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Orthogonal distance regression is arguably the most common criterion for fitting a model to data with errors in the observations.
It is not appropriate to force the distances to be orthogonal, when angular information is available about the measured data points.
We consider here a natural generalization of a particular formulation of that problem which involves the replacement of 𝑙

2
norm

by 𝑙
∞

norm. This criterion may be a more appropriate one in the context of accept/reject decisions for manufacture parts. For 𝑙
∞

distance regression with bound constraints, we give a smoothing Newton method which uses cubic spline and aggregate function,
to smooth max function. The main spline smoothing technique uses a smooth cubic spline instead of max function and only few
components in the max function are computed; hence it acts also as an active set technique, so it is more efficient for the problem
with large amounts of measured data. Numerical tests in comparison to some other methods show that the new method is very
efficient.

1. Introduction

For fitting curves or surfaces to observed or measured data, a
common criterion is orthogonal distance regression (ODR).
Given the data pairs (𝑢

𝑗
, 𝑤
𝑗
), 𝑗 = 1, . . . , 𝑚, where 𝑢

𝑗
∈ 𝑅
𝑝
1

is the independent variable and 𝑤
𝑗

∈ 𝑅
1 is the dependent

variable; suppose

𝑤
𝑗

= 𝑔 (𝑑, 𝑢
𝑗
) , (1)

where 𝑑 ∈ 𝑅
𝑝
2 is a vector of parameters to be determined.We

assumed that 𝛿
𝑗
is the random error associated with 𝑢

𝑗
and

that 𝜀
𝑗
is the random error associated with 𝑤

𝑗
. To be precise,

we relate the quantities 𝑢
𝑗
, 𝑤
𝑗
, 𝛿
𝑗
, and 𝜀

𝑗
to

𝑤
𝑗

= 𝑔 (𝑑, 𝑢
𝑗

+ 𝛿
𝑗
) + 𝜀
𝑗
, 𝑗 = 1, 2, . . . , 𝑚. (2)

As shown inBoggs et al. [1] this gives rise to theODRproblem
given by

min
𝑑,𝛿

1

2

𝑚

∑

𝑗=1

[(𝑤
𝑗

− 𝑔 (𝑑, 𝑢
𝑗

+ 𝛿
𝑗
))

2

+ 𝛿
2

𝑗
] . (3)

The ODR problem can be solved by the Gauss-Newton or
Levenberg-Marquardt methods (see [1, 2]). The general form
of the bounded constrained ODR problem can be expressed
by

min
𝑑,𝛿

1

2

𝑚

∑

𝑗=1

[(𝑤
𝑗

− 𝑔 (𝑑, 𝑢
𝑗

+ 𝛿
𝑗
))

2

+ 𝛿
2

𝑗
] ,

s.t. 𝐿
𝑑

≤ 𝑑 ≤ 𝑈
𝑑
,

(4)

where 𝐿
𝑑
and 𝑈

𝑑
are vectors of length 𝑝

2
that provide the

lower and upper bounds on 𝑑, respectively. Zwolak et al. give
the algorithm to handle (4) in [3].

It is not appropriate to force the distances to be orthog-
onal, when angular information is available about the mea-
sured data points, such as the rotated cone fitting problem
and rotated paraboloid fitting problem. Then, (4) becomes

min
𝑥,𝛿

1

2

𝑚

∑

𝑗=1

[(𝑤
𝑗
(𝑥) − 𝑔 (𝑥, 𝛿

𝑗
))

2

+ 𝛿
2

𝑗
] ,

s.t. 𝐿
𝑥

≤ 𝑥 ≤ 𝑈
𝑥
,

(5)
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where (𝑢
𝑗
, 𝑤
𝑗
) = ((𝑢

𝑗
+ 𝑎), (𝑤

𝑗
+ 𝑏))𝑇(𝜇), 𝑇(𝜇) is an orthog-

onal matrix, 𝑎 ∈ 𝑅
𝑝
1 , 𝑏 ∈ 𝑅

1, 𝜇 ∈ 𝑅
𝑝
3 , 𝑥 = (𝑎, 𝑏, 𝜇, 𝑑), and

𝐿
𝑥
and 𝑈

𝑥
are vectors of length 𝑝 = 𝑝

1
+ 1 + 𝑝

3
+ 𝑝
2
.

When the least squares norm is not appropriate, problem
(5) can be generalized to use other measures in a variety of
ways. Most generalizations have been of formulations (5),
with the 𝑙

2
norms replaced with other norms. We consider

here 𝑙
∞

norms. It may be a more appropriate one in the
context of accept/reject decisions for manufacture parts (see
[4]). In this paper, we consider the following 𝑙

∞
distance

regression with bound constraints.
Let

𝑓
𝑗
(𝑥, 𝛿) =

{

{

{

𝑤
𝑗
(𝑥) − 𝑔 (𝑥, 𝛿

𝑗
) 𝑗 = 1, . . . , 𝑚

𝛿
𝑗−𝑚

𝑗 = 𝑚 + 1, . . . , 2𝑚,

(6)

min
𝑥,𝛿

𝑓 (𝑥, 𝛿) = max
1≤𝑗≤2𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑥, 𝛿)

󵄨
󵄨
󵄨
󵄨
󵄨
,

s.t. 𝑥 ∈ Λ = {𝑥 | 𝐿
𝑥

≤ 𝑥 ≤ 𝑈
𝑥
} .

