) scheme [3] were proposed.The results of numerical
examples show that these schemes are unconditionally stable
and have high accuracy. Currently, the alternating technology
has been extended to dispersive equation [4–8], convection-
diffusion equation [9], Burgers equation [10], nonlinear
three-order KdV equation [11] and fourth-order parabolic
[12, 13].

The Kuramoto-Sivashinsky equation (K-S) [14, 15] is
well-known as one of the mathematical equations which
models the reaction-diffusion systems, flame propagation,
and viscous flow problems. During recent years, many
authors have focused on solving this equation numerically
and analytically [16–18]. However, the parallel difference
method for this equation has not been found. In this paper,

we present the alternating segment Crank-Nicolson scheme
for the following fourth-order parabolic equation:
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which is the high order part of the linear K-S equation.
We hope that the result of this paper makes an essential
contribution in this direction.

We consider the following problem:
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With the initial condition

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) , 𝑥 ∈ [0, 𝐿] , (3)

and the boundary conditions

𝑢 (0, 𝑡) = 𝑢
𝑥𝑥

(0, 𝑡) = 𝑢 (𝐿, 𝑡) = 𝑢
𝑥𝑥

(𝐿, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

(4)

where 𝑢
0
(𝑥) is a given function and 𝜀 and 𝑎 are constants.

The plan of this paper is as follows. In Section 2, some
basic schemes are given and the ASC-N scheme is developed.
In Section 3, the error analysis and the stability analysis
are discussed. In Section 4, numerical simulations are per-
formed. Finally, a brief conclusion is given.
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2. New Alternating Segment
Crank-Nicolson Scheme

2.1. Some Basic Schemes. Divide the domain of definition
[0, 𝐿]×[0, 𝑇] by parallel lines 𝑥 = 𝑥

𝑗
= 𝑗ℎ (𝑗 = 0, 1, 2 . . . , 𝑀),

𝑡 = 𝑡
𝑛

= 𝑛𝜏 (𝑛 = 0, 1, 2 . . . , 𝑁), where ℎ = 𝐿/𝑀 is the
space mesh length and 𝜏 = 𝑇/𝑁 is the time mesh length.
𝑀 and 𝑁 are positive integers. We use 𝑢

𝑛

𝑗
to represent the

approximate solution of 𝑢(𝑥
𝑗
, 𝑡
𝑛
), where 𝑢(𝑥, 𝑡) represents the

exact solution of (2). We first introduce eight asymmetric
schemes (5)–(12) (see the stencils in Figure 1) and Crank-
Nicolson scheme (13) for (2):
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where 𝑟 = 𝑎𝜏/ℎ
4, 𝑟 = 𝜀𝜏/ℎ

2.

3. The ASC-N Scheme

Theparallel ASC-N scheme is constructed as follows. Assum-
ing 𝑀 − 1 = 2𝐽𝑙, we consider the model of the segments
at the (𝑛 + 1)st and the (𝑛 + 2)nd time levels, where
𝑛 is an even number and 𝑙 > 4 is a positive integer.
We divide the nodes of the (𝑛 + 1)st time level into 𝐽

independent computational segments; each segment in a
left-to-right direction contains 2𝑙 nodes, and the difference
schemes of the 2𝑙 nodes are arranged according to the
rule of “(5)-(9)-(13)⋅ ⋅ ⋅ (13)-(12)-(8)-(7)-(11)-(13)⋅ ⋅ ⋅ (13)-(10)-
(6)”. Similarly, we divide the nodes of the (𝑛 + 2)st time level
into 𝐽+1 independent computational segments.The first seg-
ment contains 𝑙 nodes; the difference schemes of the 𝑙 nodes
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b: scheme (6) c: scheme (9) d: scheme (10)a: scheme (5)

a󳰀 : scheme (7) b󳰀 : scheme (8) c󳰀 : scheme (11) d󳰀 : scheme (12)

Figure 1: The diagram of asymmetric schemes (5)–(12).
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Figure 2: The diagram of the ASC-N scheme.

