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The Bose-Hubbard model is the simplest model of interacting bosons on a lattice. It has recently been the focus of much attention
due to the realization of this model with cold atoms in an optical lattice. The ability to tune parameters in the Hamiltonian as a
function of time in cold atom systems has opened up the possibility of studying out-of-equilibriumdynamics, including crossing the
quantum critical region of the model in a controlled way. In this paper, I give a brief introduction to the Bose Hubbard model, and
its experimental realization and then give an account of theoretical and experimental efforts to understand out-of-equilibrium
dynamics in this model, focusing on quantum quenches, both instantaneous and of finite duration. I discuss slow dynamics that
have been observed theoretically and experimentally for some quenches from the superfluid phase to theMott insulating phase and
the picture of two timescales, one for fast local equilibration and another for slow global equilibration, that appears to characterize
this situation. I also discuss the theoretical and experimental observation of the Lieb-Robinson bounds for a variety of quenches
and the Kibble-Zurekmechanism in quenches from theMott insulator to superfluid. I conclude with a discussion of open questions
and future directions.

1. Introduction

The Bose-Hubbard model (BHM) is a minimal model of
interacting bosons on a lattice. The original focus of work
on the BHM [1] was in the context of experiments on super-
conductor-insulator transitions in granular superconductors
[2] and Josephson junction arrays [3] and for 4He in porous
media [4]. The proposal by Jaksch et al. [5] that the BHM
could be realized by cold atoms in an optical lattice and the
subsequent experimental demonstration of a superfluid to
Mott insulator transition in this system by Greiner et al. [6]
has lead the focus of work on thismodel to shift to cold atoms.
The tunability of parameters in cold atom systems [7, 8], par-
ticularly as a function of time, naturally leads to interest in
the out-of-equilibrium dynamics of the BHM especially in
the vicinity of a quantum critical point [6].

The out-of-equilibrium dynamics of interacting quantum
systems is an area of very active research, due to the challenge
of understanding such a nontrivial problem. Unlike equilib-
rium statisticalmechanics, where there are clear prescriptions
for determining the state of a system, in out-of-equilibrium
systems, not only do the current parameters of the Hamil-
tonian play a role, but also its history. Finding general

principles and widely applicable calculational approaches to
obtain greater insight into these problems are important goals
of experimental and theoretical work in this field. In this
context, the BHM offers up an example of a system in which
there is strong interplay between theory and experiment and
hope for advancing these goals, both for the BHM itself, and
potentially in a broader context.

In addition to the interest in understanding the out-of-
equilibrium dynamics of interacting bosons, there has been
much excitement about the prospects for using cold atoms
in optical lattices for quantum simulations [9]. Any quantum
simulator should be characterized and reliable on well-
understood problems before being used to simulate poorly
understood problems. The temporal evolution of quantum
systems might well be a future task for a quantum simulator,
and hence it is worthwhile to try to characterize the out-of-
equilibrium dynamics for one of the simplest models of inter-
acting bosons.

There have been a number of extensive reviews on cold
atoms in optical lattices, which include discussions of the
BHM [10–12] and a recent review on the out-of-equilibrium
dynamics of closed interacting quantum systems [13]; hence,
one might ask whether a review of out-of-equilibrium
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dynamics in the BHM is required. The large number of
publications on this topic in the past ten years and the current
activity in the field suggest (at least to this author) that it may
be valuable to provide a narrower focus to take stock of what
has been learned and what directions may be fruitful to
explore in the future.

On the theoretical side, there are a number of challenges
to studying the out-of-equilibrium dynamics of the BHM. In
particular, even though there are a wide array of theoretical
approaches that have been used to study the BHM, all have
their drawbacks. Of analytic approaches, most are accurate
only in some portion of parameter space, either for weak
interactions or strong interactions, or have limitations that
there are a large average number of bosons per site.Numerical
approaches can be essentially exact but are limited in the size
of system that can be simulated due to finite computational
resources and for the same reason may be restricted in the
dimensions for which they are useful. As a consequence,
especially in situations such as a quantumquench, whichmay
require a description of both weakly and strongly interacting
limits of the BHMwithin the same calculation, itmay be chal-
lenging to find methods that are fully trustworthy for all
parameters in the calculation. Nevertheless, this should not
discourage such efforts but does imply that the results that
should generally bemost trusted are those that can be derived
from a variety of different methods, with differing strengths
and weaknesses.

On the experimental side, as mentioned above, the main
focus of work on the BHM is in the context of cold atoms
in optical lattices. The flexibility in engineering the dimen-
sionality of the lattice and parameters in the BHM, as well
as their temporal dependence through appropriate choices of
laser configurations and parameters, makes these systems
well suited to studying out-of-equilibrium dynamics. Addi-
tionally, to a very good approximation, cold atoms in optical
lattices can be treated as isolated quantum systems, so the
interaction of the system with an environment is not a
primary consideration and the observed dynamics is intrinsic
to the system. However, there is the complicating feature that
cold atoms require a harmonic confining potential as well as
the optical lattice potential, as opposed to the homogeneous
systems often preferred by theorists. The trap introduces an
inhomogeneous density profile, so that there can be multiple
phases present in the same trap, which allows a broad range
of parameter space to be probed in a single experiment but
places constraints on the ability to observe quantum critical
behaviour. Out-of-equilibrium effects in imaging methods
and thermometry also complicate the interpretation of some
experiments.

In addition to the quantum quench protocol mentioned
above, several other protocols have been considered for
studying out-of-equilibrium physics in the BHM, both the-
oretically and experimentally. These include periodic driving
in time [14–20], setting up states with finite superfluid current
[21–23], adding dissipation [24, 25], and setting up states
with a linear potential (artificial electric field) [26–28]. I have
chosen to focus primarily on out-of-equilibrium dynamics
associated with quantum quenches, which have attracted the
bulk of the attention of work on out-of-equilibriumdynamics

in the BHM, but wish to highlight these other efforts in the
interest of completeness.

This paper is structured as follows: in Section 2, I review
the Bose Hubbard model and discuss its phases and phase
transitions, along with the effects of a harmonic trapping
potential. In Section 3, I survey theoretical techniques that
have been used to study equilibrium and out-of-equilibrium
dynamics in the BHM, discussing some of the findings within
various methods and also strengths and weaknesses of
individual methods. In Section 4, I review experiments that
have probed the out-of-equilibrium dynamics of the BHM,
particularly those that have involved a crossing of the quan-
tum critical region associated with the Mott insulator-super-
fluid phase transition. Finally, in Section 5, I conclude and
discuss future directions that may be of interest.

In writing this paper, I have tried to represent the wide
variety of approaches and results that have been obtained on
the BHM. In so doing, I have tried to include all relevant
work. In an area that has seen as many publications as this
one, it is easy to overlook a piece of work; I apologise to any
author whose work I may have missed.

2. The Bose Hubbard Model

TheHamiltonian for the Bose Hubbard model takes the form
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choice that will generally be considered here is that 𝐽
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= 𝐽 for

nearest neighbour sites and zero otherwise on a cubic lattice),
𝑈 is the strength of interactions (assumed to be positive, cor-
responding to repulsive interactions), and 𝜇 is the chemical
potential. The Hamiltonian can be written as a sum of a piece
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and ̂

𝐻

𝐽
corresponding to the kinetic energy. The term ̂

𝐻

𝑈

in ̂

𝐻

0
contains on-site interactions between bosons (longer

range interactions can lead to additional orderings, such as
supersolidity [29], but I will consider on-site interactions
exclusively). The chemical potential determines the average
filling per site for a given 𝑈 and 𝐽.

A phase diagram which is qualitatively correct in dimen-
sions higher than one can be determined from simple con-
siderations and mean field theory. If 𝑈 ≪ 𝐽, then the model
describes weakly interacting bosons hopping on a lattice,
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which will condense and lead to a superfluid at low tem-
peratures. In the opposite limit of 𝐽 = 0, the ground state
can be determined by considering the single site Hamiltonian
̂

𝐻

0
. Working in the grand canonical ensemble (results in the

canonical ensemble can be obtained by a Legendre transfor-
mation), the ground state energy is minimized for 𝑛

0
bosons

on each site when the chemical potential satisfies 𝑛
0
≤ 𝜇/𝑈 ≤

𝑛

0
+ 1. This phase with an integer number of bosons per

site is the incompressible Mott insulator. For finite 𝐽/𝑈, there
is generically a transition between the Mott insulator and
superfluid phases. It is relatively straightforward to calculate
the mean field phase diagram as a function of 𝐽/𝑈 and 𝜇/𝑈
[1, 30–32] as described in Section 2.1 which leads to the
well-knownMott insulator lobes illustrated in Figure 1. Con-
siderable effort has been expended to obtain more accurate
determinations of the phase boundaries, using quantum
Monte Carlo [33–40], series expansions [41–43], and the den-
sity matrix renormalization group [44, 45]. The mean field
phase diagram is qualitatively similar to more exact calcula-
tions in dimensions 2 and higher but differs greatly from
accurate determinations of the phase boundary in 1 dimen-
sion, as illustrated in Figure 2.