(7)

We know (7) is a minimax problem. There are several
different algorithms that have been taken to solve (7), such
as subgradient methods (see [5]), SQP methods (see [6–8]),
bundle-type methods (see [9–12]), and smooth approxima-
tion methods (see [13–21]). For (7), |𝑓

𝑖
(𝑥)| is nonsmooth

function including the absolute value function. Moreover,
when large amounts of measured data are to be fitted to a
model, the number of components in the maximum function
is very large. It is necessary to develop efficient solution
methods for problem (7).

In this paper, we consider to uniformly approximate
𝑓(𝑥, 𝛿) by the smooth splines introduced in [22].

Let us first recall the formulation of multivariate splines.
Let 𝐷 be a polyhedral domain of 𝑅

𝑚 which is partitioned
with irreducible algebraic surfaces into cells Δ = {Δ

𝑖
|

𝑖 = 1, . . . , 𝑁}. A function 𝑠(𝑧) defined on 𝐷 is called a
𝑘-spline function with 𝑟th order smoothness, expressed for
short as 𝑠(𝑧) ∈ 𝑆

𝑟

𝑘
(𝐷, Δ), if 𝑠(𝑧) ∈ 𝐶

𝑟
(𝐷) and 𝑠(𝑧)|

Δ
𝑖

=

𝑝
𝑖

∈ 𝑃
𝑘
, where 𝑃

𝑘
is the set of all polynomials of degree k

or less in 𝑚 variables. Similar to the smooth splines which
uniformly approximate min{𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑚
} given in [22], we

can construct a spline function 𝑠
2

3
(𝑧; 𝜀) ∈ 𝑆

2

3
(𝑅
𝑚

, Δ
2

MS) to
uniformly approximate max{𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑚
} (as 𝜀 → +0),

where Δ
2

MS is the homogenous Morgan-Scott partition of
type two in [22], as follows:

𝑠
2

3
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
; 𝜀) = 𝑧

𝑖
1

+

𝑘−1

∑

𝑙=1

𝑐
𝑙
(𝑙𝑧
𝑖
𝑙+1

−

𝑙

∑

𝑗=1

𝑧
𝑖
𝑗

+ 𝜀)

3

,

for 𝑧 ∈ Δ
𝑖
1
⋅⋅⋅𝑖
𝑘
(𝜀) ,

(8)

where 𝑐
1

= 1/(6𝜀
2
), 𝑐
𝑘
/𝑐
𝑘+1

= (𝑘+2)/𝑘, 1 ≤ 𝑘 ≤ 𝑚, and the cell
Δ
𝑖
1
⋅⋅⋅𝑖
𝑘

(𝜀) is the region defined by the following inequalities:

𝑧
𝑖
𝑙

− 𝑧
𝑖
𝑙+1

≥ 0, when 1 ≤ 𝑙 < 𝑘,

(𝑘 − 1) 𝑧
𝑖
𝑘

−

𝑘−1

∑

𝑗=1

𝑧
𝑖
𝑗

+ 𝜀 ≥ 0,

𝑘𝑧
𝑖
𝑙

−

𝑘

∑

𝑗=1

𝑧
𝑖
𝑗

+ 𝜀 ≤ 0, when 𝑘 + 1 ≤ 𝑙 ≤ 𝑚.

(9)

The spline smoothing technique uses a smooth cubic spline
instead of max function, and only few components in the
max function are computed; hence it acts also as an active set
technique, so it is more efficient for the minimax problems
with nonsmoothness and large numbers of components.

For that (7) is aminimax problemwith bound constraints,
and we cannot utilize SSN algorithm in [23] directly to solve
(7). Here, we try to extend the idea of SSN algorithm to
solve it. At first, we use penalty function to transform (7)
into an unconstrained minimax problem. Then, using the
smooth approximation, a smoothing Newton method (SN)
can be used to solve the 𝑙

∞
distance regression with bound

constraints.

2. The SN Algorithm for 𝑙
∞

Distance
Regression with Bound Constraints

Firstly, some deformations for (7) are necessary. Due to
|𝑓
𝑗
(𝑥, 𝛿)| = max{𝑓

𝑗
(𝑥, 𝛿), −𝑓

𝑗
(𝑥, 𝛿)}, then (7) is equivalent

to

min
𝑥,𝛿

𝑓 (𝑥, 𝛿) = max
1≤𝑗≤4𝑚

{𝑓
𝑗
(𝑥, 𝛿)} ,

s.t. 𝑥 ∈ Λ,

(10)

where

𝑓
𝑗
(𝑥, 𝛿) =

{
{

{
{

{

𝑓
𝑗
(𝑥, 𝛿) 𝑗 = 1, . . . , 2𝑚

−𝑓
𝑗−2𝑚

(𝑥, 𝛿) 𝑗 = 2𝑚 + 1, . . . , 4𝑚.

(11)

Assumption 1. We assume that the functions 𝑓
𝑗
(𝑥, 𝛿), 𝑗 =

1, . . . , 4𝑚, are twice continuously differentiable.