are arranged according to the rule of “(7)-(11)-(13)⋅ ⋅ ⋅ (13)-
(10)-(6)”.The (𝐽+1)st segment contains 𝑙nodes; the difference
schemes of the 𝑙 nodes are arranged according to the rule
of “(5)-(9)-(13)⋅ ⋅ ⋅ (13)-(12)-(8)”. The difference schemes of
the segment of the 2𝑙 nodes are arranged according to the
rule of “(5)-(9)-(13)⋅ ⋅ ⋅ (13)-(12)-(8)-(7)-(11)-(13)⋅ ⋅ ⋅ (13)-(10)-
(6)”. The asymmetric schemes are used alternately in pairs at
two adjacent points of the (𝑛 + 1)st and the (𝑛 + 2)nd time
levels. The rule is displayed in Figure 2, where ◻ is used to
denote the asymmetric scheme (5) or (6), ◼ to denote the
asymmetric scheme (7) or (8), ∘ to denote the asymmetric

scheme (9) or (10), ∙ to denote the asymmetric scheme (11)
or (12), and Δ to denote the Crank-Nicolson scheme. Hence,
the matrix forms of the ASC-N scheme can be expressed as
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G(2)
2

= (

P(𝑙)
𝑙

P(𝑟)
𝑙

P
2𝑙

d
P
2𝑙

P(𝑙)
𝑙

P(𝑟)
𝑙

) ,

P
2𝑙

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1

2
−

1

2

−
1

2
1 −

1

2

. . .

−
1

2
1 −

1

2

−
1

2

3

2
−1

−1
3

2
−

1

2

−
1

2
1 −

1

2

. . .

−
1

2
1 −

1

2

−
1

2

1

2

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

= (

P(𝑟)
𝑙

P(𝑙)
𝑙

P(𝑟)
𝑙

P(𝑙)
𝑙

) ,

Q
2𝑙

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1

2
−1

1

2

−1
5

2
−2

1

2
1

2
−2 3 −2

1

2
. . .

1

2
−2 3 −2

1

2
1

2
−2

7

2
−3 1

1

2
−3

11

2
−4 1

1 −4
11

2
−3

1

2

1 −3
7

2
−2

1

2
1

2
−2 3 −2

1

2
. . .

1

2
−2 3 −2

1

2
1

2
−2

5

2
−1

1

2
−1

1

2

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

= (

Q(𝑟)
𝑙

Q(𝑙)
𝑙

Q(𝑟)
𝑙

Q(𝑙)
𝑙

) .

(16)



ISRN Applied Mathematics 5

4. The Analysis of the Truncation
Errors and Stability

4.1. The Analysis of the Truncation Errors. In order to analyze
the truncation errors, we change the scheme 𝑎 into the
equivalent segment scheme of three levels; that is, adding
scheme 𝑎

󸀠 at the point (𝑥
𝑗
, 𝑡
𝑛+1

) and scheme 𝑎 at the point
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) for two adjacent points of the (𝑛 + 1)st time level
and (𝑛 + 2)nd time level, we obtain three-level scheme
(17). Similarly, we obtain three-level schemes (18)–(24),
respectively;
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− (4𝑟 + 𝑟) 𝑢

