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The elastic stability of annular thin plates having one free edge and subjected to axisymmetric radial edge loads at the other edge
is investigated. The supported edge is allowed to be either simply supported or clamped against axial (transverse) deflection. Both
compression buckling and tension buckling (wrinkling) are investigated. To insure accuracy, twomethods of solving the appropriate
eigenvalue problems are used and found to yield essentially identical results. A selection of these results for both compression and
tension buckling is presented graphically and used to illustrate interesting aspects of the solutions.

1. Introduction

This paper deals with the elastic stability of an annular thin
plate subjected to axisymmetric in-plane edge loads. The
case of equal compressive loads applied at both boundaries
was dealt with definitively by Yamaki [1]. In this case
the in-plane radial and circumferential stress resultants are
uniform and equal, producing a closed-form transcendental
equation from which the buckling loads can be deduced. If
the in-plane boundary loads (either tensile or compressive)
are unequal the in-plane stress resultants are variable and
unequal, creating a more complicated situation in which
numerical work is normally required. Various aspects of
this general problem have been investigated by Timoshenko
and Gere [2], Mansfield [3], Majumdar [4], Yu and Zhang
[5], Machinek and Troger [6], Coman and Haughton [7, 8],
Coman and Bassom [9, 10], Noh et al. [11], and Jillella and
Peddieson [12]. A particularly interesting facet of this class of
problems is that radial tensile loads can produce compressive
circumferential stress resultants over a portion of the plate
that lead to radial wrinkling (tension buckling). It should be
noted that wrinkling analysis has often been carried out using
tension field theory (see, for instance, Coman [13] for a recent
discussion). Since that approach is not used in this work, the
vast pertinent literature will not be reviewed herein.

The present paper reports an investigation of the elastic
stability of an annular thin plate having one load-free edge.

The other edge is subjected to uniform radial tension or
compression and is either simply supported or clamped
against axial deflection. This investigation both overlaps
some findings of the papers referenced above (as discussed
subsequently) and adds significant new information.

The remainder of the paper is organized as follows.
First, the pertinent governing equations are reviewed. Next,
a selection of results for both compression and tension
buckling is presented and discussed. Finally, a summary of
the work and a recapitulation of important conclusions are
given.

2. Governing Equations

In this section the governing equations are reviewed for
the bending of thin, elastic, homogeneous, isotropic annular
plates of uniform thickness undergoing small deflections and
subjected to axisymmetric in-plane loads (see, for instance,
Timoshenko and Gere [2] for more details). Consider an
annular plate having respective inner and outer radii 𝑟

𝑖
and

𝑟
𝑜
and thickness ℎ. The plate is assumed to be linearly elastic

with Young’s modulus 𝐸 and Poisson’s ratio 𝜐. It is convenient
to describe the problem in terms of the respective radial,
azimuthal (circumferential), and axial cylindrical polar coor-
dinates 𝑟, 𝜃, and 𝑧 with the plane 𝑧 = 0 being coincident
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with the plate’s middle surface and the 𝑧 axis being the axis
of symmetry. The appropriate differential equation is
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where 𝑤 is the axial (transverse) displacement,
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is the two dimensional Laplacian operator,
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(3)

is the plate modulus, 𝑁
𝑟
is the radial normal force resultant,

and 𝑁
𝜃
is the circumferential normal force resultant. In all

equations appearing in the present work partial derivative
operators are understood to operate only on the immediately
following symbol. The normal force resultants are found
by solving the uncoupled plane stress problem associated
with axisymmetric radial loading at the inner and outer
boundaries (see, for instance, [10]) to get
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(4)

where𝑁
𝑖
and𝑁

𝑜
are the respective inner and outer boundary

tensile force resultants. Support conditions to be employed
subsequently are

clamped: 𝑤 = 0, 𝜕
𝑟
𝑤 = 0,

simply supported: 𝑤 = 0, 𝑀
𝑟
= 0,

free: 𝑀
𝑟
= 0, 𝑉

𝑟
= 0,

(5)

where
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is the radial bending moment resultant and
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is the radial Kirchhoff shear force resultant.
For the purpose of numerical analysis it is convenient to

convert the equations to dimensionless forms. Towards this

end it is helpful to define dimensionless quantities (denoted
by superposed asterisks) through the equations
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where𝑁
𝑐
is a characteristic in-plane load. When (8) are sub-

stituted into the appropriate equations discussed previously
and, for simplicity, the asterisks are dropped from the results
(with the understanding that all subsequent equations, except
(14), are in terms of dimensionless quantities) the results are
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defines an in-plane load dimensionless parameter, which can
be thought of as a dimensionless buckling load.