In general it is not simple to write down the ground state
when both𝑈 and 𝐽 are finite, but in the limits 𝐽 = 0 and𝑈 = 0,
the ground state takes the form of a particularly simple pro-
duct state. When 𝑈 = 0, one may write the ground state as a
product of identical single particle states [46]:
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where 𝜙(x) satisfies the Gross-Pitaevski equation, and when
𝐽 = 0, the ground state is a product of Fock states:
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where 𝑛

0
is the number of bosons per site in the Mott

insulator.

2.1. Mean Field Phase Diagram. In the simplest mean field
theory [1, 31, 47], one introduces the superfluid order param-
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and the Hamiltonian may be approximated as a sum of single
site terms:
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Take the hopping term to be a perturbation to the Mott
insulator phase, which for 𝐽 = 0 has the ground state given in
(4) when there are 𝑛

0
bosons per site. One may calculate the

appropriate Landau expansion of the ground state energy as
a series in powers of 𝜓 to obtain [47]
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Figure 1: The mean field phase diagram of the BHM illustrating 𝜇
±

(9) for the first five Mott lobes. A vertical line indicates a possible
range of the local chemical potential 𝜇(𝑟) = 𝜇 − 𝑉(𝑟) in a trap.

where 𝑈 = 𝑈/𝑧𝐽, and 𝜇 = 𝜇/𝑧𝐽. An estimate for the phase
boundary of the Mott insulator may be found from requiring
that
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with the ± referring to the upper and lower branches of the
phase boundaries. The zero temperature phase diagram is
illustrated in Figure 1.

2.2. Phase Transitions. The form of the mean field phase dia-
gram illustrated in Figure 1 is qualitatively correct for dimen-
sions 𝑑 ≥ 2 but is progressively less accurate in lower dimen-
sions. For the transition between the Mott insulator and
superfluid at the tip of the Mott lobe, where ⟨𝑛⟩ = 1 on both
sides of the transition, mean field theory predicts (𝑧𝐽/𝑈)

𝑐
≃

0.17 [1, 30, 42, 43, 48], where 𝑧 is the coordination of the
lattice (𝑧 = 2𝑑 for a cubic lattice). Quantum Monte cal-
culations and series expansions have found the following
positions for the transitions in dimensions up to 3: (𝐽/𝑈)

𝑐
≃

0.29 in 𝑑 = 1 [44], (𝐽/𝑈)
𝑐
≃ 0.05974 in 𝑑 = 2 [41], and

(𝐽/𝑈)

𝑐
≃ 0.034 in 𝑑 = 3 [40].

The nature of the transition from the Mott insulator to
superfluid depends on dimensionality and density. At fixed
density, with the average number of bosons per site an
integer, then the transition in a 𝑑-dimensional BHM is in the
universality class of the 𝑑 + 1 dimensional XY model [1, 31,
32, 49] for which the lower and upper critical dimensions are
𝑑

𝑙
= 1 and 𝑑

𝑢
= 3, respectively [1]. Hence, for 𝑑 = 1, one

expects there to be a Kosterlitz-Thouless (KT) transition, and
it was observed that in the Mott insulator the gap, Δ, scales as
[41, 44]
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Figure 2: (a) Phase diagram of the one dimensional BHM as
a function of hopping (𝑡/𝑈) and chemical potential (𝜇/𝑈) as
calculated using series expansions [41], Quantum Monte Carlo
simulations [35, 36], and density matrix renormalization group
(DMRG) calculations [45]. (b) The same data as in (a) but with an
expanded view of the tip of the lobe where the Kosterlitz-Thouless
transition takes place [44]. Adapted figure with permission from
T. D. Kühner, S. R. White, and H. Monien, Phys. Rev. B 61, 12474
(2000). Copyright 2000 by the American Physical Society.

As illustrated in Figure 2, the first Mott lobe in the 1d BHM
has a nontrivial structure in the vicinity of the KT transition
point, and in fact there can be a reentrant superfluid if one
crosses the transition at fixed chemical potential [44].

In 𝑑 = 2 and 3, one finds a scaling form for the gap in the
Mott insulator of

Δ ∼ [(
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]

𝑧V

, (11)

where for 𝑑 = 2, 𝑧 = 1, ] = 0.67 [50] and for 𝑑 = 3, 𝑧 = 1

and ] = 1/2 [1, 31]. For the generic transition, where the den-
sity is not fixed, for example, at fixed chemical potential, then
𝑧] = 1, in 𝑑 = 1, 2, and 3. The compressibility and the

superfluid density are predicted to manifest quantum critical
behaviour. Quantum Monte Carlo simulations of the 1-
dimensional BHM in [33] found 𝑧 ≃ 2.04 and ] ≃ 0.48, in
good agreementwith the scaling predictions of Fisher et al. [1]
of 𝑧 = 2 and ] = 1/2.

2.3. Cold Atoms in Optical Lattices. Advances in laser cooling
of atoms that led to the achievement of Bose Einstein Con-
densation (BEC) were needed in order to obtain quantum
degenerate cold atoms in optical lattices [11]. The localization
of cold atoms in an optical lattice takes advantage of the
polarizability of the atoms. In a standing wave laser field from
counterpropagating beams, the atoms are trapped either at
the nodes or antinodes of the laser intensity, depending on the
sign of their polarizability. The form of the subsequent lattice
potential, for example, for a 3-dimensional cubic lattice, is

𝑉 (𝑥, 𝑦, 𝑧) = 𝑉

0
[sin2 (𝑘𝑥) + sin2 (𝑘𝑦) + sin2 (𝑘𝑧)] . (12)

The strength of the optical lattice 𝑉
0
is usually expressed in

units of the recoil energy 𝐸
𝑟
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2
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2
/2𝑚, where 𝑘 is the wave-

vector of the laser. The lattice constant of the optical lattice is
𝑎 = 𝜆/2, where 𝜆 is the laser wavelength.

It was realized by Jaksch et al. [5] that the combination of
an optical lattice and cold bosons would allow for the realiza-
tion of the Bose Hubbard model. In particular, if one starts
from the Hamiltonian for interacting bosons in the presence
of a lattice potential 𝑉lattice(x) and a trap potential 𝑉trap(x),
then the Hamiltonian for a 3-dimensional system is

𝐻 = ∫𝑑
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where ̂
𝜓(x) is a boson field operator for atoms in a given

internal atomic state and 𝑎
𝑠
is the 𝑠-wave scattering length.

When bosons are cooled to lie in the lowest Bloch band of the
periodic potential, the Hamiltonian can be expressed in the
tight binding form of (1) by expanding the field operators in
theWannier functions ̂𝜓(x) = ∑
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Bloch bands, especially in dynamics, has been investigated by
several groups [51, 52]). The parameters in the tight-binding
modelmay be related to integrals over theWannier functions,
for which analytic expressions may be given for a deep lattice
(𝑉

0
≫ 𝐸

𝑟
) [46]

𝐽 = ∫𝑑

3x𝑤∗
(x − x

𝑖
) [−

ℎ

2

2𝑚

∇

2
+ 𝑉lattice (x)]𝑤 (x − x

𝑗
)

≃

4

√𝜋

𝐸

𝑟
(

𝑉

0

𝐸

𝑟

)

3/4

𝑒

−2(𝑉
0
/𝐸
𝑟
)
1/2

,

𝑈 =

4𝜋𝑎

𝑠
ℎ

2

𝑚

∫𝑑

3x|𝑤 (x)|4 ≃ √ 8

𝜋

𝑘𝑎

𝑠
𝐸

𝑟
(

𝑉

0

𝐸

𝑟

)

3/4

.