𝑛+2

𝑗+1
+ (1 +

11𝑟

2
+

3𝑟

2
) 𝑢
𝑛+2

𝑗

− (3𝑟 +
𝑟

2
) 𝑢
𝑛+2

𝑗−1
+

𝑟

2
𝑢
𝑛+2

𝑗−2

= − (𝑟 + 𝑟) 𝑢
𝑛+1

𝑗
+ (2𝑟 + 𝑟) 𝑢

𝑛+1

𝑗−1
− 𝑟𝑢
𝑛+1

𝑗−2

− 𝑟𝑢
𝑛

𝑗+2
+ (4𝑟 + 𝑟) 𝑢

𝑛

𝑗+1
+ (1 −

11𝑟

2
−

3𝑟

2
) 𝑢
𝑛

𝑗

+ (3𝑟 +
𝑟

2
) 𝑢
𝑛

𝑗−1
−

𝑟

2
𝑢
𝑛

𝑗−2
,

(20)
𝑟

2
𝑢
𝑛+2

𝑗+2
− (2𝑟 +

𝑟

2
) 𝑢
𝑛+2

𝑗+1
+ (1 +

5𝑟

2
+ 𝑟) 𝑢

𝑛+2

𝑗

− (𝑟 +
𝑟

2
) 𝑢
𝑛+2

𝑗−1

= −𝑟𝑢
𝑛

𝑗+2
+ (4𝑟 + 𝑟) 𝑢

𝑛+1

𝑗+1

− (7𝑟 + 2𝑟) 𝑢
𝑛+1

𝑗
+ (6𝑟 +

𝑟

2
) 𝑢
𝑛+1

𝑗−1

− 2𝑟𝑢
𝑛+1

𝑗−2
−

𝑟

2
𝑢
𝑛

𝑗+2
+ (2𝑟 +

𝑟

2
) 𝑢
𝑛

𝑗+1

+ (1 −
5𝑟

2
− 𝑟) 𝑢

𝑛

𝑗
+ (𝑟 +

𝑟

2
) 𝑢
𝑛

𝑗−1
,

(21)

− (𝑟 +
𝑟

2
) 𝑢
𝑛+2

𝑗+1
+ (1 +

5𝑟

2
+ 𝑟) 𝑢

𝑛+2

𝑗

− (2𝑟 +
𝑟

2
) 𝑢
𝑛+2

𝑗−1
+

𝑟

2
𝑢
𝑛+2

𝑗−2

= −2𝑟𝑢
𝑛+1

𝑗+2
+ (6𝑟 + 𝑟) 𝑢

𝑛+1

𝑗+1
− (7𝑟 + 2𝑟) 𝑢

𝑛+1

𝑗

+ (4𝑟 + 𝑟) 𝑢
𝑛+1

𝑗−1
− 𝑟𝑢
𝑛+1

𝑗−2
+ (𝑟 +

𝑟

2
) 𝑢
𝑛

𝑗+1

+ (1 −
5𝑟

2
− 𝑟) 𝑢

𝑛

𝑗
+ (2𝑟 +

𝑟

2
) 𝑢
𝑛

𝑗−1
−

𝑟

2
𝑢
𝑛

𝑗−2
,

(22)

𝑟

2
𝑢
𝑛+2

𝑗+2
− (2𝑟 +

𝑟

2
) 𝑢
𝑛+2

𝑗+1
+ (1 +

7𝑟

2
+ 𝑟) 𝑢

𝑛+2

𝑗

− (3𝑟 +
𝑟

2
) 𝑢
𝑛+2

𝑗−1
+ 𝑟𝑢
𝑛+2

𝑗−2

= −𝑟𝑢
𝑛+1

𝑗+2
+ (4𝑟 + 𝑟) 𝑢

𝑛+1

𝑗+1

− (5𝑟 + 2𝑟) 𝑢
𝑛+1

𝑗
+ (2𝑟 + 𝑟) 𝑢

𝑛+1

𝑗−1

−
𝑟

2
𝑢
𝑛

𝑗+2
+ (2𝑟 +

𝑟

2
) 𝑢
𝑛

𝑗+1

+ (1 −
7𝑟

2
− 𝑟) 𝑢

𝑛

𝑗
+ (3𝑟 +

𝑟

2
) 𝑢
𝑛

𝑗−1

− 𝑟𝑢
𝑛

𝑗−2
,

(23)

𝑟𝑢
𝑛+2

𝑗+2
− (3𝑟 +

𝑟

2
) 𝑢
𝑛+2

𝑗+1
+ (1 +

7𝑟

2
+ 𝑟) 𝑢

𝑛+2

𝑗

− (2𝑟 +
𝑟

2
) 𝑢
𝑛+2

𝑗−1
+

𝑟

2
𝑢
𝑛+2

𝑗−2
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Table 1: The error and the convergence rates of the ASC-N scheme.

𝑡
𝑀 = 201 𝑟 = 83.78 𝑀 = 401 𝑟 = 1327.2

𝑒
ℎ

𝑒
ℎ
/ℎ
2

𝑒
ℎ

𝑒
ℎ
/ℎ
2

𝑡 = 0.4 1.034 × 10
−3 4.234 8.535 × 10

−5 1.390
𝑡 = 0.5 1.058 × 10

−3 4.331 8.173 × 10
−5 1.331

𝑡 = 0.6 1.039 × 10
−3 4.254 7.898 × 10

−5 1.286
𝑡 = 0.7 9.926 × 10

−4 4.063 7.573 × 10
−5 1.233

= (2𝑟 + 𝑟) 𝑢
𝑛+1

𝑗+1
− (5𝑟 + 2𝑟) 𝑢

𝑛+1

𝑗

+ (4𝑟 + 𝑟) 𝑢
𝑛+1

𝑗−1
− 𝑟𝑢
𝑛+1

𝑗−2
− 𝑟𝑢
𝑛

𝑗+2

+ (3𝑟 +
𝑟

2
) 𝑢
𝑛

𝑗+1
+ (1 −

7𝑟

2
− 𝑟) 𝑢

𝑛

𝑗

+ (2𝑟 +
𝑟

2
) 𝑢
𝑛

𝑗−1
−

𝑟

2
𝑢
𝑛

𝑗−2
.