Substituting
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with a prime denoting differentiation with respect to 𝑟. In a
similar manner, substituting (15) into (12) and (13) yields the
corresponding Fourier cosine series coefficients
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which, when substituted into (5), produce the boundary
conditions

clamped: 𝑤
𝑛
= 0, 𝑤



𝑛
= 0, (19)

simply supported: 𝑤
𝑛
= 0, 𝑀

𝑟,𝑛
= 0, (20)

free: 𝑀
𝑟,𝑛
= 0, 𝑉

𝑟,𝑛
= 0. (21)

Equation (16) and an appropriate combination of (19)–
(21) constitute an eigenvalue problem for the dimensionless
buckling parameter 𝜆 which must be solved numerically for
the configurations to be considered below. To insure accuracy,
two independent methods of doing this were employed. The
first was a variant of the compound matrix method used
by Coman and Haughton [7, 8] and the second was the
imperfection method used by Jillella and Peddieson [12].
The interested reader is referred to these publications and
the corresponding references cited therein for the details of
the two approaches. In all cases the predictions of the two
procedureswere essentially identical. A representative sample
of these predictions is presented in the next two sections.

3. Results for Load-Free Inner Edge

Majumdar [4] considered the problem of compression buck-
ling of a free/clamped annular plate having a uniform radial
compressive loading at the outer edge and no radial loading at
the inner edge (load-free inner edge). This is a generalization
of the problem discussed by Timoshenko and Gere [2] who
dealt with only axisymmetric buckling. Majumdar [4] found
that the cases of 𝑛 = 0 (axisymmetric) and 𝑛 = 1 (one
circumferential node) produced exact closed-form transcen-
dental equations in terms of Bessel functions from which
the buckling loads could be determined, with the former
yielding results in agreementwith those obtained byMeissner
quoted in [2]. For 𝑛 ≥ 2, no exact closed-form transcendental
equations could be found and estimates of the buckling loads
were made using the Rayleigh/Ritz method. Machinek and
Troger [6], in preparation for a postbuckling study, reported
limited results based on numerical solutions of the exact
eigenvalue problem for 𝑛 ≥ 2. Coman and Bassom [10],
in preparation for an analytical study employing asymptotic
methods, recently reproduced these numerical results. No
other work on the load-free inner edge configuration appears
to have been published. For this reason, it was decided

to investigate a set of configurations involving an annular
plate with a load-free inner edge. These have either uniform
tension or compression acting on either a clamped or simply
supported outer edge.

In the present notation a radial loading involving a free
inner edge and uniform tension or compression at the outer
edge corresponds to

𝑛
𝑖
= 0, 𝑛

𝑜
= ±1 (22)

(with the top sign indicating compression and the bottom
sign tension) which, according to (10) and (11), produces
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Here the quantity𝑁
𝑐
stands for the magnitude of the dimen-

sional outer edge stress resultant. It can be seen from (23)
that both stress resultants have the same sign for all 𝑟. Thus
radial compression produces circumferential compression
and radial tension produces circumferential tension. In this
configuration, therefore, tension buckling is impossible and
results will be presented for compression buckling only.

Predictions relevant to compression buckling are
reported in Figures 1, 2, 3, and 4 for free/clamped support
conditions. Figure 1 shows curves of buckling load versus
inner radius associated with the first eleven circumferential
buckling modes for 𝜐 = 1/3, the value thought to be used
by Majumdar [4]. A value of 𝜐 is not explicitly stated in [4],
but 𝜐 = 1/3 is used to obtain the results reported in [2] to
which comparisons are made in [4]. The composite curve
created by combining the lowest portions of all individual
curves contained in Figure 1 (and subsequent similar figures)
indicates the lowest buckling load for any given value of
the dimensionless inner radius (radius ratio). In addition,
for plates exhibiting initial imperfections, each individual
curve characterizes the buckling behavior associated with
a particular circumferential imperfection pattern (see, for
instance, [2] for a detailed discussion). Thus, for example,
it is expected that the buckling loads associated with an
axisymmetric imperfection pattern would be determined
from the curve labeled 𝑛 = 0 in Figure 1 even though they
are not always the lowest possible buckling loads.

