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We introduce two new subclasses of biunivalent functions which are defined by using the Dziok-Srivastava operator. Furthermore,
we find estimates on the coefficients |𝑎

2
| and |𝑎

3
| for functions in these new subclasses.

1. Introduction

Let 𝐴 denote the class of all functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑
𝑛=2

𝑎
𝑛
𝑧
𝑛
, (1)

which are analytic in the open unit disc 𝑈 = {𝑧 ∈ C : |𝑧| <

1}. Also let 𝑆 denote the class of all functions in 𝐴 which are
univalent in 𝑈.

Some of the important andwell-investigated subclasses of
the univalent function class 𝑆 include, for example, the class
𝑆
∗
(𝛽) of starlike functions of order 𝛽 in 𝑈 and the class𝐾(𝛽)

of convex functions of order 𝛽 in 𝑈. By definition, we have

𝑆
∗
(𝛼) = {𝑓 ∈ 𝑆 : Re(

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
) > 𝛽,

0 ≤ 𝛽 < 1, 𝑧 ∈ 𝑈} ,

𝐾 (𝛼) = {𝑓 ∈ 𝑆 : Re(1 +
𝑧𝑓
󸀠󸀠
(𝑧)

𝑓󸀠 (𝑧)
) > 𝛽,

0 ≤ 𝛽 < 1, 𝑧 ∈ 𝑈} .

(2)

Ding et al. [1] introduced the following class 𝑄
𝜆
(𝛽) of

analytic functions defined as follows:

𝑄
𝜆
(𝛽) = {𝑓 ∈ 𝐴 : Re((1 − 𝜆)

𝑓 (𝑧)

𝑧
+ 𝜆𝑓
󸀠
(𝑧)) > 𝛽,

0 ≤ 𝛽 < 1, 𝜆 ≥ 0} .

(3)

It is easy to see that 𝑄
𝜆
1

(𝛽) ⊂ 𝑄
𝜆
2

(𝛽) for 𝜆
1
> 𝜆
2
≥ 0.

Thus, for 𝜆 ≥ 1, 0 ≤ 𝛽 < 1, 𝑄
𝜆
(𝛽) ⊂ 𝑄

1
(𝛽) = {𝑓 ∈ 𝐴 :

Re𝑓󸀠 (𝑧) > 𝛽, 0 ≤ 𝛽 < 1} and hence 𝑄
𝜆
(𝛽) is univalent class

(see [2–4]).
It is well known that every function 𝑓 ∈ 𝑆 has an inverse

𝑓
−1, defined by

𝑓
−1

(𝑓 (𝑧)) = 𝑧 (𝑧 ∈ 𝑈) ,

𝑓 (𝑓
−1

(𝑤)) = 𝑤 (|𝑤| < 𝑟
0
(𝑓) ; 𝑟

0
(𝑓) ≥

1

4
) ,

(4)

where

𝑓
−1

(𝑤) = 𝑤 − 𝑎
2
𝑤
2
+ (2𝑎
2

2
− 𝑎
3
)𝑤
3

− (5𝑎
3

2
− 5𝑎
2
𝑎
3
+ 𝑎
4
)𝑤
4
+ ⋅ ⋅ ⋅ .

(5)

A function 𝑓 ∈ 𝐴 is said to be bi-univalent in 𝑈 if both
𝑓(𝑧) and 𝑓

−1
(𝑧) are univalent in 𝑈. Let Σ denote the class of
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bi-univalent functions in 𝑈 given by (1). For a brief history
and interesting examples in the class Σ see [5].