(24)

From the Taylor series expansion at (𝑥
𝑗
, 𝑡
𝑛+1

), we obtain
the following truncation error expressions for formulae (17)–
(24):

𝑇
(𝑎𝑎
󸀠
)

= [
1

2
(

𝜏

ℎ
)

2 𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2

−
1

2
(

𝜏
2

ℎ
)

𝜕
5
𝑢

𝜕𝑡2𝜕𝑥3
+

1

2
(

𝜏

ℎ
)

𝜕
3
𝑢

𝜕𝑡2𝜕𝑥
]

𝑛+1

𝑗

+ 𝑂 (𝜏
2

+ ℎ
2

+ 𝜏
𝛼
1ℎ
𝛼
2) ,

(25)

𝑇
(𝑏𝑏
󸀠
)

= [−
1

2
(

𝜏
2

ℎ
)

𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2
+

1

2
(

𝜏
2

ℎ
)

𝜕
5
𝑢

𝜕𝑡2𝜕𝑥3

−
1

2
(

𝜏

ℎ
)

𝜕
3
𝑢

𝜕𝑡2𝜕𝑥
]

𝑛+1

𝑗

+ 𝑂 (𝜏
2

+ ℎ
2

+ 𝜏
𝛼
1ℎ
𝛼
2) ,

(26)

𝑇
(𝑎
󸀠
𝑎)

= [−
1

2
(

𝜏

ℎ
)

2 𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2
−

1

2
(

𝜏
2

ℎ
)

𝜕
5
𝑢

𝜕𝑡2𝜕𝑥3

−
1

2
(

𝜏

ℎ
)

𝜕
3
𝑢

𝜕𝑡2𝜕𝑥
]

𝑛+1

𝑗

+ 𝑂 (𝜏
2

+ ℎ
2

+ 𝜏
𝛼
1ℎ
𝛼
2) ,

(27)

𝑇
(𝑏
󸀠
𝑏)

= [
1

2
(

𝜏

ℎ
)

2 𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2
+

1

2
(

𝜏
2

ℎ
)

𝜕
5
𝑢

𝜕𝑡2𝜕𝑥3

+
1

2
(

𝜏

ℎ
)

𝜕
3
𝑢

𝜕𝑡2𝜕𝑥
]

𝑛+1

𝑗

+ 𝑂 (𝜏
2

+ ℎ
2

+ 𝜏
𝛼
1ℎ
𝛼
2) ,

(28)

Table 2:The error and the convergence rates of the ASC-N scheme.

𝑡
𝑀 = 201 𝑟 = 837.82 𝑀 = 401 𝑟 = 1327.2

𝑒
ℎ

𝑒
ℎ
/ℎ
2

𝑒
ℎ

𝑒
ℎ
/ℎ
2

𝑡 = 0.05 5.741 × 10
−4 2.350 1.369 × 10

−4 2.230
𝑡 = 0.06 5.947 × 10

−4 2.434 1.379 × 10
−4 2.248

𝑡 = 0.07 6.110 × 10
−4 2.501 1.379 × 10

−4 2.246
𝑡 = 0.08 6.255 × 10

−4 2.560 1.369 × 10
−4 2.232

𝑇
(𝑐
󸀠
𝑐)

= [−
1

2
(

𝜏

ℎ
)

2 𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2

+
1

2
(

𝜏
2

ℎ
)

𝜕
5
𝑢

𝜕𝑡2𝜕𝑥3
]

𝑛+1

𝑗

+ 𝑂 (𝜏
2

+ ℎ
2

+ 𝜏
𝛼
1ℎ
𝛼
2) ,

(29)

𝑇
(𝑑
󸀠
𝑑)

= [
1

2
(

𝜏

ℎ
)

2 𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2

−
1

2
(

𝜏
2

ℎ
)