The curves corresponding to 𝑛 = 0 and 1 depicted
in Figure 1 can be directly compared with Figure 1 of [4]
and agree well with the accuracy of visual inspection. It is
interesting to note that for 𝑛 = 0, the trend of a small decrease
in the value of the buckling load for the smaller inner radii is
captured by the numericalmethod. Rayleigh/Ritz predictions
of buckling loads for 0 ≤ 𝑛 ≤ 6 and 𝑛 = 10 are presented
in Figure 2 of [4]. The curve for 𝑛 = 0 fails to capture
the decrease in 𝜆2 discussed above. In addition, the energy
method predicts the lowest buckling load at 𝑟

𝑖
= 0.5 to

correspond to 𝑛 = 1 rather than to 𝑛 = 0 as indicated by
the exact solution. This effect is also captured by the current
methodology, as illustrated by Figure 1.
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Figure 1: Buckling load versus inner radius (free/clamped, 𝑛
𝑖
= 0,

𝑛
𝑜
= 1, 𝜐 = 1/3).

As stated earlier, the composite curve formed by com-
bining the lowest portions of curves for each circumferential
bucklingmode (value of 𝑛) indicates the lowest buckling load.
It is, therefore, possible that the composite curve associated
with the Rayleigh/Ritz method could be an accurate repre-
sentation of the buckling behavior even if some individual
components of the composite curve are inaccurate. This
proposition was tested by comparing the lowest buckling
loads for selected inner radii predicted by both the present
numerical method and Figure 2 of [4] (to the accuracy of
visual inspection). It was found that the maximum errors
associated with the Rayleigh/Ritz method are in the 10%–15%
range. Thus, the Rayleigh/Ritz composite curve is reasonably
accurate.

It is often asserted in the literature that compression
buckling loads are insensitive to the value of Poisson’s ratio.
It is of interest to use the results presented herein to test
this assertion. Figures 2, 3, and 4 (and other similar sets
of predictions to be presented subsequently) depict the
composite curves of minimum buckling load versus inner
radius for 𝜐 = 0.1, 0.3, and 0.5. The difference between
the highest and lowest buckling load values for these three
Poisson’s ratios at a given inner radius can be expressed as a
percentage 𝑃 of the lowest value. For this set of predictions 𝑃
was found to be in the 8%–37% range.

Figure 3 can be directly compared with both Figure 4
of [6] and Figure 2(a) of [10]. To the accuracy of visual
inspection, agreement between the former and the latter two
appears to be excellent, thus providing additional validation
of the two independent numerical procedures used herein.
Figures 1, 2, 3, and 4 all exhibit a rapid increase in the number
of circumferential nodes exhibited by the buckling mode as
the inner radius increases. This behavior (here associated
with compression buckling) will also be observed in one of
the tension buckling configurations to be discussed below.
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Figure 2: Buckling load versus inner radius (free/clamped, 𝑛
𝑖
= 0,

𝑛
𝑜
= 1, 𝜐 = 0.1).
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Figure 3: Buckling load versus inner radius (free/clamped, 𝑛
𝑖
= 0,

𝑛
𝑜
= 1, 𝜐 = 0.3).

Results for compression buckling of the free/simply
supported configuration are reported in Figures 5, 6, and
7. It is clear that the lowest buckling load corresponds to
axisymmetric buckling for all values of Poisson’s ratio. The
difference produced by the change from a clamped to simply
supported edge is striking. Here 𝑃 is in the 2%–30% range.

To be consistent with the results presented in [4], pre-
dictions were reported above only for cases satisfying the
inequality 𝜆2 ≤ 100. This fact accounts for the difference
between the number of circumferential modes for which
information was presented in Figures 1–4 and the number for
which it was presented in Figures 5–7.
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Figure 4: Buckling load versus inner radius (free/clamped, 𝑛
𝑖
= 0,

𝑛
𝑜
= 1, 𝜐 = 0.5).