Brannan and Taha [6] (see also [7]) introduced certain
subclasses of the bi-univalent function class Σ similar to the
familiar subclasses 𝑆

∗
(𝛽) and 𝐾(𝛽) of starlike and convex

functions of order 𝛽 (0 ≤ 𝛽 < 1), respectively (see [8]). Thus,
following Brannan and Taha [6] (see also [7]), a function
𝑓 ∈ 𝐴 is in the class 𝑆∗

Σ
(𝛼) of strongly bi-starlike functions

of order 𝛼 (0 < 𝛼 ≤ 1) if each of the following conditions is
satisfied:

𝑓 ∈ Σ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
arg(

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<

𝛼𝜋

2
(0 < 𝛼 ≤ 1, 𝑧 ∈ 𝑈) ,

𝑓 ∈ Σ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
arg(

𝑧𝑔
󸀠
(𝑤)

𝑔 (𝑤)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<

𝛼𝜋

2
(0 < 𝛼 ≤ 1, 𝑧 ∈ 𝑈) ,

(6)

where 𝑔 is the extension of 𝑓
−1 to 𝑈. The classes 𝑆

∗

Σ
(𝛼)

and 𝐾
Σ
(𝛼) of bi-starlike functions of order 𝛼 and biconvex

functions of order 𝛼, corresponding, respectively, to the
function classes 𝑆∗(𝛽) and𝐾(𝛽), were also introduced analo-
gously. For each of the function classes 𝑆∗

Σ
(𝛼) and𝐾

Σ
(𝛼), they

found nonsharp estimates on the first two Taylor-Maclaurin
coefficients |𝑎

2
| and |𝑎

3
| (for details, see [6, 7]).

For function 𝑓 given by (1) and 𝑔 given by

𝑔 (𝑧) = 𝑧 +

∞

∑
𝑛=2

𝑏
𝑛
𝑧
𝑛
, (7)

the Hadamard product (or convolution) of𝑓 and 𝑔 is defined
by

(𝑓 ∗ 𝑔) (𝑧) = 𝑧 +

∞

∑
𝑛=2

𝑎
𝑛
𝑏
𝑛
𝑧
𝑛
= (𝑔 ∗ 𝑓) (𝑧) . (8)

For complex parameters 𝑎
1
, . . . , 𝑎

𝑞
and 𝑏

1
, . . . , 𝑏

𝑠
(𝑏𝑗 ∉

Z−
0
= {0, −1, −2, . . .}; 𝑗 = 1, . . . , 𝑠), the generalized hypergeo-

metric function
𝑞
𝐹
𝑠
is defined by the following infinite series:

𝑞
𝐹
𝑠
(𝑎
1
, . . . , 𝑎

𝑞
; 𝑏
1
, . . . , 𝑏

𝑠
; 𝑧) =

∞

∑
𝑛=0

(𝑎
1
)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑞
)
𝑛

(𝑏
1
)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑠
)
𝑛

𝑧
𝑛

𝑛!

(𝑞 ≤ 𝑠 + 1; 𝑞, 𝑠 ∈ N
0
= N ∪ {0} ,N = {1, 2, 3, . . .} ; 𝑧 ∈ 𝑈) ,

(9)

where (𝜃)
𝑛
is the Pochhammer symbol (or shift factorial)

defined, in terms of the Gamma function Γ, by

(𝜃)
𝑛
=

Γ (𝜃 + 𝑛)

Γ (𝜃)
= {

1, (𝑛 = 0)

𝜃 (𝜃 + 1) ⋅ ⋅ ⋅ (𝜃 + 𝑛 − 1) , (𝑛 ∈ N) .

(10)

Correspondingly a function ℎ(𝑎
1
, . . . , 𝑎

𝑞
; 𝑏
1
, . . . , 𝑏

𝑠
; 𝑧) is

defined by

ℎ (𝑎
1
, . . . , 𝑎

𝑞
; 𝑏
1
, . . . , 𝑏

𝑠
; 𝑧)

= 𝑧
𝑞
𝐹
𝑠
(𝑎
1
, . . . , 𝑎

𝑞
; 𝑏
1
, . . . , 𝑏

𝑠
; 𝑧) (𝑧 ∈ 𝑈) .

(11)

Dziok and Srivastava [9] (see also [10]) considered a linear
operator

𝐻(𝑎
1
, . . . , 𝑎

𝑞
; 𝑏
1
, . . . , 𝑏

𝑠
) : 𝐴 󳨀→ 𝐴, (12)

defined by the following Hadamard product:

𝐻(𝑎
1
, . . . , 𝑎

𝑞
; 𝑏
1
, . . . , 𝑏

𝑠
) 𝑓 (𝑧)

= ℎ (𝑎
1
, . . . , 𝑎

𝑞
; 𝑏
1
, . . . , 𝑏

𝑠
; 𝑧) ∗ 𝑓 (𝑧) ,

(𝑞 ≤ 𝑠 + 1; 𝑞, 𝑠 ∈ N
0
; 𝑧 ∈ 𝑈) .