(14)



ISRN Condensed Matter Physics 5

Note that the hopping parameter 𝐽 is much more sensitive
than the interaction parameter𝑈 to the depth of thewell.This
is to be expected, since the hopping is related to wavefunction
overlap between different sites and will be exponentially sup-
pressed in a deep lattice, whereas the interactions are at a sin-
gle site and should be much less sensitive to the depth of the
lattice. The values of 𝐽 and 𝑈 will generally be assumed to be
spatially uniform throughout the trap, with the effects of the
trapping potential being incorporated into the tight binding
term by adding the term

𝐻trap = ∑
𝑖

𝑉

𝑖
𝑛

𝑖 (15)

to the BHM for a homogeneous system, where 𝑉
𝑖
is the

strength of the trap at site 𝑖.The solutions found for the homo-
geneous BHM can be used to understand the behaviour of
the BHM in a spatially inhomogeneous trapping potential by
assigning a local chemical potential at radius 𝑟 in the trap
(assuming rotational symmetry)

𝜇 (𝑟) = 𝜇 − 𝑉 (𝑟) . (16)

Within the local density approximation (LDA), the phase of
the system at radius 𝑟 may be determined to be that of the
homogeneous system found at 𝜇 = 𝜇(𝑟). This implies that for
a sufficiently deep trap and not too large a value of 𝐽/𝑈, there
can be concentric shells of the Mott insulator and superfluid
phases, as follows from the schematic line 𝜇(𝑟) shown in
Figure 1. Quantum Monte Carlo (QMC) simulations [53] of
bosons in a quadratic trap (where there is no LDA assump-
tion) also show concentric domains of superfluid and Mott
insulator, which, due to the incompressible nature of theMott
phase, leads to steps in the density as a function of radius, giv-
ing rise to the so-called wedding cake structure [53, 54]. The
presence of these density and local chemical potential varia-
tions within a trap complicates efforts to relate the properties
of the homogeneous and trapped BHM, respectively [55].

QMC simulations have proven to be a very useful tool to
obtain results that are in principle exact for both the homoge-
neous BHM and bosons on an optical lattice in a trap. Unlike
many other theoretical methods, finite temperature effects
both in the homogeneous system and in traps have also been
taken into account. Mahmud et al. [39] used QMC simula-
tions to note that the presence of a trap affects the correlations
in the superfluid at finite temperature. At zero temperature,
the correlations for a two-dimensional system in a trap were
observed to be intermediate between those expected for a
uniform one-dimensional superfluid and those of a uniform
two-dimensional superfluid. At finite temperatures, the cor-
relations were observed to be similar to those expected in one
dimension, but at a lower temperature. Direct comparisons
between the results of QMC simulations and experiments
[39, 56–58] have indicated good agreement for equilibrium
systems. In a particularly detailed recent study, Trotzky et al.
[56] compared measurements of the critical temperature for
the finite temperature phase transition between a normal
fluid and the superfluid phase as a function of 𝑈/𝐽 for a 3-
dimensional system of bosons in an optical lattice with QMC
simulations of the same system. Good agreement between

the measured and calculated values was found for 𝑈/𝐽 ≲ 20

with less satisfactory agreement for deeper lattices (stronger
interactions). This and previous work confirm that QMC is
an important tool for calculating the equilibrium properties
of the BHM and of bosons in optical lattices, giving a baseline
to which out-of-equilibrium dynamics can be compared.

2.3.1. Quantum Criticality in a Trap. As discussed by Zhang
et al. [59], there are two ways that quantum criticality can
manifest itself that are accessible in a cold atom experiment.
One possibility is that it can be seen in the scaling of thermo-
dynamic quantities [31, 60, 61].The other is that itmay be seen
via the dynamic passage through a quantum critical region.
A signature of quantum criticality is the diverging of the
correlation length at the critical point. For cold atoms in a
trap, the size of the atom cloud in the trap is the largest
lengthscale in the problem, leading to a cutoff in the correla-
tion length. The inhomogeneity in the local chemical poten-
tial also limits the spatial extent of different phases. At higher
temperatures the coherence length 𝜉 shrinks to be less than
the cloud size so the role of the trap is lessened [60]. Recently,
Hazzard and Mueller [60] and Zhou and Ho [61] proposed
schemes to observe quantum critical scaling in a trap.
Hazzard and Mueller suggested comparing the density and
compressibility by writing the density in the form 𝑛 = 𝑛

0
+𝑛

𝑢
,

and the compressibility as 𝜅 = 𝜅

0
+ 𝜅

𝑢
, where 𝑛

0
and 𝜅

0
are

the zero temperature values of density and compressibility at
given 𝜇, 𝑇, and 𝑈 for 𝐽 = 0. Then a plot of 𝜅

𝑢
𝑇

1−𝑑/𝑧 against
𝑛

𝑢
𝑇

−𝑑/𝑧 should collapse onto a single curve. On the other
hand, Zhou and Ho suggested comparing the density and
compressibility to the chemical potential, also separating out
regular and singular contributions to 𝑛 and 𝜅. UnlikeHazzard
and Mueller’s approach, which uses only local observables,
Zhou and Ho’s approach requires a global quantity, the equi-
librium chemical potential. A drawback for both methods is
that at higher temperatures there can be overlapping critical
regimes that affect the scaling of thermodynamic quantities
[60]. For example, as illustrated in Figure 3, at temperatures
above the zero temperature Mott insulator, along the line
where there is particle-hole symmetry, the particle dilute Bose
gas (p-DBG) and hole DBG (h-DBG) critical regions overlap
and the resulting critical behaviour is that of the finite density
𝑂(2) rotor model. Such overlapping critical regions may
complicate attempts to extract critical exponents from exper-
iment. An additional complication that may affect future
experiments was pointed out by Pollet et al. [62], that a
finite correlation length can lead to violations of the LDA as
different radii in the trap cannot be treated as independent.
They estimated this effect to be not currently observable
within experimental error bars. However, there may be ways
to circumvent this issue by using finite size scaling [61].

A manifestation of quantum criticality more in line
with the theme of this paper is in the dynamic passage
through a quantum critical point [59]. This should leave
signatures in density and entropy currents and may also
give access to the Kibble-Zurek mechanism (KZM) [63, 64].
The KZM predicts defect formation after a system crosses a
second-order thermodynamic phase transition and has been
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Figure 3: (a) An illustration of universality classes of the BHM [60]. Transitions via paths (1) and (2) are described by the dilute Bose gas
(DBG) universality class, and path (3) is described by the 𝑂(2) universality class. The shaded regions indicate where each universality class
applies: blue indicates DBG physics, orange indicates 𝑂(2) physics, and the green region is governed by the finite density 𝑂(2) universality
class. (b)The schematic finite temperature phase diagram along path (4) [60]. Adapted Figure with permission from K. R. A. Hazzard and E.
J. Mueller, Phys. Rev. A 84, 013604 (2011). Copyright 2011 by the American Physical Society.

generalized to quantum phase transitions [65–67]. If one
focuses on a time-dependent coupling 𝑔(𝑡) which is close to
the critical coupling 𝑔

𝑐
, then close to the critical point the gap

Δ scales asΔ ∝ |𝑔(𝑡) − 𝑔

𝑐
|

𝑧].When 𝑔(𝑡) gets sufficiently close
to 𝑔

𝑐
, then Δ becomes too small to maintain adiabaticity at

some time 𝑡 = 𝑡
∗
. At this timescale, the energy scale for excita-

tions will be Δ
∗
∼ | ̇𝑔(𝑡

∗
)|

𝑧]/(𝑧]+1). The correlation length at
time 𝑡

∗
will be 𝜉

∗
∼ Δ

−1/𝑧

∗
, which implies a density of excita-

tions of 𝑛ex ∼ 𝜉
−𝑑

∗
∼ | ̇𝑔(𝑡

∗
)|

𝑑𝑧/(𝑧]+1) [66].This derivation of the
number density of excitations after a quench assumes a
picture in which there is adiabatic evolution up to some
distance |𝑔(𝑡

∗
) − 𝑔

𝑐
| from the transition at which point the

relaxation time diverges and the defects are frozen until the
system has passed through the critical region. As recently
pointed out [68, 69] for a sufficiently slow quench, there can
still be evolution of the defect configuration as the system
passes through the critical region, which can modify the
Kibble-Zurek predictions and may be relevant to slow
quenches in the BHM. These considerations are all for a
uniform system and do not consider the possible presence of
a trap.

2.4. Other Proposals to Realize the BHM. In addition to cold
atoms, there have also been proposals to realize the BHM and
theMott insulator to superfluid transition in photonic [70, 71]
and polaritonic systems [72–75].

3. Theory

In Section 2.1, the mean field behaviour of the BHM was
reviewed. In this section, I summarize a number of
approaches that have been used to study the out-of-equili-
brium behaviour of the BHM and results that have been
obtained within each of these approaches.