Let 𝜙(𝑥) = max{𝜙
1
(𝑥), . . . , 𝜙

2𝑝
(𝑥)}, where 𝜙

1
(𝑥) = 𝑥

1
−

𝑈
𝑥,1
,. . ., and 𝜙

𝑝
(𝑥) = 𝑥

𝑝
− 𝑈
𝑥,𝑝

, 𝜙
𝑝+1

(𝑥) = −𝑥
1

− 𝐿
𝑥,1
,. . .,

𝜙
2𝑝

(𝑥) = −𝑥
𝑝

− 𝐿
𝑥,𝑝

. Denote the unknown variables 𝑥, 𝛿 to
be𝑥; then𝑥 ∈ 𝑅

𝑛, where 𝑛 = 𝑝+𝑝
1
. Use penalty functionwith

penalty parameter 𝐶 > 0 to transform (10) into the following
unconstrained programming problem:

min{𝜓 (𝑥) = { max
1≤𝑗≤4𝑚

𝑓
𝑗
(𝑥) + 𝐶𝜙 (𝑥)}} . (12)

The following proposition concerning Theorem 4.2.8 in
[24] gives the first-order optimality condition for (12).
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Proposition 2. Suppose that Assumption 1 holds, and then if
(12) attains the extremum at 𝑥

∗, then

0 ∈ 𝜕𝜓 (𝑥
∗
) ≜ conv
𝑗∈𝑝(𝑥

∗
)

{𝜕𝑓
𝑗
(𝑥
∗
)} + 𝐶 conv

𝑖∈𝑞(𝑥
∗
)

{𝜕𝜙
𝑖
(𝑥
∗
)} , (13)

where 𝑠(𝑥
∗
) = {𝑗 ∈ s = {1, . . . , 4𝑚} | 𝑓

𝑗
(𝑥
∗
) = 𝑓(𝑥

∗
)},

𝑞(𝑥
∗
) = {𝑖 ∈ q = {1, . . . , 2𝑝} | 𝜙

𝑖
(𝑥
∗
) = 𝜙(𝑥

∗
)}.

We use the following cubic spline to smooth 𝑓(𝑥) and the
aggregate function to smooth 𝜙(𝑥) in (12).

Consider

Ψ
𝑡
(𝑥) = 𝐹

𝑡
(𝑥) + 𝐶Φ

𝑡
(𝑥) , (14)

where
𝐹
𝑡
(𝑥) = 𝑠

2

3
(𝑓
1,𝑡

(𝑥) , 𝑓
2,𝑡

(𝑥) , . . . , 𝑓
4𝑚,𝑡

(𝑥) ; 𝑡) ,

Φ
𝑡
(𝑥) = 𝑡 ln(

2𝑝

∑

𝑖=1

exp(

𝜙
𝑖
(𝑥)

𝑡

)) .

(15)

Remark 3. Under Assumption 1, 𝐹
𝑡
(𝑥) and Φ

𝑡
(𝑥) are twice

continuously differentiable for arbitrary 𝑡 > 0.

From Lemma 1.1 in [23], Proposition 3.3 in [25], and
Proposition 2.4 in [26], we have the following proposition.

Proposition 4. (1) For any 𝑥 ∈ Λ, 𝐹
𝑡
(𝑥) and Φ

𝑡
(𝑥) are

monotonically increasing with respect to 𝑡 > 0.
(2) Suppose that Assumption 1 holds. Then, for any 𝑡 > 0,

Ψ
𝑡
(𝑥) is twice continuously differentiable, and

∇𝐹
𝑡
(𝑥) =

4𝑚

∑

𝑖=1

𝜆
𝑖,𝑡

(𝑥) ∇𝑓
𝑖,𝑡

(𝑥) =

𝑘

∑

𝑗=1

𝜆

𝑖
𝑗

𝑡
(𝑥) ∇𝑓

𝑖
𝑗
,𝑡

(𝑥) , (16)

where

𝜆

𝑖
𝑗

𝑡
(𝑥) =

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

1 − 3

𝑘−1

∑

𝑙=1

𝑐
𝑙
(ℎ
𝑙
(𝑥, 𝑡))

2

𝑗 = 1

3 (𝑗 − 1) 𝑐
𝑗−1

(ℎ
𝑗−1

(𝑥, 𝑡))

2

−3

𝑘−1

∑

𝑙=𝑗

𝑐
𝑙
(ℎ
𝑙
(𝑥, 𝑡))

2

2 ≤ 𝑗 < 𝑘

3 (𝑘 − 1) 𝑐
𝑘−1

(ℎ
𝑘−1

(𝑥, 𝑡))
2

𝑗 = 𝑘

0 𝑘 < 𝑗 ≤ 4𝑚,

(17)

and ℎ
𝑙
(𝑥, 𝑡) = 𝑙𝑓

𝑖
𝑙+1
,𝑡
(𝑥) − ∑

𝑙

𝑟=1
𝑓
𝑖
𝑟
,𝑡
(𝑥) + 𝑡,

∇Φ
𝑡
(𝑥) = ∑

𝑖∈q
𝜉
𝑖,𝑡

(𝑥) ∇𝜙
𝑖
(𝑥) , (18)

where

𝜉
𝑖,𝑡

(𝑥) =

exp (𝜙
𝑖
(𝑥) /𝑡)

∑
𝑖∈q exp (𝜙

𝑖
(𝑥) /𝑡)

∈ (0, 1] , ∑

𝑖∈q
𝜉
𝑖,𝑡

(𝑥) = 1.