(13)

If 𝑓 ∈ 𝐴 is given by (1), then we have

𝐻(𝑎
1
, . . . , 𝑎

𝑞
; 𝑏
1
, . . . , 𝑏

𝑠
) 𝑓 (𝑧)

= 𝑧 +

∞

∑
𝑛=2

Γ
𝑛
[𝑎
1
; 𝑏
1
] 𝑎
𝑛
𝑧
𝑛

(𝑧 ∈ 𝑈) ,

(14)

where

Γ
𝑛
[𝑎
1
; 𝑏
1
] =

(𝑎
1
)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑞
)
𝑛

(𝑏
1
)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑠
)
𝑛

1

𝑛!
(𝑛 ∈ N) . (15)

To make the notation simple, we write

𝐻
𝑞,𝑠

[𝑎
1
; 𝑏
1
; 𝑧] = 𝐻 (𝑎

1
, . . . , 𝑎

𝑞
; 𝑏
1
, . . . , 𝑏

𝑠
) 𝑓 (𝑧) . (16)

It easily follows from (14) that

𝑧(𝐻
𝑞,𝑠

[𝑎
1
; 𝑏
1
; 𝑧])
󸀠

= 𝑎
1
𝐻
𝑞,𝑠

[𝑎
1
+ 1; 𝑏
1
; 𝑧] − (𝑎

1
− 1)𝐻

𝑞,𝑠
[𝑎
1
; 𝑏
1
; 𝑧] .

(17)

The linear operator 𝐻
𝑞,𝑠
[𝑎
1
; 𝑏
1
; 𝑧] is a generalization of many

other linear operators considered earlier.
The object of the present paper is to introduce two new

subclasses of the bi-univalent functions which are defined by
using theDziok-Srivastava operator and find estimates on the
coefficients |𝑎

2
| and |𝑎

3
| for functions in these new subclasses

of the function class Σ employing the techniques used earlier
by Srivastava et al. [5] (see also [11]).

In order to derive our main results, we have to recall here
the following lemma [12].

Lemma 1. If ℎ ∈ 𝑃, then |𝑐
𝑘
| ≤ 2 for each 𝑘, where 𝑃 is the

family of all functions ℎ analytic in 𝑈 for which Re ℎ(𝑧) >

0 ℎ(𝑧) = 1 + 𝑐
1
𝑧 + 𝑐
2
𝑧
2
+ 𝑐
3
𝑧
3
+ ⋅ ⋅ ⋅ for 𝑧 ∈ 𝑈.

Unless otherwise mentioned, we assume throughout this
paper that 𝑎

𝑖
, 𝑏
𝑗

∈ C \ Z−
0
, 𝑖 = 1, . . . , 𝑠, 𝑗 = 1, . . . , 𝑞, 𝑞 ≤

𝑠 + 1; 𝑞, 𝑠 ∈ N
0
, 0 < 𝛼 ≤ 1, 𝜆 ≥ 1, 𝑧 ∈ 𝑈, Γ

𝑛
[𝑎
1
; 𝑏
1
] is given by

(15) and all powers are understood as principle values.
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2. Coefficient Bounds of the Function Class
𝑇
Σ

𝑞,𝑠
[𝑎
1
;𝑏
1
,𝛼,𝜆]

Definition 2. One says that a function𝑓(𝑧) given by (1) is said
to be in the class 𝑇

Σ

𝑞,𝑠
[𝑎
1
; 𝑏
1
, 𝛼, 𝜆] if it satisfies the following

condition:

𝑓 ∈ Σ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg((1 − 𝜆)
𝐻
𝑞,𝑠

[𝑎
1
; 𝑏
1
; 𝑧]