There is only one way for a system to be in equilibrium,
but there are many ways to prepare out-of-equilibrium states;
indeed, one of the characteristics of out-of-equilibrium states
is that their history matters. The class of out of equilibrium
states that I focus on primarily here is states that arise as a
result of a quantum quench corresponding to the dynamic
traversal of a quantum phase transition. In the context of the
BHM, this refers to either or both of 𝐽 and 𝑈 being time-
dependent parameters, usually such that the ground states
for the initial and final values of 𝑈/𝐽 are in different phases.
In order for the system to be out of equilibrium, the change
of 𝑈/𝐽 in time must be sufficiently quick that the system is
not able to evolve adiabatically from one phase to the other.
If the path crosses the critical region, then the presence of
diverging timescales at the quantum critical point ensures
that this will be the case. Both instantaneous quenches and
a continuous change in parameters will be considered. The
quantum-quench protocol has received considerable recent
interest beyond the BHM [13, 66, 67, 76–85] as the resulting
systems give examples of out-of-equilibrium dynamics in
interacting quantum systems, a class of problem that is still
under active investigation. In the context of the BoseHubbard
model, quenches have generally taken one of two forms.
Either a quench from the Mott insulating phase to the
superfluid phase or a quench from the superfluid phase to the
Mott insulating phase. Extensive theoretical effort has been
expended on the effects of time-dependent 𝐽/𝑈 in the BHM
in the form of quantum quenches [66, 86–117].

There are several features that are desirable for any theory
of equilibrium or out-of-equilibrium dynamics of the Bose-
Hubbardmodel. First, it should allow for both superfluid and
Mott insulating ground states (the Bogoliubov theory fails in
this instance). Second, a variety of methods concur on the
nature of the collective excitation spectrum in the two phases.
In the superfluid phase, there is a gapless sound mode that
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arises fromphase fluctuations of the superfluid order parame-
ter. Near the fixed density quantum critical point (QCP) there
is also a gapped (Higgs) mode corresponding to amplitude
fluctuations of the superfluid order parameter that has been
predicted in a variety of calculations [118–122] and observed
experimentally for bosons in two-and-three dimensional
optical lattices [123, 124]. In the Mott phase, the collective
modes are particle-hole excitations. Third, the approach
should be capable of describing nonlocal correlations in space
and time.

The methods discussed here mostly have the features
outlined above and are: the weak interactions Bogoliubov
approach (Section 3.1); an infinite dimensional mean field
approach (Section 3.2); Gutzwiller mean field theory (Sec-
tion 3.3); a method for 1/𝑍 corrections to mean field theory
(Section 3.4); a slave particle approach (Section 3.5); numeri-
calmethods, including time-dependent densitymatrix renor-
malization group (t-DMRG), time evolving block decimation
(TEBD), and Exact Diagonalization (Section 3.6); fermion-
ization approaches (Section 3.7); closed time path approaches
(Section 3.8); and exact results (Section 3.9). In addition to
the methods discussed here, a number of other methods,
such as bosonic dynamical mean field theory (DMFT) [125–
129], the variational cluster approximation (VCA) [130, 131]
and Quantum Monte Carlo (QMC) have been used to study
the equilibrium properties of the BHM, but to the best of
my knowledge these have not been used to address out-of-
equilibrium dynamics in the BHM.

3.1.Weak Interactions:The Bogoliubov Approach. TheBogoli-
ubov approach to the BHM is a mean field approach based
on the weak interaction limit [47], similar to the Bogoliubov
approach to aweakly interacting superfluid in the absence of a
lattice. This suggests working in momentum space, reflecting
the extended nature of the state and the expectation of a con-
densate with k = 0. Writing the boson annihilation operator
in momentum space:

𝑎

𝑖
=

1

√𝑁

𝑠

∑

k
𝑎k𝑒

−𝑖k⋅r
𝑖

, (17)

with 𝑁
𝑠
the number of sites, and similarly for the creation

operator, one may rewrite the BHMHamiltonian as [47]

𝐻 = ∑

𝑘

(𝜖k − 𝜇) 𝑎
†

k𝑎k +
𝑈

2𝑁

𝑠

∑

k
∑

k󸀠
𝑎

†

k𝑎
†

−k𝑎k󸀠𝑎−k󸀠 , (18)

with 𝜖k = −2𝐽∑
𝑑

𝑗=1
cos(𝑘

𝑗
𝑎) on a 𝑑-dimensional cubic lattice.

The approximation in the Bogoliubov approach comes from
noting that the number of condensate atoms 𝑁

0
≫ 1, in

which case 𝑁
0
= ⟨𝑎

†

0
𝑎

0
⟩ ≃ ⟨𝑎

0
𝑎

†

0
⟩, and hence one can write

𝑁

0
= ⟨𝑎

†

0
⟩⟨𝑎

0
⟩. Thus, ⟨𝑎†

0
⟩ = ⟨𝑎

0
⟩ = √𝑁

0
, where the phase is

chosen so that the expectation values are real. This observa-
tion is used to replace the annihilation and creation operators
with their average value plus a fluctuation:

𝑎

†

0
󳨀→ √𝑁

0
+ 𝑎

†

0
; 𝑎

0
󳨀→ √𝑁

0
+ 𝑎

0
.

(19)

Keeping only terms to quadratic order in the boson operators
in the Hamiltonian after this substitution leads to a Hamilto-
nian that can be diagonalized with a Bogoliubov transforma-
tion to

𝐻eff = −
1

2

𝑈𝑛

0
𝑁

0
+

1

2

∑

𝑘

[ℎ𝜔

𝑘
− (𝜖

𝑘
+ 𝑈𝑛

0
)]

+∑

k
ℎ𝜔

𝑘
̂

𝑏

†

k
̂

𝑏k,

(20)

where 𝑛
0
= 𝑁

0
/𝑁

𝑠
, and quasiparticle excitations ̂𝑏†k are

related to the 𝑎†k by

(

̂

𝑏k
̂

𝑏

†

−k
) = (

𝑢k Vk
V∗k 𝑢

∗

k
)(

𝑎k
𝑎

†

−k
) , (21)

with |𝑢k|
2
− |Vk|

2
= 1 and their energies are given by

ℎ𝜔

𝑘
= √𝜖

2

𝑘
+ 2𝑈𝑛

0
𝜖

𝑘
.

(22)

Limitations of the Bogoliubov theory are that it is only valid
when the number of atoms in the condensate 𝑁

0
≫ 1 and

hence does not indicate the presence of aMott insulator phase
when the condensate vanishes [47]. This suggests that it will
not be useful for giving a quantitative description of out-of-
equilibrium dynamics which involve crossing the quantum
phase transition from superfluid to Mott insulator. However,
as pointed out by Fischer et al. [86], it is still possible to infer
some features of these out-of-equilibrium dynamics using a
Bogoliubov approach. Fischer et al. [86] took the hopping
term in the BHM to have the form

𝐻hop = 𝐽∑
𝑖𝑗

𝑀

𝑖𝑗
𝑎

†

𝑖
𝑎

𝑗
, (23)

where 𝑀
𝑖𝑗
takes into account both the connectivity of the

lattice and the possibility of spatially nonuniform hopping.
They studied the Heisenberg equation of motion for the
operator 𝑎

𝑖
(setting ℎ = 1):

𝑖𝜕

𝑡
𝑎

𝑖
= 𝐽∑

𝑗

𝑀

𝑖𝑗
𝑎

𝑗
+ 𝑈𝑛

𝑖
𝑎

𝑖
, (24)

focusing on large fillings 𝑛 ≫ 1, in which case 1/𝑛 may be
used as a small expansion parameter.Theywrote the operator
𝑎 as

𝑎

𝑖
= (𝜓

0
+ 𝜒

𝑖
+

̂

𝜁

𝑖
)

̂

𝐴

√̂

𝑁

, (25)

where ̂

𝐴 = 𝑎

Σ
(𝑎

†

Σ
𝑎

Σ
)

−1/2
̂

𝑁

1/2, with 𝑎

Σ
= ∑

𝑖
𝑎

𝑖
, and ̂

𝑁 =

̂

𝐴

†
̂

𝐴 = ∑

𝑖
𝑛

𝑖
. The leading term in the expansion is 𝜓

0
, which

describes the condensate and is determined from the solution
of the Gross-Pitaevskii equation. The quantum corrections
to this mean field are split into the linear corrections, which
correspond to quasiparticle excitations of the superfluid, 𝜒

𝑖

and nonlinear corrections ̂𝜁
𝑖
. In the superfluid phase well
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away from the Mott insulator phase, the non-linear correc-
tions ̂𝜁

𝑖
may be ignored, provided 𝑈𝑡√𝑛 ≪ 1. Fischer et al.