(19)

Lemma 5. Suppose that Assumption 1 holds, Then, for every
bounded set 𝑆 ⊂ 𝑅

𝑛, there exists an 𝐿 < ∞ such that

⟨𝑦, ∇
2
Ψ
𝑡
(𝑥) 𝑦⟩ ≤

1

𝑡

𝐿
󵄩
󵄩
󵄩
󵄩
𝑦

󵄩
󵄩
󵄩
󵄩

2

, (20)

for all 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑅
𝑛, and 0 < 𝑡 ≤ 1.

Proof. From Proposition 4, Lemma 1.2 in [23], and
Lemma 2.2 in [17], we know that for every bounded
set 𝑆 ⊂ 𝑅

𝑛, there exist 𝐿
𝐹

< ∞ and 𝐿
Φ

< ∞ such
that ⟨𝑦, ∇

2
𝐹
𝑡
(𝑥)𝑦⟩ ≤ (1/𝑡)𝐿

𝐹
‖𝑦‖
2 and ⟨𝑦, ∇

2
Φ
𝑡
(𝑥)𝑦⟩ ≤

(1/𝑡)𝐿
Φ

‖𝑦‖
2 for all 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑅

𝑛, and 0 < 𝑡 ≤ 1. We also
know ∇

2
Ψ
𝑡
(𝑥) = ∇

2
𝐹
𝑡
(𝑥) + 𝐶∇

2
Φ
𝑡
(𝑥). Let 𝐿 = 𝐿

𝐹
+ 𝐶𝐿
Φ
;

then ⟨𝑦, ∇
2
Ψ
𝑡
(𝑥)𝑦⟩ ≤ (1/𝑡)𝐿‖𝑦‖

2.

Algorithm 6 (The smoothing Newton algorithm).

𝑆𝑡𝑒𝑝 0.𝑥0 ∈ Λ; 𝑡
0

> 0, 𝑡̂ ≫ 1, and𝛼, 𝛽, and 𝜅
1

∈ (0, 1); 𝜅
2

≫ 1,
0 < 𝜅

3
≪ 1 and 𝛿 > 0; functions 𝜖

𝑎
(𝑡), 𝜖
𝑏
(𝑡) and 𝜏(𝑡) : (0,

∞) → (0, ∞), satisfying 𝜖
𝑏
(𝑡) ≥ 𝜖

𝑎
(𝑡) > 𝜏(𝑡) for all 𝑡 > 0. Set

𝑖 = 0, 𝑘 = 0, 𝑠 = 1, and 𝑥
𝑘,𝑖

= 𝑥
0.

Search the Cell

𝑆𝑡𝑒𝑝 1. Let 𝐼 = {𝑗 | max{𝑓
1,𝑡
𝑘

(𝑥
(𝑘,𝑖)

), . . . , 𝑓
4𝑚,𝑡
𝑘

(𝑥
(𝑘,𝑖)

)} −

𝑓
𝑗,𝑡
𝑘

(𝑥
(𝑘,𝑖)

) < 𝑡
𝑘
}; 𝑘 is the cardinality of 𝐼, and 𝐼 = {𝑖

1
, 𝑖
2
,

. . . , 𝑖
𝑘
}; range {𝑓

𝑖
𝑗
,𝑡
𝑘

(𝑥
(𝑘,𝑖)

)}
𝑘

𝑗=1
according to 𝑓

𝑖
1
,𝑡
𝑘

(𝑥
(𝑘,𝑖)

) ≥

𝑓
𝑖
2
,𝑡
𝑘

(𝑥
(𝑘,𝑖)

) ≥ ⋅ ⋅ ⋅ ≥ 𝑓
𝑖
𝑘
,𝑡
𝑘

(𝑥
(𝑘,𝑖)

). If 𝑘 = 1, the cell is Δ
𝑖
1

(𝑡
𝑘
).

Else, for every ̃
𝑘 ∈ {𝑘, 𝑘 − 1, . . . , 2}, if (

̃
𝑘 − 1)𝑓

𝑖
𝑘̃
,𝑡
𝑘

(𝑥
(𝑘,𝑖)

) −

∑
𝑘̃−1

𝑗=1
𝑓
𝑖
𝑗
,𝑡
𝑘

(𝑥
(𝑘,𝑖)

) + 𝑡
𝑘

≥ 0, we have ̃
𝑘 ∈ 𝐼 ⊆ {𝑘, 𝑘 − 1, . . . , 2}. Let

̂
𝑘 be the maximum element of 𝐼, then the cell is Δ

𝑖
1
⋅⋅⋅𝑖
𝑘̂

(𝑡
𝑘
).

The Stabilized Newton-Armijo Algorithm

𝑆𝑡𝑒𝑝 2. Go to Step 1, and compute ∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

) = ∇𝐹
𝑡
(𝑥
𝑘,𝑖

) +

𝐶∇Φ
𝑡
(𝑥
𝑘,𝑖

). If ‖ ∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

)‖
2

> 𝜏(𝑡
𝑘
), go to Step 3. Else go to

Step 8.