𝑧

+𝜆(𝐻
𝑞,𝑠

[𝑎
1
; 𝑏
1
; 𝑧] )
󸀠

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝛼𝜋

2
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
arg((1 − 𝜆)

𝑔 (𝑤)

𝑤
+ 𝜆𝑔
󸀠
(𝑤))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<

𝛼𝜋

2
,

(18)

where the function 𝑔 is given by

𝑔 (𝑤) = 𝐻
−1

𝑞,𝑠
[𝑎
1
; 𝑏
1
; 𝑧]

= 𝑤 − Γ
2
[𝑎
1
; 𝑏
1
] 𝑎
2
𝑤
2

+ (2(Γ
2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2
− Γ
3
[𝑎
1
; 𝑏
1
] 𝑎
3
)𝑤
3

− (5(Γ
2
[𝑎
1
; 𝑏
1
])
3

𝑎
3

2
− 5Γ
2
[𝑎
1
; 𝑏
1
]

× Γ
3
[𝑎
1
; 𝑏
1
] 𝑎
2
𝑎
3
+ Γ
4
[𝑎
1
; 𝑏
1
] 𝑎
4
) 𝑤
4
+ ⋅ ⋅ ⋅ .

(19)

Remark 3. (i) For 𝑞 = 2, 𝑠 = 1, and 𝑎
1
= 𝑎
2
= 𝑏
1
= 1, we

have𝑇Σ
2,1

[1, 1; 2; 𝛼, 𝜆] = 𝐵
Σ
(𝛼, 𝜆), where the class𝐵

Σ
(𝛼, 𝜆)was

introduced and studied by Frasin and Aouf [11].
(ii) For 𝑞 = 2, 𝑠 = 1, and 𝑎

1
= 𝑎
2

= 𝑏
1

= 𝜆 = 1, we
have 𝑇

Σ

2,1
[1, 1; 2; 𝛼, 1] = 𝐻

Σ
(𝛼, 𝜆), where the class 𝐻

Σ
(𝛼, 𝜆)

was introduced and studied by Srivastava et al. [5].

Theorem 4. Letting 𝑓(𝑧) given by (1) be in the class 𝑇
Σ

𝑞,𝑠

[𝑎
1
; 𝑏
1
, 𝛼, 𝜆], then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 =

2𝛼

󵄨󵄨󵄨󵄨Γ2 [𝑎1; 𝑏1]
󵄨󵄨󵄨󵄨 √(𝜆 + 1)

2
+ 𝛼 (1 + 2𝜆 − 𝜆2)

, (20)

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 =

4𝛼
2

󵄨󵄨󵄨󵄨Γ3 [𝑎1; 𝑏1]
󵄨󵄨󵄨󵄨 (𝜆 + 1)

2
+

2𝛼
󵄨󵄨󵄨󵄨Γ3 [𝑎1; 𝑏1]

󵄨󵄨󵄨󵄨 (2𝜆 + 1)
. (21)

Proof. It follows from (18) that

(1 − 𝜆)
𝐻
𝑞,𝑠

[𝑎
1
; 𝑏
1
; 𝑧]

𝑧
+ 𝜆(𝐻

𝑞,𝑠
[𝑎
1
; 𝑏
1
; 𝑧])
󸀠

= [𝑝 (𝑧)]
2

,

(1 − 𝜆)
𝑔 (𝑤)

𝑤
+ 𝜆𝑔
󸀠
(𝑤) = [𝑞 (𝑤)]

2

,

(22)

where 𝑝(𝑧) and 𝑞(𝑤) in 𝑃 have the forms

𝑝 (𝑧) = 1 + 𝑝
1
𝑧 + 𝑝
2
𝑧
2
+ 𝑝
3
𝑧
3
+ ⋅ ⋅ ⋅ , (23)

𝑞 (𝑤) = 1 + 𝑞
1
𝑤 + 𝑞
2
𝑤
2
+ 𝑞
3
𝑤
3
+ ⋅ ⋅ ⋅ . (24)

Now, equating the coefficients in (22), we get

(𝜆 + 1) Γ
2
[𝑎
1
; 𝑏
1
] 𝑎
2
= 𝛼𝑝
1
, (25)