[86] decomposed the operator

𝑎

𝑖
= 𝑒

𝑖𝜙
𝑖
√
𝑛

𝑖
,

(26)

into phase ̂

𝜙 and number 𝑛 operators and then related the
fluctuations 𝜒 to phase 𝛿

̂

𝜙 and number 𝛿𝑛 fluctuations,
respectively. The dynamical equations for these fluctuations
when expanded in the basis of eigenvectors of the hopping
matrix (with eigenvalues 𝜆

𝜅
where 𝜅 are generalized

momenta) are

𝜕

𝑡
𝛿𝑛

𝜅
= 2𝑛

0
𝐽𝜆

𝜅
𝛿

̂

𝜙

𝜅
,

𝜕

𝑡
𝛿

̂

𝜙

𝜅
= −(

𝐽𝜆

𝜅

2𝑛

0

+ 𝑈)𝛿𝑛

𝜅
,

(27)

where 𝑈 and 𝐽 may both be time dependent. If 𝑈 and 𝐽 are
both independent of time, these equations lead to the usual
Bogoliubov spectrum

𝜔

2

𝜅
= 𝐽

2
𝜆

2

𝜅
+ 2𝑛

0
𝑈𝐽𝜆

𝜅
, (28)

found above in (22). When 𝑈 is taken to be constant and 𝐽 is
allowed to vary as a function of time, Fischer et al. defined a
new time variable via 𝑑𝜏

𝜅
= 𝜆

𝜅
𝐽𝑑𝑡, leading to an equation of

motion for number fluctuations

(

𝜕

2

𝜕𝜏

2

𝜅

+ 1 +

𝑈

𝐽

2𝑛

0

𝜆

𝜅

)𝛿𝑛

𝜅
= 0. (29)

The solutions of this equation depend sensitively on the way
inwhich 𝐽 is taken to zero as a function of time. If 𝐽(𝑡) is of the
form 𝐽(𝑡) = 𝐽

0
(𝛾𝑡)

−𝛼, then for 𝛼 < 2 the number fluctuations
oscillate in timewith decreasing amplitude and frequency; for
𝛼 = 2 the fluctuations decay to zero, and for faster decay
of 𝐽(𝑡), either as a power law or exponential form 𝐽(𝑡) =

𝐽

0
𝑒

−𝛾𝑡, the fluctuations end up being frozen in at a finite value.
This can be understood as 𝛼 = 2 providing the limit for
horizon formation, in analogy to cosmological horizons. For
the exponential sweep, the equation of motion for number
fluctuations becomes scale invariant (i.e., independent of 𝜅)
and the dimensionless parameter governing the physics is ] =
𝑈𝑛

0
/𝛾, the ratio of an internal energy scale𝑈𝑛

0
, to an external

one, the sweep rate, 𝛾. This allows a notion of slow (] ≫ 1)

and fast (] ≪ 1) sweeps. The leading order behaviour of the
number fluctuations and phase fluctuations was determined
to be [86]

⟨𝛿𝑛

2

𝜅
⟩ ≃ 𝑛

0
(

1 − 𝑒

−2𝜋]

2𝜋]
) ,

⟨𝛿

̂

𝜙

2

𝜅
⟩ ≃ ](

1 − 𝑒

−2𝜋]

2𝜋𝑛

0

)𝛾

2
𝑡

2
.

(30)

A weakness of these results is that they come from extrapola-
tion of themean field theory for the weak coupling superfluid
phase, where 𝜓

0
is dominant over linear and non-linear

fluctuations, into the strong coupling phase—they also apply
only in the limit 𝑛

0
≫ 1. The approach taken by Fischer et al.

to address this issue is to note that if the quench takes place
sufficiently quickly such that the strong coupling regime is
reached for times 𝑡 ≪ 1/√𝑛𝑈 and 𝑡 ≪ 1/𝛾, then the state
reached via Bogoliubov dynamics can be viewed as an initial
state for evolution after the quench with the Hamiltonian ̂

𝐻

0
.

From these considerations, they found that the correlation
function usually considered to determine the presence of off-
diagonal long range order (ODLRO) takes the form

⟨𝑎

†

𝑖
𝑎

𝑗
⟩ ≃ 𝑛

0
𝑒

−𝑈
2

𝑡
2

Δ
2

(𝑛
0
)
,

Δ

2
(𝑛

0
) = 𝑛

0
(

1 − 𝑒

−2𝜋]

2𝜋]
) .

(31)

This prediction for the decay of the ODLRO with time could
be tested in the momentum distribution function in time of
flight experiments either in the peak at k = 0, or perhaps in
the visibility as a function of time.

As mentioned above, Fischer et al. [86] noted the analogy
between the dynamics of number fluctuations under a quan-
tum quench and dynamics in the early universe. In the long
wavelength limit, where the lattice structure is ignored, that
is, for wavelengths 𝜆 ≫ 𝑎, the lattice spacing, the equation of
motion for number fluctuations may be written as

(

𝜕

𝜕𝑡

1

𝐽 (𝑡)

𝜕

𝜕𝑡

− 𝑈𝑛

0
𝑎

2
∇

2
)𝛿𝑛 (x, 𝑡) = 0, (32)

where the speed of sound 𝑐2
𝑠
(𝑡) = 𝑈𝑛

0
𝑎

2
𝐽(𝑡) decreases as a

function of time. If this decrease is sufficiently quick, then
there is a horizon beyond which excitations of a given wave-
length cannot propagate, given by

Δ

𝑛
(𝑡) = ∫

∞

𝑡

𝑑𝑡

󸀠
𝑐

𝑠
(𝑡

󸀠
) , (33)

where for 𝐽(𝑡) = 𝐽

0
𝑒

−𝛾𝑡, the integral converges and one has
Δ

𝑛
(𝑡) = (2√𝐽

0
𝑈𝑛

0
/𝛾)𝑒

−𝛾𝑡/2. This horizon shrinks as 𝑡 → ∞,
so at a given time 𝑡, modes with wavelengths shorter than
Δ will oscillate, but longer wavelength modes with 𝜆 ≫ Δ

will be frozen out. Identifying ̇

𝐽/𝐽 with the Hubble constant,
the frozen fluctuations of the scalar field are analagous to the
quantum fluctuations of the inflaton field [132]. The presence
of such a horizon would imply that after a quench to theMott
insulator, there will be frozen in number fluctuations.

3.2. Infinite Dimensional Limit. The infinite dimensional
limit of the BHM is somewhat artificial, but it is a situation
where an exact solution can be obtained, which may have
relevance to the finite dimensional case. Sciolla and Biroli
[87, 88] took this approach and studied quantum quenches
in the infinite dimensional BHM.They took advantage of the
fact that the ground state of the BHM is site permutation
symmetric for any value of𝑈/𝐽 to note that after a quench the
state is also site permutation symmetric. This allows one to
parametrize the states with the parameters 𝑥

𝑖
, where 𝑥

𝑖
is the

fraction of sites with 𝑖 bosons, 𝑖 = 0, 1, 2, . . .. Considering the
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particular example where the maximum number of bosons
per site is 2 (a constraint that is easily relaxed), one has the
conditions,

𝑥

0
+ 𝑥

1
+ 𝑥

2
= 1; 𝑁 = 𝑉 (𝑥

1
+ 2𝑥

2
) , (34)

where 𝑁 is the total number of bosons and 𝑉 is the volume
of the system. From these relations, one may specify the state
in terms of 𝑥 = 𝑥

1
. Sciolla and Biroli considered quantum

quenches in which the interaction strength is taken from 𝑈

𝑖

to𝑈
𝑓
at time 𝑡 = 0 and studied the subsequent time evolution

of 𝑥 and the superfluid order parameter |Ψ
0
|

2. They found
the interesting result that there is a dynamical transition at
a value of 𝑈𝑑

𝑓
= (𝑈

𝑖
+ 𝑈

𝑐
)/2, where 𝑈

𝑐
= 3 + 2

√
2 (in units of

J), at which there is exponential relaxation to the Mott state.
This is illustrated in Figure 4 where it can be seen that in
addition to the dynamical transition noted above, the value
of ⟨|Ψ

0
|

2
⟩ tends to a finite value at long times, as opposed

to the value of 0 expected if the system is in equilibrium.
Sciolla and Biroli noted that this behaviour is an artifact
of the infinite dimensional limit but suggest that the mean
field approximation may capture aspects of the short-time
dynamics in finite dimensional systems, so for large quenches
onemay expect to see freezing in superfluid correlations, and
a failure to relax to the Mott state. A study by Snoek [89]
usingGutzwillermean field dynamics also found a dynamical
transition of the sort identified by Sciolla and Biroli.

3.3. Gutzwiller Mean Field. The Gutzwiller mean field
approach [133, 134] is a widely used way to look at the equili-
brium phase diagram and out-of-equilibrium dynamics in
the BHM in part because it is relatively straightforward to
implement numerically (dynamics in systems with as many
as 65

3 sites have been investigated [90]). The approach
involves approximating the many-body state of the system as
a product of single-site states in the form

|Ψ⟩ = ∏

𝑖

𝑛max

∑

𝑛=0

𝑓

(𝑖)

𝑛

󵄨

󵄨

󵄨

󵄨

𝑛⟩

(𝑖)
, (35)

with the constraint that ∑
𝑛
|𝑓

(𝑖)

𝑛
|

2

= 1 [12, 134]. The state |Ψ⟩
is to be viewed as a variational ansatz, and so the 𝑓(𝑖)

𝑛
are to

be found by minimizing

⟨Ψ|

̂

𝐻 |Ψ⟩ . (36)

For an average of one boson per site, the transition from
superfluid to the Mott insulator is found for 𝑧𝐽/𝑈 = 1/5.8,
as in regular mean field theory.