𝜕
5
𝑢

𝜕𝑡2𝜕𝑥3
]

𝑛+1

𝑗

+ 𝑂 (𝜏
2

+ ℎ
2

+ 𝜏
𝛼
1ℎ
𝛼
2) ,

(30)

𝑇
(𝑐𝑐
󸀠
)

= [
1

2
(

𝜏

ℎ
)

2 𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2

+
1

2
(

𝜏
2

ℎ
)

𝜕
5
𝑢

𝜕𝑡2𝜕𝑥3
]

𝑛+1

𝑗

+ 𝑂 (𝜏
2

+ ℎ
2

+ 𝜏
𝛼
1ℎ
𝛼
2) ,

(31)

𝑇
(𝑑𝑑
󸀠
)

= [−
1

2
(

𝜏

ℎ
)

2 𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2

−
1

2
(

𝜏
2

ℎ
)

𝜕
5
𝑢

𝜕𝑡2𝜕𝑥3
]

𝑛+1

𝑗

+ 𝑂 (𝜏
2

+ ℎ
2

+ 𝜏
𝛼
1ℎ
𝛼
2) ,

(32)

where 𝛼
1

+ 𝛼
1

= 2.
We briefly discuss the truncation error analysis of the

ASC-N scheme.Obviously, the truncation error of theCrank-
Nicolson scheme is 𝑂(𝜏

2
+ ℎ
2
). On the same time level, the

asymmetric schemes are used symmetrically in the space
direction.The signs of the termswith the parameter ℎ in (25)–
(32) are opposite, the effect of the terms with ℎ can be nearly
canceled, and the truncation error at these boundary points
is approximately 𝑂(𝜏 + ℎ

2
).

4.2. The Analysis of the Stability. To prove the stability, we
have to introduce the following Kellogg lemma in [19].
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Figure 3: Comparison of the numerical solutions.
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Figure 4: Comparison of the absolute errors.

Table 3: The errors of numerical solution at 𝑀 = 201, 𝑟
1

= 83.78, and 𝑡 = 0.1.

𝑟 Errors 𝑗 = 40 𝑗 = 80 𝑗 = 100 𝑗 = 120 𝑗 = 160

𝑟 = 𝑟
1

Ae(10
−5

) 3.59751 5.83410 6.18043 5.86366 3.67502
Re(10

−3
) 7.50788 7.50789 7.54902 7.50791 7.50797

𝑟 = 2𝑟
1

Ae(10
−4

) 1.36830 2.21899 2.35153 2.23023 1.39779
Re(10

−2
) 2.85560 2.85561 2.87226 2.85562 2.85565

𝑟 = 5𝑟
1

Ae(10
−4

) 4.63372 7.51450 7.98790 7.55253 4.73342
Re(10

−2
) 9.67041 9.67040 9.75675 9.67036 9.67027

𝑟 = 10𝑟
1

Ae(10
−3

) 1.01018 1.63820 1.74819 1.64647 1.03187
Re(10

−1
) 2.10822 2.10820 2.13531 2.10817 2.10808

Exact (10
−1

) 4.79165 7.77062 8.18706 7.80998 4.89482
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Lemma 1. If 𝜌 > 0 and C + C𝑇 is nonnegative definite, then
(𝐼 + 𝜌C)

−1 exists and there holds
󵄩󵄩󵄩󵄩󵄩
(I + 𝜌C)

−1󵄩󵄩󵄩󵄩󵄩2
≤ 1. (33)

Lemma 2. Under the conditions of Lemma 1, the following
inequality holds:

󵄩󵄩󵄩󵄩󵄩
(I − 𝜌C) (I + 𝜌C)

−1󵄩󵄩󵄩󵄩󵄩2
≤ 1. (34)

Theorem 3. For any real numbers 𝑟 and 𝑟, the ASC-N scheme
(14)-(15) is unconditionally stable.

Proof. By eliminating U𝑛+1 from (14)–(15), we obtain U𝑛+2 =

GU𝑛, where G is the growth matrix

G = (I + G
2
)
−1

(I − G
1
) (I + G

1
)
−1

(I − G
2
) . (35)

For any even number 𝑛, there holds

G𝑛 = (I + G
2
)
−1

(I − G
1
) (I + G

1
)
−1

× [(I − G
2
) (I + G

2
)
−1

(I − G
1
) (I + G

1
)
−1

]
𝑛−1

× (I − G
2
) .