(2𝜆 + 1) Γ
3
[𝑎
1
; 𝑏
1
] 𝑎
3
= 𝛼𝑝
2
+

𝛼 (𝛼 − 1)

2
𝑝
2

1
, (26)

− (𝜆 + 1) Γ
2
[𝑎
1
; 𝑏
1
] 𝑎
2
= 𝛼𝑞
1
, (27)

(2𝜆 + 1) (2(Γ
2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2
− Γ
3
[𝑎
1
; 𝑏
1
] 𝑎
3
)

= 𝛼𝑞
2
+

𝛼 (𝛼 − 1)

2
𝑞
2

1
.

(28)

From (25) and (27), we get

𝑝
1
= −𝑞
1
, (29)

2(𝜆 + 1)
2
(Γ
2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2
= 𝛼
2
(𝑝
2

1
+ 𝑞
2

1
) . (30)

Now from (26), (28), and (30), we obtain

2 (2𝜆 + 1) (Γ
2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2

= 𝛼 (𝑝
2
+ 𝑞
2
) +

𝛼 (𝛼 − 1)

2
(𝑝
2

1
+ 𝑞
2

1
)

= 𝛼 (𝑝
2
+ 𝑞
2
) +

𝛼 (𝛼 − 1)

2

2(𝜆 + 1)
2
(Γ
2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2

𝛼2
.

(31)

Therefore, we have

𝑎
2

2
=

𝛼
2
(𝑝
2
+ 𝑞
2
)

(Γ
2
[𝑎
1
; 𝑏
1
])
2

[(𝜆 + 1)
2
+ 𝛼 (1 + 2𝜆 − 𝜆2)]

. (32)

Applying Lemma 1 for the coefficients 𝑝
2
and 𝑞
2
, we immedi-

ately have

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

2𝛼

󵄨󵄨󵄨󵄨Γ2 [𝑎1; 𝑏1]
󵄨󵄨󵄨󵄨 √(𝜆 + 1)

2
+ 𝛼 (1 + 2𝜆 − 𝜆2)

. (33)

This gives the bound on |𝑎
2
| as asserted in (20).

Next, in order to find the bound on |𝑎
3
|, by subtracting

(28) from (26) and using (29), we get

2 (2𝜆 + 1) Γ
3
[𝑎
1
; 𝑏
1
] 𝑎
3
− 2 (2𝜆 + 1) (Γ

2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2

= 𝛼𝑝
2
+

𝛼 (𝛼 − 1)

2
𝑝
2

1
− (𝛼𝑞

2
+

𝛼 (𝛼 − 1)

2
𝑞
2

1
)

= 𝛼 (𝑝
2
− 𝑞
2
) .

(34)

It follows from (30) and (34) that

2 (2𝜆 + 1) Γ
3
[𝑎
1
; 𝑏
1
] 𝑎
3

=
𝛼
2
(2𝜆 + 1) (𝑝

2

1
+ 𝑞
2

1
)

(𝜆 + 1)
2

+ 𝛼 (𝑝
2
− 𝑞
2
) ,

(35)

And, then,

𝑎
3
=

𝛼
2
(𝑝
2

1
+ 𝑞
2

1
)

2(𝜆 + 1)
2
Γ
3
[𝑎
1
; 𝑏
1
]
+

𝛼 (𝑝
2
− 𝑞
2
)

2 (2𝜆 + 1) Γ
3
[𝑎
1
; 𝑏
1
]
. (36)
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Applying Lemma 1 once again for the coefficients 𝑝
1
, 𝑝
2
, 𝑞
1
,

and 𝑞
2
, we readily get

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

4𝛼
2

(𝜆 + 1)
2 󵄨󵄨󵄨󵄨Γ3 [𝑎1; 𝑏1]

󵄨󵄨󵄨󵄨

+
2𝛼

(2𝜆 + 1)
󵄨󵄨󵄨󵄨Γ3 [𝑎1; 𝑏1]

󵄨󵄨󵄨󵄨
. (37)

This completes the proof of Theorem 4.