The Gutzwiller technique generalizes to time-dependent
problems fairly straightforwardly [90, 135] by requiring that

⟨Ψ| 𝑖

𝑑

𝑑𝑡

−

̂

𝐻 |Ψ⟩ = 0,
(37)

which leads to the equations [12]

𝑖

𝑑

𝑑𝑡

𝑓

(𝑖)

𝑛
=

𝑈

2

𝑛 (𝑛 − 1) 𝑓

(𝑖)

𝑛
− 𝐽Φ

∗

𝑖
√
𝑛 + 1𝑓

(𝑖)

𝑛+1

− 𝐽Φ

𝑖
√𝑛𝑓

(𝑖)

𝑛−1
,

(38)
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Figure 4: Evolution of the microcanonical average of the superfluid
order parameter ⟨|Ψ

0
|

2
⟩ as a function of𝑈

𝑓
for a quenchwith𝑈

𝑖
= 0.

Themean field value of |Ψ
0
|

2 is shown for comparison [87]. Adapted
figure with permission from B. Sciolla and G. Biroli, Phys. Rev. Lett.
105, 220401 (2010). Copyright 2010 by theAmericanPhysical Society.

where

Φ

𝑖
= ∑

⟨
𝑖,𝑗
⟩

⟨𝑎

𝑗
⟩ = ∑

⟨
𝑖,𝑗
⟩

∑

𝑛

√𝑛𝑓

(𝑗)

𝑛−1

∗

𝑓

(𝑗)

𝑛
. (39)

As with any mean field theory, the estimate of the critical
coupling for the phase transition is not particularly accurate
within the Gutzwiller approach. A more important failing is
that due to the assumption of a variational state which has a
product form, two site correlations factorize into single-site
quantities and so the method does not capture correlations
involving different sites. This is most problematic for inter-
mediate values of 𝑈/𝐽 where the ground state is not close
to product form, unlike the two limits 𝑈 = 0 and 𝐽 = 0.
Improvements to the Gutzwiller mean field have been made
using a variety of approaches [91–93, 136] and can allow
for perturbative corrections to short-range correlations [136].
Nevertheless, because of its simplicity, it is a very useful
method for gaining an understanding of physics for regimes
where exact numerical results are not easily obtained. For
example, for out-of-equilibrium dynamics in dimensions
higher than 1, for example, [94] (Section 4.2.3), or in the
presence of complicated space and time-dependent potentials
such as the “Gaussian spoon” consisting of a usual harmonic
trap 𝑉

0
with a Gaussian with velocity V:

𝑉 (r, 𝑡) = 𝑉
0
(r) + 𝑉

1
𝑒

−((𝑥−V𝑡)2+𝑦2)/𝑊2
,

(40)

suggested by Lundh [95] as a means to excite Mott insulating
states.

3.3.1. Projection Operator Approach. One suggestion to im-
prove upon Gutzwiller mean field theory that allows
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the effects of quantum fluctuations to be included both in
equilibrium and in dynamics is to use a projection operator
approach [91, 92]. The particular projection operator intro-
duced by Trefzger and Sengupta [91] was

𝑃

𝑙
= |𝑛⟩ ⟨𝑛| r ⊗ |𝑛⟩ ⟨𝑛| r󸀠 , (41)

which lives on the link 𝑙 between r and r󸀠 and projects on to
the manifold of states for which the occupation on sites r and
r󸀠 is 𝑛. With this projection operator, the hopping term in the
BHMmay be written as (introducing the hopping operator𝑇

𝑙

and replacing the sum over sites with a sum over links)

−𝐽 ∑

⟨
rr󸀠
⟩

𝑏

†

r 𝑏r󸀠 = ∑
𝑙

𝑇

𝑙
= ∑

𝑙

[𝑃

𝑙
𝑇

𝑙
+ 𝑇

𝑙
𝑃

𝑙
+ 𝑃

⊥

𝑙
𝑇

𝑙
𝑃

⊥

𝑙
] , (42)

where 𝑃⊥
𝑙
= 1−𝑃

𝑙
.The terms 𝑃

𝑙
𝑇

𝑙
+𝑇

𝑙
𝑃

𝑙
take the system out of

the low energy manifold in Mott state where there are 𝑛
bosons on each site. The strategy employed in [91] to eli-
minate these terms from the Hamiltonian was to use a can-
onical transformation

𝑆 = 𝑖∑

𝑙

[𝑃

𝑙
, 𝑇

𝑙
]

𝑈

, (43)

which leads to a transformed Hamiltonain

𝐻

∗
= 𝑒

𝑖𝑆
𝐻𝑒

−𝑖𝑆
, (44)

in which terms are kept up to order 𝑧2𝐽2/𝑈:

𝐻

∗
= 𝐻

0
+∑

𝑙

𝑃

⊥

𝑙
𝑇

𝑙
𝑃

⊥

𝑙

−

1

𝑈

∑

𝑙

[𝑃

𝑙
𝑇

2

𝑙
+ 𝑇

2

𝑙
𝑃

𝑙
− 𝑃

𝑙
𝑇

2

𝑙
𝑃

𝑙
− 𝑇

𝑙
𝑃

𝑙
𝑇

𝑙
]

−

1

𝑈

∑

⟨
𝑙𝑙
󸀠

⟩

[𝑃

𝑙
𝑇

𝑙
𝑇

𝑙
󸀠 − 𝑇

𝑙
𝑃

𝑙
𝑇

𝑙
󸀠

+

1

2

(𝑇

𝑙
𝑃

𝑙
𝑃

𝑙
󸀠𝑇

𝑙
󸀠 − 𝑃

𝑙
𝑇

𝑙
𝑇

𝑙
󸀠𝑃

𝑙
󸀠) +H.c.] .

(45)

A Gutzwiller ansatz was then applied for the canonically
transformed state |𝜓󸀠

⟩ = 𝑒

𝑖𝑆
|𝜓⟩,

󵄨

󵄨

󵄨

󵄨

󵄨

𝜓

󸀠
⟩ = ∏

r
∑

𝑛

𝑓

(r)
𝑛
| 𝑛⟩ . (46)

The phase diagram obtained using this state in [91] is signif-
icantly improved from mean field theory—in 2 dimensions
the Mott insulator superfluid phase boundary is closer to
QMC results than the mean field result is, and in 3 dimen-
sions, the projection operator result is in very close agree-
ment.

As withGutzwillermean field theory, it is straightforward
to generalize the method to allow time dependence. In
particular, if 𝐽(𝑡) is time dependent then the canonical

transformation becomes time dependent and one has the
following evolution equation:

(𝑖ℎ𝜕

𝑡
+

𝜕𝑆

𝜕𝑡

)

󵄨

󵄨

󵄨

󵄨

󵄨

𝜓

󸀠
⟩ = 𝐻

∗
[𝐽 (𝑡)]

󵄨

󵄨

󵄨

󵄨

󵄨

𝜓

󸀠
⟩ , (47)

provided 𝐽(𝑡)/𝑈 ≪ 1.This restricts the initial and final values
of 𝐽 to satisfy 𝐽

𝑖
/𝑈, 𝐽

𝑓
/𝑈 ≪ 1. On the other hand, it does not

place restrictions on the ramp rate 𝜏−1, which may be either
fast or slow.

Trefzger and Sengupta considered both quenches from
the superfluid phase to the Mott insulator and from the Mott
phase to the superfluid phase. In the quench from superfluid
to the Mott insulator, they did not observe the expected
universal scaling of either the residual energy

𝑄 = ⟨𝜓

𝑓

󵄨

󵄨

󵄨

󵄨

󵄨

𝐻 [𝐽

𝑓
]

󵄨

󵄨

󵄨

󵄨

󵄨

𝜓

𝑓
⟩ − 𝐸

𝐺
[𝜓

𝑓
] , (48)

or the defect formation probability (which formed a plateau
at large ramp times)

𝑃 = 1 −

󵄨

󵄨

󵄨

󵄨

󵄨

⟨Ψ

𝐺

󵄨

󵄨

󵄨

󵄨

󵄨

𝜓

𝑓
⟩

󵄨

󵄨

󵄨

󵄨

󵄨

2

,
(49)

where |𝜓
𝑓
⟩ is the state at time 𝑡

𝑓
after the ramp and |Ψ

𝐺
⟩

is the ground state for the final value of 𝐽/𝑈. 𝐸
𝐺
[𝜓

𝑓
] is the

ground state energy determined by minimizing the energy
functional for 𝐽 = 𝐽

𝑓
. They observed that the timescale on

which one might expect to see universality in 𝑃 and 𝑄 can
be estimated as the time for a boson to cross the system of
size 𝐿, which may well exceed the system lifetime, so that the
observed behaviour of 𝑃 and 𝑄 is governed by local physics.