𝑆𝑡𝑒𝑝 3. Compute 𝐵
𝑡
𝑘

(𝑥
𝑘,𝑖

)

𝐵
𝑡
𝑘

(𝑥
𝑘,𝑖

) = 𝜃 (𝑥
𝑘,𝑖

) 𝐼 + ∇
2
Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

) , (21)

where 𝜃(𝑥) = max{0, 𝛿 − 𝑒(𝑥)} with 𝑒(𝑥) denoting the min-
imum eigenvalue of ∇

2
Ψ
𝑡
𝑘

(𝑥); then compute the Cholesky
factor 𝑅 such that 𝐵

𝑡
𝑘

(𝑥
𝑘,𝑖

) = 𝑅𝑅
𝑇 and the reciprocal

condition number 𝑐(𝑅) of 𝑅. If 𝑐(𝑅) ≥ 𝜅
1
and 𝑝

𝑘
≥ 𝜅
3
,

go to Step 4. Else, if 𝑐(𝑅) ≥ 𝜅
1
and the largest eigenvalue

𝜎
𝑝
𝑘
,max(𝑥

𝑘,𝑖
) of 𝐵

𝑡
𝑘

(𝑥
𝑘,𝑖

) satisfies 𝜎
𝑡
𝑘
,max(𝑥

𝑘,𝑖
) ≤ 𝜅
2
, go to Step

4; else go to Step 5.
𝑆𝑡𝑒𝑝 4. Compute the search direction

ℎ
𝑘,𝑖

= −𝐵
𝑡
𝑘

(𝑥
𝑘,𝑖

)

−1

∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

) , (22)

and go to Step 6.
𝑆𝑡𝑒𝑝 5. Compute the search direction

ℎ
𝑘,𝑖

= −∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

) . (23)

𝑆𝑡𝑒𝑝 6. Compute the step length 𝜆
𝑘,𝑖

= 𝛽
𝑙, where 𝑙 ≥ 0 is the

smallest integer satisfying

Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

+ 𝛽
𝑙
ℎ
𝑘,𝑖

) − Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

) ≤ 𝛼𝛽
𝑙
⟨∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

) , ℎ
𝑘,𝑖

⟩ .

(24)
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𝑆𝑡𝑒𝑝 7. Set 𝑥
𝑘,𝑖+1

= 𝑥
𝑘,𝑖

+ 𝜆
𝑘,𝑖

ℎ
𝑘,𝑖
, 𝑖 = 𝑖 + 1. Go to Step 1, and

compute ∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

). If

󵄩
󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝜏 (𝑡
𝑘
) , (25)

go to Step 8; else go to Step 3.
Adaptive Parameter Decrease
𝑆𝑡𝑒𝑝 8. If 𝑠 = 1, compute 𝑡

∗ such that

𝜖
𝑎

(𝑡
𝑘
) ≤

󵄩
󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
∗ (𝑥
𝑘,𝑖

)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝜖
𝑏

(𝑡
𝑘
) , (26)

go to Step 9, else set 𝑡
𝑘+1

= 1/𝑠(𝑘 + 2), 𝑘 = 𝑘 + 1, and 𝑖 = 0,
and go to Step 2.
𝑆𝑡𝑒𝑝 9. If 𝑡

∗
≥ 𝑡̂, set 𝑡

𝑘+1
= min{𝑡

∗
, 𝑡
𝑘
/(𝑡
𝑘

+ 1)}, 𝑘 = 𝑘 + 1, and
𝑖 = 0, and go to Step 2; else set 𝑠 = max{2, ((1/𝑡̂) + 2)/(𝑘 + 1)},
𝑡
𝑘+1

= 1/𝑠(𝑘 + 2), 𝑘 = 𝑘 + 1, and 𝑖 = 0, and go to Step 2.

Lemma 7. Suppose that Assumption 1 holds and that
sequences {𝑡

𝑘
} and {𝑥

1,𝑖
}, {𝑥
2,𝑖

}, . . . , {𝑥
𝑘,𝑖

}, . . ., are generated
by Algorithm 6. Then the following properties hold: (1) the
sequences {𝑡

𝑘
} is decreasing; (2) If {𝑥

1,𝑖
}, {𝑥
2,𝑖

}, . . . , {𝑥
𝑘,𝑖

}, . . .

has an accumulation point, then 𝑡
𝑘

→ 0 and ∑
∞

𝑘=0
𝑡
𝑘

= +∞.

Lemma 8. Suppose that Assumption 1 holds. Then, for every
bounded set 𝑆 ⊂ 𝑅

𝑛 and parameters 𝛼, 𝛽 ∈ (0, 1), there exists a
𝐾
𝑠

< ∞ such that, for all 0 < 𝑡 ≤ 1 and 𝑥 ∈ 𝑆,

Ψ
𝑡
(𝑥 + 𝜆

𝑡
(𝑥) ℎ
𝑡
(𝑥)) − Ψ

𝑡
(𝑥) ≤ −𝛼𝐾

𝑠

󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
(𝑥)

󵄩
󵄩
󵄩
󵄩

2

𝑡, (27)

where 𝜆
𝑡
(𝑥) is the stepsize of Algorithm 6 (see (24)).