Remark 5. (i) Taking 𝑞 = 2, 𝑠 = 1, and 𝑎
1
= 𝑎
2
= 𝑏
1
= 1, in

Theorem 4, we obtain the result obtained by Frasin and Aouf
[11, Theorem 2.2].

(ii) Taking 𝑞 = 2, 𝑠 = 1, and 𝑎
1
= 𝑎
2
= 𝑏
1
= 𝜆 = 1, in

Theorem 4, we obtain the result obtained by Srivastava et al.
[5, Theorem 1].

3. Coefficient Bounds of the Function Class
𝑇
Σ

𝑞,𝑠
[𝑎
1
;𝑏
1
,𝛽, 𝜆]

Definition 6. One says that a function𝑓(𝑧) given by (1) is said
to be in the class 𝑇

Σ

𝑞,𝑠
[𝑎
1
; 𝑏
1
, 𝛽, 𝜆] if it satisfies the following

condition:

𝑓 ∈ Σ, Re{(1 − 𝜆)
𝐻
𝑞,𝑠

[𝑎
1
; 𝑏
1
; 𝑧]

𝑧

+𝜆(𝐻
𝑞,𝑠

[𝑎
1
; 𝑏
1
; 𝑧])
󸀠

} > 𝛽,

Re{(1 − 𝜆)
𝑔 (𝑤)

𝑤
+ 𝜆𝑔
󸀠
(𝑤)} > 𝛽,

(38)

where the function 𝑔 is defined by (19).

Remark 7. (i) For 𝑞 = 2, 𝑠 = 1, and 𝑎
1
= 𝑎
2
= 𝑏
1
= 1, we

have𝑇Σ
2,1

[1, 1; 2; 𝛽, 𝜆] = 𝐵
Σ
(𝛽, 𝜆), where the class𝐵

Σ
(𝛽, 𝜆)was

introduced and studied by Frasin and Aouf [11].
(ii) For 𝑞 = 2, 𝑠 = 1, and 𝑎

1
= 𝑎
2

= 𝑏
1

= 𝜆 = 1, we
have 𝑇

Σ

2,1
[1, 1; 2; 𝛽, 1] = 𝐻

Σ
(𝛽, 𝜆), where the class 𝐻

Σ
(𝛽, 𝜆)

was introduced and studied by Srivastava et al. [5].

Theorem 8. Letting 𝑓(𝑧) given by (1) be in the class 𝑇
Σ

𝑞,𝑠

[𝑎
1
; 𝑏
1
, 𝛽, 𝜆], 0 ≤ 𝛽 < 1 and 𝜆 ≥ 1, then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 =

√2 (1 − 𝛽)

󵄨󵄨󵄨󵄨Γ2 [𝑎1; 𝑏1]
󵄨󵄨󵄨󵄨
√2𝜆 + 1

, (39)

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 =

4(1 − 𝛽)
2

󵄨󵄨󵄨󵄨Γ3 [𝑎1; 𝑏1]
󵄨󵄨󵄨󵄨 (𝜆 + 1)

2
+

2 (1 − 𝛽)
󵄨󵄨󵄨󵄨Γ3 [𝑎1; 𝑏1]

󵄨󵄨󵄨󵄨 (2𝜆 + 1)
. (40)

Proof. It follows from (38) that

(1 − 𝜆)
𝐻
𝑞,𝑠

[𝑎
1
; 𝑏
1
; 𝑧]

𝑧
+ 𝜆(𝐻

𝑞,𝑠
[𝑎
1
; 𝑏
1
; 𝑧])
󸀠

= 𝛽 + (1 − 𝛽) 𝑝 (𝑧) ,

(1 − 𝜆)
𝑔 (𝑤)

𝑤
+ 𝜆𝑔
󸀠
(𝑤) = 𝛽 + (1 − 𝛽) 𝑞 (𝑤) ,

(41)

where 𝑝(𝑧) and 𝑞(𝑤) have the forms (23) and (24), respec-
tively.