On quenching from the Mott insulator to the superfluid
phase, they found oscillations in the amplitude of the order
parameter, with a period that scales like 𝑇 ∼ (𝛿𝐽)

−𝛼, where
(𝛿𝐽) = |𝐽

𝑓
− 𝐽

𝑖
| and 𝛼 = 0.35 ± 0.05 for quenches with a final

value of 𝐽 close to the critical 𝐽 (higher values of 𝐽 led to mul-
tiple frequency components being present). They also found
𝑃 ∼ (𝛿𝐽)

0.89 and 𝑄 ∼ (𝛿𝐽)

1.90, both in disagreement with the
exponents expected for a QCP with 𝑧 = 1 [13].

The projection operator and canonical transformation
used in this method have an advantage over Gutzwiller
mean field theory in the Mott state in that they retain low
energy excitationswhile removing high energy excitations via
canonical transformation. In the superfluid phase close to the
Mott insulator where number fluctuations are not too large,
it is likely that this method may still be an improvement over
regular Gutzwiller mean field theory, but deeper into the
superfluid phase, where number fluctuations are much larger
than in theMott phase, it seems unlikely that thismethodwill
provide any improvement.

3.4. 1/𝑍 Corrections to Mean FieldTheory. Mean field theory
should be exact in the limit of infinite co-ordination 𝑍, but
for finite dimensions, it is known to be inaccurate. Navez
and Schützhold [93] developed a systematic expansion in 1/𝑍
about mean field theory and used this expansion to explore a
quench from aMott insulator to superfluid.They started with
reduced density matrices for 1 site (with site index 𝜇):

𝜌

𝜇
= Tr

�𝜇
{𝜌} , (50)
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and 2 sites (site indices 𝜇 and ])

𝜌

𝜇] = Tr
�𝜇�]
{𝜌} , (51)

and similarly for higher numbers of sites.The correlated parts
of these reduced density matrices, 𝜌𝑐

𝜇], may be obtained from

𝜌

𝜇] = 𝜌
𝑐

𝜇] + 𝜌𝜇𝜌]. (52)

Navez and Schützhold’s approach is based on the observation
that the correlations in the Mott insulator have the scaling
hierarchy

𝜌

𝑐

S = 𝑂 (𝑍
1−|S|

) , (53)

where |S| is the number of lattice sites in the set of lattice
sets S. They showed that if this hierarchy is satisfied by the
reduced density matrices 𝜌𝑐S, then it is also satisfied by 𝜕

𝑡
𝜌

𝑐

S,
so the hierarchy will remain valid for some finite time (of
𝑂(ln𝑍)) [93]. In the Mott phase with one particle per site
𝜌

𝜇
= |1⟩

𝜇
⟨1| + 𝑂(1/𝑍). By making use of the hierarchy in

(53) to neglect higher order reduced density matrices, they
obtained an equation of motion for 𝜌𝑐

𝜇], which leads to the
following equations (with ℎ set to unity):

(𝑖𝜕

𝑡
− 𝑈 + 3𝐽𝑇k) 𝑓

12

k = −
√
2𝐽𝑇k (𝑓

11

k + 𝑓

22

k + 1) ,

𝑖𝜕

𝑡
𝑓

11

k = 𝑖𝜕

𝑡
𝑓

22

k =
√
2𝐽𝑇k (𝑓

12

k − 𝑓

21

k ) .
(54)

In (54), the 𝑓𝑖𝑗k are the spatial Fourier transforms of the par-
ticle and hole correlation functions 𝑓11

𝜇] = Tr{𝜌̂ℎ†
𝜇

̂

ℎ]}, 𝑓
12

𝜇] =

Tr{𝜌̂ℎ†
𝜇
̂
𝑝]}, 𝑓

21

𝜇] = Tr{𝜌̂𝑝†
𝜇

̂

ℎ]}, and 𝑓
22

𝜇] = Tr{𝜌̂𝑝†
𝜇
̂
𝑝]}, where

the local particle and hole operators are ̂
𝑝

𝜇
= |1⟩

𝜇
⟨2| and

̂

ℎ

𝜇
= |0⟩

𝜇
⟨1|, respectively, and 𝑇k is (1/𝑧)∑

𝜇
𝑇

𝜇]𝑒
𝑖k⋅(r
𝜇
−r])

≃

1−𝑘

2
/2𝑚

∗, where𝑇
𝜇] is the connectivitymatrix of the lattice.

Navez and Schützhold considered a quench from 𝐽/𝑈 ≪

1 to a final much larger 𝐽, and hence assumed initial condi-
tions 𝑓11

𝜇] = 𝛿

𝜇], and all other 𝑓𝑖𝑗
𝜇] = 0. Writing the boson

operators of the BHM as

𝑎

𝜇
=

̂

ℎ

𝜇
+
√
2
̂
𝑝

𝜇
+ 𝑟

𝜇
, (55)

where 𝑟
𝜇

includes terms involving occupation numbers
larger than 2, which decouple due to the scaling hierarchy
assumption, they calculated ⟨𝑎†

𝜇
(𝑡)𝑎](𝑡)⟩ for an instantaneous

quench from 𝐽 ≃ 0 to a final value of 𝐽 = 𝐽

𝑐
(1 + 𝜖), where

0 < 𝜖 ≪ 1 and 𝐽
𝑐
is the critical value of 𝐽. In this limit, they

estimated

⟨𝑎

†

𝜇
(𝑡) 𝑎] (𝑡)⟩ ≃N (𝑡) 𝑒

𝛾√𝑡
2
−(r
𝜇
−r])2/𝑐2

,
(56)

whereN(𝑡) is weakly time dependent compared to the expo-
nential, 𝛾 ∼ √𝐽 − 𝐽

𝑐
, and 𝑐2 = 3𝐽(𝑈 − 𝐽)/𝑚

∗ with 𝑐 a velocity
scale. This form gives a constant propagation speed of the
correlations, as found in the Lieb-Robinson bound [137].The
exponent in (56) also shows scaling behaviour in the vicinity
of the critical point: as 𝛾 → 𝛾

󸀠
= 𝜆𝛾, the form is invariant

under 𝑡 → 𝑡

󸀠
= 𝑡/𝜆 and r → r󸀠 = r/𝜆. In addition

to the growth of off-diagonal long range order, Navez and
Schützhold also considered the growth of phase coherence
by looking at the condensate fraction within a region S with
|S| ≪ 1. Defining the coarse-grained operator ̂

𝐴S =

∑

𝜇∈S 𝑎𝜇/
√
|S|, which is the homogeneous mode which will

give the largest eigenvalue of ⟨𝑎†
𝜇
𝑎]⟩, this mode will have a

macroscopic occupation𝑁S = ⟨

̂

𝐴

†

S
̂

𝐴S⟩ ≫ 1 corresponding
to the condensate fraction in the region S after time 𝑡. For
𝑐

2
𝑡

2
≪ |S|, 𝑁S/|S| ∼ 1/|S| and for |S| ≪ 𝑐

2
𝑡

2, 𝑁S/|S| ∼
𝑒

𝛾𝑡. This suggests that for distinct regions S and S󸀠 with
1 ≪ |S|, |S󸀠

| ≪ 𝑐

2
𝑡

2, the relative phase between the regions
correlates as

⟨𝑒

𝑖(𝜑S−𝜑S󸀠
)
⟩ ≃ 𝑒

−𝛾𝑟
2

/2𝑐
2

𝑡
,

(57)

where 𝑟 is the distance between the regions and 𝜑S is defined
via ̂𝐴S =

√
̂

𝑁S𝑒
𝑖𝜑S , and since ⟨̂𝑁S⟩ ≫ 1, one can safely write

̂

𝑁S ≃ 𝑁S. This gives a growth of phase correlations which is
diffusive, as opposed to ballistic growth of ODLRO found in
(56).