Lemma 9. Suppose that Assumption 1 holds and that
{𝑥
1,𝑖

}, {𝑥
2,𝑖

}, . . . , {𝑥
𝑘,𝑖

}, . . . is a bounded sequence generated by
Algorithm 6. Then, for any 𝑘, the sequence {𝑥

𝑘,𝑖
} is finite; that

is, there exists a 𝑖
𝑘

∈ 𝑁 such that (25) holds for 𝑖 = 𝑖
𝑘
.

The proofs of Lemmas 7–9 are similar to that in [23] and
omitted here.

Theorem 10. Suppose that Assumption 1 holds and that
{𝑥
𝑘,𝑖
𝑘
}
∞

𝑘=0
is a bounded sequence generated by Algorithm 6.

Then, there exists an infinite subset 𝐾 ⊂ 𝑁 and a 𝑥 ∈ 𝑅
𝑛 such

that 𝑥
𝑘,𝑖
𝑘
→
𝐾

𝑥 and 0 ∈ 𝜕𝜓(𝑥).

Proof. Suppose that {𝑥
𝑘,𝑖
𝑘
}
∞

𝑘=0
is a bounded sequence gener-

ated by Algorithm 6. For the sake of a contradiction, suppose
that there exists an 𝜀 > 0 such that

lim
𝑘→∞

inf 󵄩
󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

≥ 𝜀. (28)

Since {𝑥
𝑘,𝑖
𝑘
}
∞

𝑘=0
is a bounded sequence, it has at least one

accumulation point.Hence, by Lemma 7, 𝑡
𝑘

→ 0 as 𝑘 → ∞.
Next, by Lemma 8, there exists an 𝑀 < ∞ such that

Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖+1

) − Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

) ≤ −𝛼𝑀

󵄩
󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖

)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑡
𝑘

(29)

for all 𝑘 ∈ 𝑁. Hence, for all 𝑘 ∈ 𝑁,

Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,𝑖
𝑘+1

) − Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖
𝑘
)

= (Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,𝑖
𝑘+1

) − Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,𝑖
𝑘+1
−1

))

+ (Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,𝑖
𝑘+1
−1

) − Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,𝑖
𝑘+1
−2

))

+ ⋅ ⋅ ⋅ + (Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,1

) − Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,0

))

+ (Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,0

) − Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖
𝑘
))

≤ −𝛼𝑀

𝑖
𝑘+1
−1

∑

𝑗=0

󵄩
󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,𝑗

)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑡
𝑘+1

,

(30)

where we have used the fact from Proposition 4 that
Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,0

) − Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖
𝑘
) ≤ 0 for all 𝑘 ∈ 𝑁. In view of

Algorithm 6, we know 𝑥
𝑘+1,0

= 𝑥
𝑘,𝑖
𝑘 . Then,

Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,𝑖
𝑘+1

)

= (Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,𝑖
𝑘+1

) − Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖
𝑘
))

+ (Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖
𝑘
) − Ψ
𝑡
𝑘−1

(𝑥
𝑘−1,𝑖
𝑘−1

))

+ ⋅ ⋅ ⋅ + (Ψ
𝑡
1

(𝑥
1,𝑖
1
) − Ψ
𝑡
0

(𝑥
0,𝑖
0
)) + Ψ

𝑡
0

(𝑥
0,𝑖
0
)

≤ −𝛼𝑀

𝑖
𝑘+1
−1

∑

𝑗=0

󵄩
󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
𝑘+1

(𝑥
𝑘+1,𝑗

)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑡
𝑘+1

− 𝛼𝑀

𝑖
𝑘
−1

∑

𝑗=0

󵄩
󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑗

)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑡
𝑘

− ⋅ ⋅ ⋅ − 𝛼𝑀

𝑖
0
−1

∑

𝑗=0

󵄩
󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
0

(𝑥
0,𝑗

)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑡
0

+ Ψ
𝑡
0

(𝑥
0,𝑖
0
) .

(31)

By Lemma 7,∑∞
𝑘=0

𝑡
𝑘

= +∞. It follows from (28) and (31) that
Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖
𝑘
) → −∞, as 𝑘 → ∞. But for every accumulation

point 𝑥
∗ of {𝑥

𝑘,𝑖
𝑘
}, that is, there exists an infinite subset

𝐾
∗

⊂ 𝑁 such that 𝑥
𝑘,𝑖
𝑘
→
𝐾
∗

𝑥
∗, we have by continuity

Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖
𝑘
) →
𝐾
∗

Ψ(𝑥
∗
), which is a contradiction. Hence,

lim
𝑘→∞

inf 󵄩
󵄩
󵄩
󵄩
󵄩
∇Ψ
𝑡
𝑘

(𝑥
𝑘,𝑖
𝑘
)

󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (32)

Now by (16) and (18) and Proposition 3.2 in [25], we have
that, for all 𝑥 ∈ 𝑅

𝑛,

lim
𝑘→∞

∇Ψ
𝑡
(𝑥
𝑘,𝑖
𝑘
) = ∑

𝑗∈𝑠(𝑥)

̂
𝜆
𝑗
(𝑥) ∇𝑓

𝑗
(𝑥)

+ 𝐶 ∑

𝑖∈𝑞(𝑥)

̂
𝜉
𝑖
(𝑥) ∇𝜙

𝑖
(𝑥) = 0.