As in the proof of Theorem 4, by suitably comparing
coefficients in (41), we get

(𝜆 + 1) Γ
2
[𝑎
1
; 𝑏
1
] 𝑎
2
= (1 − 𝛽) 𝑝

1
, (42)

(2𝜆 + 1) Γ
3
[𝑎
1
; 𝑏
1
] 𝑎
3
= (1 − 𝛽) 𝑝

2
, (43)

− (𝜆 + 1) Γ
2
[𝑎
1
; 𝑏
1
] 𝑎
2
= (1 − 𝛽) 𝑞

1
, (44)

(2𝜆 + 1) (2(Γ
2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2
− Γ
3
[𝑎
1
; 𝑏
1
] 𝑎
3
) = (1 − 𝛽) 𝑞

2
.

(45)

From (42) and (44), we get

𝑝
1
= −𝑞
1
, (46)

2(𝜆 + 1)
2
(Γ
2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2
= (1 − 𝛽)

2

(𝑝
2

1
+ 𝑞
2

1
) . (47)

Also, from (43) and (45), we find that

2 (2𝜆 + 1) (Γ
2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2
= (1 − 𝛽) (𝑝

2
+ 𝑞
2
) . (48)

Therefore, we have

󵄨󵄨󵄨󵄨󵄨
𝑎
2

2

󵄨󵄨󵄨󵄨󵄨
≤

(1 − 𝛽)

(Γ
2
[𝑎
1
; 𝑏
1
])
2

[2 (2𝜆 + 1)]
(
󵄨󵄨󵄨󵄨𝑝2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑞2

󵄨󵄨󵄨󵄨) . (49)

Applying Lemma 1 for the coefficients 𝑝
2
and 𝑞
2
, we immedi-

ately have

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

√2 (1 − 𝛽)

󵄨󵄨󵄨󵄨Γ2 [𝑎1; 𝑏1]
󵄨󵄨󵄨󵄨
√2𝜆 + 1

. (50)

This gives the bound on |𝑎
2
| as asserted in (39).

Next, in order to find the bound on |𝑎
3
|, by subtracting

(45) from (43), we get

2 (2𝜆 + 1) Γ
3
[𝑎
1
; 𝑏
1
] 𝑎
3
− 2 (2𝜆 + 1) (Γ

2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2

= (1 − 𝛽) (𝑝
2
− 𝑞
2
) ,

(51)

or, equivalently,

𝑎
3
=

(Γ
2
[𝑎
1
; 𝑏
1
])
2

𝑎
2

2

Γ
3
[𝑎
1
; 𝑏
1
]

+
(1 − 𝛽) (𝑝

2
− 𝑞
2
)

2 (2𝜆 + 1) Γ
3
[𝑎
1
; 𝑏
1
]
, (52)

and, then from (47), we find that

𝑎
3
=

(1 − 𝛽)
2

(𝑝
2

1
+ 𝑞
2

1
)

2(𝜆 + 1)
2
Γ
3
[𝑎
1
; 𝑏
1
]
+

(1 − 𝛽) (𝑝
2
− 𝑞
2
)

2 (2𝜆 + 1) Γ
3
[𝑎
1
; 𝑏
1
]
. (53)

Applying Lemma 1 once again for the coefficients 𝑝
1
, 𝑝
2
, 𝑞
1
,

and 𝑞
2
, we readily get

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

4(1 − 𝛽)
2

(𝜆 + 1)
2 󵄨󵄨󵄨󵄨Γ3 [𝑎1; 𝑏1]

󵄨󵄨󵄨󵄨

+
2 (1 − 𝛽)

(2𝜆 + 1)
󵄨󵄨󵄨󵄨Γ3 [𝑎1; 𝑏1]

󵄨󵄨󵄨󵄨
. (54)

This completes the proof of Theorem 8.
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Remark 9. (i) Taking 𝑞 = 2, 𝑠 = 1, and 𝑎
1
= 𝑎
2
= 𝑏
1
= 1, in

Theorem 8, we obtain the result obtained by Frasin and Aouf
[11, Theorem 3.2].

(ii) Taking 𝑞 = 2, 𝑠 = 1, and 𝑎
1
= 𝑎
2
= 𝑏
1
= 𝜆 = 1, in

Theorem 8, we obtain the result obtained by Srivastava et al.
[5, Theorem 2].
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