4. Results for Load-Free Outer Edge

Yu and Zhang [5] considered the problem of tension buckling
of a simply supported/free annular plate having a uniform
radial tensile loading at the inner edge and no radial loading
at the outer edge (load-free outer edge). Yu and Zhang [5]
estimated the buckling loads by using the Galerkin method.
Coman and Haughton [8], in preparation for an analytical
study, presented limited results based on numerical solutions
of the exact eigenvalue problem for this configuration. Noh
et al. [11] reproduced some of these results using the finite
element method. No other work on the load-free outer edge
configuration appears to have been published. It was, there-
fore, decided to investigate a set of configurations involving
an annular plate with a load-free outer edge.These have either
uniform radial tension or compression acting on either a
clamped or simply supported inner edge.

In the present notation a radial loading involving a free
outer edge and uniform tension or compression at the inner
edge corresponds to

𝑛
𝑖
= ±1, 𝑛

𝑜
= 0 (24)

(with the top sign indicating compression and the bottom
sign tension) which, according to (10) and (11), produces
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Here 𝑁
𝑐
stands for the magnitude of the dimensional inner

edge stress resultant. It can be seen from (25) that the
stress resultants have opposite signs for all 𝑟. Thus radial
tension produces circumferential compression and radial
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Figure 5: Buckling load versus inner radius (free/simply supported,
𝑛
𝑖
= 0, 𝑛

𝑜
= 1, 𝜐 = 0.1).
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Figure 6: Buckling load versus inner radius (free/simply supported,
𝑛
𝑖
= 0, 𝑛

𝑜
= 1, 𝜐 = 0.3).

compression produces circumferential tension. In this con-
figuration, therefore, both tension and compression buckling
are possible and results for both will be presented.

Figures 8, 9, and 10 show curves of buckling load versus
inner radius for several circumferential tension buckling
modes associated with the simply supported/free configu-
ration. In this set (and subsequent similar sets) of figures
results will be presented only for circumferential buckling
modes exhibiting buckling loads in the range 𝜆2 ≤ 200 to
be consistent with [5]. As before, this will produce different
maximum and minimum values of 𝑛 in different figures. In
particular, no buckling was observed in this range for 𝑛 = 0
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Figure 7: Buckling load versus inner radius (free/simply supported,
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= 0, 𝑛
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= 1, 𝜐 = 0.5).
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Figure 8: Buckling load versus inner radius (simply supported/free,
𝑛
𝑖
= −1, 𝑛

𝑜
= 0, 𝜐 = 0.1).

or 𝑛 = 1, thus accounting for the absence of the associated
curves from Figures 8–10.

Figure 9 can be directly compared with the Galerkin
predictions presented in Figure 3(a) of [5] for 2 ≤ 𝑛 ≤
6. Quantitative comparisons of the results with those read
from Figure 3(a) of [5] (to the accuracy of visual inspection)
reveal that maximum errors associated with the Galerkin
method are in the 20%–25% range. Figure 9 can also be
compared directly with Figures 3 and 4 of [8]. To the accuracy
of visual inspection, agreement seems excellent, providing
further validation of the present numerical approaches.

Figures 8–10 illustrate the influence of Poisson’s ratio
on buckling loads, with 𝑃 being in the 58%–67% range.
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Figure 9: Buckling load versus inner radius (simply supported/free,
𝑛
𝑖
= −1, 𝑛
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= 0, 𝜐 = 0.3).
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Figure 10: Buckling load versus inner radius (simply supported/
free, 𝑛

𝑖
= −1, 𝑛

𝑜
= 0, 𝜐 = 0.5).

These figures also exhibit the rapid increase in bucklingmode
nodes with increasing inner radius mentioned earlier. Here
this phenomenon is associated with tension buckling while
previously it was associated with compression buckling. A
program of analytical work begun by Coman and Haughton
[8] (using Rayleigh’s quotient) and continued by Coman and
Bassom [9] (using asymptotic methods) reveals that a value
of the inner radius exists for each value of 𝑛 beyond which
tension buckling does not occur.

Results for tension buckling of the clamped/free con-
figuration are reported in Figures 11, 12, and 13. While
the qualitative influence of Poisson’s ratio is slight, 𝑃 is
in the 37%–42% range. Comparison of Figures 8–10 with
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Figure 11: Buckling load versus inner radius (clamped/free, 𝑛
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Figure 12: Buckling load versus inner radius (clamped/free, 𝑛
𝑖
= −1,

𝑛
𝑜
= 0, 𝜐 = 0.3).