(33)
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According to Proposition 3.2 in [25], we have ̂
𝜆
𝑗
(𝑥),

̂
𝜉
𝑖
(𝑥) ≥

0, 𝑗 ∈ 𝑝(𝑥), and 𝑖 ∈ 𝑞(𝑥) such that ∑
𝑗∈𝑝(𝑥)

̂
𝜆
𝑗
(𝑥) =

1, ∑
𝑖∈𝑞(𝑥)

̂
𝜉
𝑖
(𝑥) = 1. Hence by (32) and (33), there has to exist

an infinite subset 𝐾 ⊂ 𝑁 and 𝑥 ∈ 𝑅
𝑛 such that 𝑥

𝑘,𝑖
𝑘
→
𝐾

𝑥 and
0 ∈ 𝜕𝜓(𝑥). This completes the proof.

3. Numerical Experiment

In this section, we consider the rotated cone fitting problem
in [27]. In this example, the error 𝛿

𝑗
associated with 𝑢

𝑗
is zero,

and 𝑢
𝑗

= (𝑢
1

𝑗
, 𝑢
2

𝑗
). Let (𝑢

1

𝑗
, 𝑢
2

𝑗
, and 𝑤

𝑗
) ∈ 𝑅
3
, 𝑖 = 1, . . . , 𝑚, be

the measured data. Define the orthogonal matrix

𝑇 (𝑥
4
, 𝑥
5
) =

[

[

1 0 0

0 cos (𝑥
4
) sin (𝑥

4
)

0 − sin (𝑥
4
) cos (𝑥

4
)

]

]

×
[

[

cos (𝑥
5
) 0 − sin (𝑥

5
)

0 1 0

sin (𝑥
5
) 0 cos (𝑥

5
)

]

]

.

(34)

Then (𝑢
1

𝑗
, 𝑢
2

𝑗
, and 𝑤

𝑗
) is transformed to (𝑢

1

𝑗
, 𝑢
2

𝑗
, and 𝑤

𝑗
) =

((𝑢
1

𝑗
+ 𝑥
1
), (𝑢
2

𝑗
+ 𝑥
2
), (𝑤
𝑗

+ 𝑥
3
))𝑇(𝑥
4
, 𝑥
5
). The fitting cone 𝑉

is defined as 𝑤 = 𝑥
6
√(𝑢
1

𝑗
)
2

+ (𝑢
2

𝑗
)
2, 𝑥
6

≥ 0. Denote the
unknown variables to be 𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, and 𝑥

6
);

then the fitting problem is equivalent to

min 𝑓 (𝑥) = max
1≤𝑗≤2𝑚

{𝑓
𝑗
(𝑥)} ,

s.t. 𝑥 ∈ Λ = {𝑥 | −𝜋 ≤ 𝑥
4

≤ 𝜋, −𝜋 ≤ 𝑥
5

≤ 𝜋, 0 ≤ 𝑥
6
} ,

(35)

where

𝑓
𝑗
(𝑥)

=

{

{

{

𝑤
𝑗
(𝑥) − 𝑥

6
√(𝑢
1

𝑗
(𝑥))

2

+(𝑢
2

𝑗
(𝑥))

2

𝑗=1, . . . , 𝑚

−𝑓
𝑗−𝑚

(𝑥) 𝑗=𝑚+1, . . . , 2𝑚.

(36)

Since 𝑓
𝑗
(𝑥) in (35) is nonsmooth inR

𝑗
= {𝑥 | (𝑢

1

𝑗
(𝑥))
2

+

((𝑢
2

𝑗
)(𝑥))
2

= 0}, we try to smooth it by the following function:

𝑓
𝑗,𝑡

(𝑥) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑤
𝑗
(𝑥) − 𝑥

6
√(𝑢
1

𝑗
(𝑥))

2

+ (𝑢
2

𝑗
(𝑥))

2

+ 𝑡 + 𝑥
6
√𝑡,

𝑗 = 1, . . . , 𝑚,

𝑥
6
√(𝑢
1

𝑗
(𝑥))

2

+ (𝑢
2

𝑗
(𝑥))

2

+ 𝑡 − 𝑤
𝑗
(𝑥) ,

𝑗 = 𝑚 + 1, . . . , 2𝑚.

(37)

Let 𝜙(𝑥) = max{𝜙
1
(𝑥), . . . , 𝜙

6
(𝑥)}, where 𝜙

1
(𝑥) = 𝑥

4
− 𝜋,

𝜙
2
(𝑥) = −𝑥

4
− 𝜋, 𝜙

3
(𝑥) = 𝑥

5
− 𝜋, 𝜙

4
(𝑥) = −𝑥

5
− 𝜋, 𝜙

5
(𝑥) =

−𝑥
6
, 𝜙
6
(𝑥) = 0.