(36)

Since G
1
and G

2
are all symmetric, G1 + G1

𝑇 and G2 + G2
𝑇

are nonnegative definite, so for any real number 𝑟 and 𝑟, we
can obtain the following inequality from the Kellogg lemma:

󵄩󵄩󵄩󵄩G
𝑛󵄩󵄩󵄩󵄩2 ≤

󵄩󵄩󵄩󵄩󵄩
(I + G

2
)
−1󵄩󵄩󵄩󵄩󵄩2

⋅
󵄩󵄩󵄩󵄩󵄩
(I − G

1
) (I + G

1
)
−1󵄩󵄩󵄩󵄩󵄩

𝑛

2

⋅
󵄩󵄩󵄩󵄩󵄩
(I − G

2
) (I + G

2
)
−1󵄩󵄩󵄩󵄩󵄩

𝑛−1

2
⋅
󵄩󵄩󵄩󵄩(I − G

2
)
󵄩󵄩󵄩󵄩2⋅

(37)

Hence

󵄩󵄩󵄩󵄩G
𝑛󵄩󵄩󵄩󵄩2 ≤

󵄩󵄩󵄩󵄩(I − G
2
)
󵄩󵄩󵄩󵄩2 ≤ √

󵄩󵄩󵄩󵄩(I − G
2
)
󵄩󵄩󵄩󵄩∞ ⋅

󵄩󵄩󵄩󵄩(I − G
2
)
󵄩󵄩󵄩󵄩1

≤ √1 + 14𝑟 + 3𝑟.

(38)

This shows that the ASC-N scheme is unconditionally stable.

5. Numerical Simulations

To illustrate the convergency, stability, and accuracy, we
perform the numerical experiment for (2) using the model

𝑢
0

(𝑥) = sin𝑥, 𝐿 = 𝜋, 𝑎 = 1, 𝜀 = −1. (39)

The exact solution of this problem is

𝑢 (𝑥, 𝑡) = 𝑒
−2𝑡 sin𝑥. (40)

We first examine the errors and convergence rate in space
for the ASC-N scheme in this paper. Let 2𝑙 = 50; we compute
the 𝐿
2
-norm of the error 𝑒

ℎ
= ‖𝑈 − 𝑢‖

𝐿
2 and the convergence

rate 𝑒
ℎ
/ℎ
2 for different grid ratio. The results are given in

Tables 1 and 2, which show that the convergence rate is
approximately 𝑂(ℎ

2
).

Next, we compare the ASC-N scheme numerical solution
with the exact solution. The absolute errors (Ae) and the
percentage errors (Re) of numerical solution at 𝑡 = 0.1 are
displayed in Table 3 for different 𝑟. From Table 3, we can see
that the method given in this paper is unconditionally stable
and has high accuracy.

In addition, we also compare the ASC-N solution with
the implicit difference scheme (IMP) solution using the same
mesh refinements. The results are displayed in Figures 3 and
4 at different time. From Figure 3 and Table 3, we can get that
theASC-N solution is nearly as good as the exact solution and
is stable and reliable. From Figures 3 and 4, we also find that
the ASC-N scheme has better accuracy than the IMP scheme.
This is because the truncation error of the IMP scheme is
𝑂(𝜏 + ℎ

2
) and the truncation errors of the ASC-N scheme are

also 𝑂(𝜏 + ℎ
2
) at those points computed by the asymmetric

scheme, but the truncation errors at those points computed
by the C-N scheme are 𝑂(𝜏

2
+ ℎ
2
). Consequently, we can

obtain that these results agree with the theoretical analysis.
Finally, owing to the use of the asymmetric schemes, the

ASC-N scheme changed the discrete problem of 𝑀 order
into some small (2𝑙 or 𝑙 order) independent problems; the
parallelism of the scheme is clarity.

6. Conclusion

In this paper, we first constructed a group of asymmetric
schemes and the C-N scheme; based on the idea of the
alternating method, we gave the ASC-N scheme for the
fourth-order parabolic equation.The theoretical analysis and
the numerical simulations show that the ASC-N scheme
constructed in this paper has high accuracy and convergence,
unconditional stability, and intrinsic parallelism. The idea of
this scheme is helpful for the deep study of the K-S equation.
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