Figures 11–13 suggests that the change from a simply sup-
ported to a clamped inner edge does not produce a significant
change in the nature of the tension buckling behavior (in
sharp contrast to the compression buckling cases discussed
earlier). In particular, the rapid increase in buckling mode
nodes with increasing inner radius appears in both. It would
be interesting to apply the asymptotic analysis of [9] to
determine whether there are limiting inner radii above which
tension buckling will not occur in this configuration as well.
It would also be interesting to investigate the possibility of a
unified analytical approach to the rapid node increase phe-
nomenon which appears for both tension and compression
buckling.
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Figure 13: Buckling load versus inner radius (clamped/free, 𝑛
𝑖
= −1,

𝑛
𝑜
= 0, 𝜐 = 0.5).

As discussed in detail by Jillella and Peddieson [12], the
use of a tension field model for wrinkling (tension buckling)
analysis does not allow either the dependence on axial
support conditions or the wrinkling pattern to be predicted.
Examples were given in [12] in which the axial support
dependence was significant. Figures 8–13 show that the
change from a simply supported to a clamped inner edge does
not change the qualitative nature of the wrinkling behavior
for a free outer edge but does (as expected) significantly raise
the buckling load values. Figures 8–13 also associate a unique
value of 𝑛 with each inner radius for which buckling occurs
(except in cases in which two curves cross). This, in turn,
quantitatively defines the wrinkle pattern.

Results for compression buckling of the simply sup-
ported/free configuration are reported in Figure 14. Since the
lowest buckling load corresponds to axisymmetric buckling
for all values of Poisson’s ratio, one value has been selected
as representative for graphical presentation. Additional com-
puted results (not shown) reveal that 𝑃 is in the 34%–44%
range.

Results for compression buckling of the clamped/free
configuration are reported in Figure 15. Again, the lowest
buckling load corresponds to axisymmetric buckling for all
values of Poisson’s ratio and one representative value has
been chosen for graphical depiction.The results of additional
simulations (not shown) indicate that 𝑃 is in the 8%–14%
range. In contrast to the case of tension buckling, the change
from a simply supported to a clamped inner edge produces
a significant change in the buckling load versus inner radius
behavior.

5. Conclusion

The foregoing discussed the elastic stability of thin, elastic,
homogeneous, isotropic annular plates of uniform thickness.
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Figure 14: Buckling load versus inner radius (simply supported/
free, 𝑛
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Figure 15: Buckling load versus inner radius (clamped/free, 𝑛
𝑖
= 1,

𝑛
𝑜
= 0, 𝜐 = 0.1).

Two independent numerical approaches were used to solve
the eigenvalue problem associated with buckling analysis.
Predictions were obtained for several configurations involv-
ing a load-free inner or outer edge with axisymmetric radial
loading at the opposite edge exhibiting either compression
or tension buckling. Two of these were used to verify the
numerical approach by comparison with previous published
results and several involved new results. Some important
conclusions are as follows.

First, some of the results reported herein exhibit signifi-
cant sensitivities of thin plate buckling loads to Poisson’s ratio.
Of the configurations investigated, the largest sensitivity was
observed for simply supported/free tension buckling while

the smallest was observed for clamped/free compression
buckling; however no definite pattern is obvious.

Second, standard elastic stability methodology provides a
unified approach to both tension and compression buckling
of thin plates. In particular, when applied to tension buckling
(wrinkling) this approach can make certain quantitative
predictions of which tension field theories are incapable. The
most important of these are the wrinkle pattern (buckling
mode shape) and the effect of axial support conditions. The
present work provides examples of such predictions. The
papers by Jillella and Peddieson [12] and Coman [13] contain
further discussion of the relative merits of tension field and
thin plate models for the analysis of flat sheet wrinkling.

Third, the plate thickness enters the dimensionless equa-
tions employed herein only through the dimensionless buck-
ling load𝜆2 (which depends on the platemodulus𝐷which, in
turn, depends on the thickness ℎ). Thus, no difficulties arise
for small thicknesses when using the approaches employed in
the present work. Such difficulties are often cited as reasons
for preferring tension field models to plate or shell models
for the analysis of thin sheet wrinkling. Many commercial
finite element codes are based on shear deformation plate and
shell models which, of course, sometimes exhibit difficulties
in dealing with small thicknesses.These difficulties, however,
are generic and not specific to the prediction of wrinkling
phenomena.
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