Use penalty function with penalty parameter 𝐶 > 0 to
transform (35) into the following unconstrained program-
ming problem:

min{𝜓 (𝑥) = { max
1≤𝑗≤2𝑚

𝑓
𝑗,𝑡

(𝑥) + 𝐶𝜙 (𝑥)}} . (38)

According to the definition of 𝑓
𝑗,𝑡

(𝑥), it is easy to obtain the
following proposition.

Proposition 11. For any 𝑡 > 0, 𝑓
𝑗,𝑡

(𝑥) defined as (37) is twice
continuously differentiable, and for any given 𝑥 ∈ Λ, 𝑓

𝑗,𝑡
(𝑥) is

monotonically increasing with respect to 𝑡 > 0, and 𝑓
𝑗,𝑡

(𝑥) →

𝑓
𝑗
(𝑥) as 𝑡 → 0.

Remark 12. Under Proposition 11, 𝐹
𝑡
(𝑥) is monotonically

increasing with respect to 𝑡 > 0.

Remark 13. Suppose that {𝑥
𝑘,𝑖
𝑘
}
∞

𝑘=0
is a bounded sequence

generated byAlgorithm 6.Then, there exists an infinite subset
𝐾 ⊂ 𝑁 and a 𝑥 ∈ 𝑅

6 such that 𝑥
𝑘,𝑖
𝑘
→
𝐾

𝑥 and

0 ∈ conv
𝑗∈𝑠(𝑥)

{𝜕𝑓
𝑗
(𝑥)} + 𝐶 conv

𝑖∈𝑞(𝑥)

{𝜕𝜙
𝑖
(𝑥)} . (39)

Moreover, if 𝑥 ∉ R = ⋃
1≤𝑗≤2𝑚

R
𝑗
, then 0 ∈ 𝜕𝜓(𝑥).

We have implemented the SN algorithm using the MAT-
LAB for problem (38). In order to show the efficiency of
the algorithm, we also have implemented TSN algorithms
using similar procedures and an SQP algorithm that is imple-
mented by calling MATLAB function fminimax directly.
Algorithm TSN was proposed by Xiao et al. in [27].

The test results were obtained by running MATLAB
R2011a on a desktopwithWindowsXPProfessional operation
system, Intel(R) Core(TM) i3-370 2.40GHz processor and
2.92GB of memory. The default parameters are chosen as
follows:

𝛼 = 0.8, 𝛽 = 0.77, 𝑡̂ = 10
5 ln (2𝑚) ,

𝜅
1

= 10
−7

, 𝜅
2

= 10
30

, 𝜅
3

= 1000𝑡̂,

𝜏 (𝑡) = 10
−3

, 𝑡
0

= 1, (𝜖
𝑎
, 𝜖
𝑏
) = (0.01, 0.2) ,

𝛿 = 0.1, 𝐶 = 100.

(40)

The results are listed in Table 1, where 𝑥
∗ denotes the

final approximate solution point and 𝑓(𝑥
∗
) is the value of the

objective function at 𝑥
∗. Time is the CPU time in seconds.

We test our algorithm for the artificial rotated cone data
points which are generated as that in [28]. At first, produce
points {(𝑧̃

𝑗

1
, 𝑧̃
𝑗

2
, and 𝑧̃

𝑗

3
)}
𝑚

𝑗=1
on an unrotated cone by defining

the 𝑧̃
𝑗

1
= 𝑟
𝑗
tan(𝜋/6) cos(𝛾

𝑗
), 𝑧̃
𝑗

2
= 𝑟
𝑗
tan(𝜋/6) sin(𝑟

𝑗
), 𝑧̃
𝑗

3
=

𝑟
𝑗
, where 𝑟

𝑗
and 𝛾

𝑗
are equally distributed pseudorandom

numbers in [1; 10] and [0; 2𝜋], respectively. Then, perturb
𝑧̃
𝑗

3
by adding error item which follows the Gaussian dis-

tribution 𝑁(0; 0.3), and make rotations and translation to
obtain the final data ((𝑢

1

𝑗
+ 2.1), (𝑢

2

𝑗
− 1.4), (𝑤

𝑗
+ 1.3)) =

(𝑧̃
𝑗

1
, 𝑧̃
𝑗

2
, 𝑧̃
𝑗

3
)𝑇
−1

(𝜋/20, 𝜋/25).
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Table 1: Test result for the example, 𝑥
0

= (0, 0, −2, 2, −2, 1), 𝑡 = 10
−5.

𝑚 Method 𝑥
∗

𝑓(𝑥
∗
) Time

SN (−0.156746, −0.124595, . . . , 1.732075) 0.744533 1.891536
20000 TSN (−0.156611, −0.123928, . . . , 1.736362) 0.743643 3.878818

SQP (−0.155824, −0.126803, . . . , 1.760751) 0.927184 31.302830
SN (−0.156984, −0.125677, . . . , 1.732449) 0.851957 4.166439

50000 TSN (−0.155253, −0.123374, . . . , 1.733202) 0.851803 10.761201
SQP (−0.155824, −0.126194, . . . , 1.760880) 0.971305 33.716271
SN (−0.155158, −0.124954, . . . , 1.736343) 0.856780 16.437595

100000 TSN (−0.155159, −0.124956, . . . , 1.736346) 0.856767 37.235130
SQP (−0.157418, −0.125016, . . . , 1.761221) 1.025103 101.817872
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