3.5. Slave Particle Approach. Another approach in which the
Hilbert space of the BHM is truncated to three states per site
was put forward by Altman and Auerbach [96] who consid-
ered the BHM in the form

𝐻 =

𝑈

2

∑

𝑖

(𝑛

𝑖
− 𝑛)

2

− 𝐽∑

⟨
𝑖𝑗
⟩

(𝑎

†

𝑖
𝑎

𝑗
+ 𝑎

†

𝑗
𝑎

𝑖
) − 𝜇∑

𝑖

(𝑛

𝑖
− 𝑛) ,

(58)

and restricted the Hilbert space to states with 𝑛, 𝑛−1 or 𝑛+1
bosons per site, allowing for a pseudospin 1 representation
of the problem. This approach is most appropriate in and
near theMott insulating phasewhere number fluctuations are
small. Altman and Auerbach introduced creation operators
̂
𝑡

†

𝛼𝑖
, where |𝑛 + 𝛼⟩

𝑖
=
̂
𝑡

†

𝛼𝑖
|0⟩

𝑖
, with 𝛼 = 1, 0, −1, subject to the

constraint ∑
𝛼
̂
𝑡

†

𝛼𝑖
̂
𝑡

𝛼𝑖
= 1. The original bosons of the BHM

are represented as 𝑎†
𝑖
=
√
𝑛
̂
𝑡

†

0𝑖
̂
𝑡

−1𝑖
+
√
𝑛 + 1

̂
𝑡

†

1𝑖
̂
𝑡

0𝑖
. They also

introduced modified coherent states of the form |Ω(𝜃,

𝜂, 𝜙, 𝜒)⟩, with

|Ω⟩ = {cos(𝜃
2

)
̂
𝑡

†

0
+ 𝑒

𝑖𝜂 sin(𝜃
2

)

× [𝑒

𝑖𝜙 sin(
𝜒

2

)
̂
𝑡

†

1
+ 𝑒

−𝑖𝜙 cos(
𝜒

2

)
̂
𝑡

†

−1
] } |0⟩ ,

(59)

and then chose a variational wave function of the form
󵄨

󵄨

󵄨

󵄨

ΦMF⟩ = ∏
𝑖

󵄨

󵄨

󵄨

󵄨

Ω⟩

𝑖
. (60)

The Mott phase is described by 𝜃 = 0. When 𝜃 > 0 there is
a superfluid order parameter Ψ =

√
𝑛 sin 𝜃𝑒−𝑖𝜙. Minimizing

the variational energy leads to the usual mean field bound-
aries for theMott lobes. To study excitations above the ground
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state, Altman and Auerbach performed the canonical trans-
formation

̂

𝑏

0𝑖
= cos(𝜃

2

)
̂
𝑡

0
+

1

√
2

sin(𝜃
2

) (
̂
𝑡

1𝑖
+
̂
𝑡

−1𝑖
) ,

̂

𝑏

𝛼𝑖
= sin(𝜃

2

)
̂
𝑡

0
−

1

√
2

cos(𝜃
2

) (
̂
𝑡

1𝑖
+
̂
𝑡

−1𝑖
) ,

̂

𝑏

𝜑𝑖
=

1

√
2

(
̂
𝑡

1𝑖
−
̂
𝑡

−1𝑖
) ,

(61)

subject to the constraint ∑
𝑚
̂

𝑏

†

𝑚𝑖

̂

𝑏

𝑚𝑖
= 1. The mean field

variational state may be written as |ΦMF⟩ = ∏𝑖
𝑏

†

0𝑖
|0⟩, with 𝑏†

𝛼𝑖

and 𝑏†
𝜑𝑖
creating excitations about this state. They then used

the constraint to eliminate 𝑏
0
from the Hamiltonian and

truncated the resulting Hamiltonian at quadratic order in the
operators 𝑏†

𝛼
and 𝑏†

𝜑
. After a Bogoliuibov transformation one

obtains

𝐻fluc = ∑
𝑚k
𝜔

𝑚k𝛽
†

𝑚k𝛽𝑚k. (62)

Themodes associatedwith the two types of fluctuations in the
superfluid phase are a massive amplitude (Higgs) mode and
a phase (sound) mode [96]

𝜔

𝛼
(k) ≃ √𝑐2k2 + Δ2,

𝜔

𝜑
(k) ≃ 𝑐 |k| ,

(63)

where 𝑐 and Δ may be expressed in terms of 𝐽, 𝑈, 𝑧, and 𝑛.
In the Mott phase, the two modes are degenerate and gapped
and represent particle and hole excitations.

Altman and Auerbach also constructed a path integral
using the modified coherent states, and writing the action in
terms of Ψ =

√
𝑛 sin 𝜃𝑒−𝑖𝜑, they obtained the action

𝑆 =

1

8𝑧𝐽𝑛

2
∫

𝑡

0

𝑑𝑡

󸀠
∫𝑑

𝑑r {󵄨󵄨󵄨
󵄨

󵄨

̇

Ψ

󵄨

󵄨

󵄨

󵄨

󵄨

2

− (2𝐽𝑛)

2
𝑧|∇Ψ|

2

− (2𝐽𝑛𝑧)

2
(𝑢 − 1) |Ψ|

2

−(𝑧𝐽)

2
𝑛𝑢|Ψ|

4
} .

(64)

For large, 𝑛 the critical point is at 𝑢 = 𝑈/4𝑧𝐽𝑛 = 1. From this
action they obtained an equation of motion for the amplitude
of the superfluid order parameter (after rescaling)

̈

Ψ = 𝑐

2
∇

2
Ψ +

1

2

Δ

2
Ψ(1 − |Ψ|

2
) . (65)

The solution of this equation when Ψ is assumed to be
spatially uniform shows oscillations as a function of time for
a system prepared in the Mott state, as illustrated in Figure 5
(although these oscillations were not observed in a recent
quench experiment [138])

Altman andAuerbach noted some caveats to their results:
the assumption of a uniform system may be spoiled by topo-
logical defects that get trapped by the Kibble-Zurek mecha-
nism [63, 64]. For initial states near the transition, the cor-
relation length should be large enough that such defects are
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Figure 5: (a) Mean field energy in the superfluid state as a function
of Ψ with the equiilbrium ground state indicated at (2); (b) solution
of (65) as a function of time, compared to the equilibrium value ofΨ
(dashed line) [96]. Adapted figure with permission from A. Altman
andA. Auerbach, Phys. Rev. Lett. 89, 250404 (2002). Copyright 2002
by the American Physical Society.

widely spaced. However, for a quench from deep in the Mott
phase, there will be a much higher initial density of defects.
Altman and Auerbach argued that the k = 0mode will be the
fastest growing, so that as 𝐽 is increased to near the transi-
tion, defects will generally be widely separated by 𝜉 = 𝑐/Δ.
The question of the effects of the remaining vortices on the
evolution ofΨ is an open question.The oscillations shown in
Figure 5 are undamped—in general, one would expect that
such oscillations would damp as a function of time. Altman
and Auerbach argued that such damping could come from
the coupling of the amplitude mode to low-energy phasons,
which would lead to phason pair emission.

The theory discussed in [96] is primarily for 𝑛 ≫ 1,
motivated by the experiments of Orzel et al. [139], for which
𝑛 ∼ 50. Further work by Huber et al. [118] extended the slave
particle approach to allow for 𝑛 of order unity. Using a similar
procedure in which they constructed the low energy excita-
tions above the mean field variational ground state, they
found qualitatively similar features to Altman and Auerbach,
namely, a massive Higgs mode and a gapless sound mode
in the superfluid and gapped particle hole excitations in the
Mott insulator. The theory has similar caveats to the large 𝑛
theory that 𝐽/𝑈 not be too large and the density of excitations
not be too large (which will certainly be satisfied in the Mott
phase).

3.6. Numerical Methods. Numerical simulations give the
opportunity to obtain quantitative results for both equilib-
rium and out-of-equilibrium dynamics both for the homo-
geneous BHM and for cold bosons in an optical lattice.
Methods that have been used extensively for out-of-equili-
brium dynamics include exact diagonalization and the two
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closely related methods: time-dependent density matrix
renormalization group (t-DMRG), and time-evolving block
decimation (TEBD).The t-DMRG [140, 141] and TEBD [142]
methods are primarily limited to use in one dimension, due to
the exponential increase in computational resources required
in two dimensions [143], whereas exact diagonalization may
be used in any dimension, but the Hilbert space grows expo-
nentially with the number of bosons, limiting the number
of sites that may be simulated. In both t-DMRG and TEBD,
the Hilbert space is truncated, but low lying energy states
are retained, allowing for the simulation of larger systems
in 1 dimension than with exact diagonalization. Reviews by
Schollwöck [143, 144] give a comprehensive discussion of
details of thesemethods—my focus here is on the physics that
has been obtained from numerical calculations for quenches
from (i) the superfluid phase to theMott insulating phase and
(ii) the Mott insulator phase to the superfluid phase.

3.6.1. Superfluid to Mott Insulator Quench. Kollath et al. [97]
used a combination of exact diagonalization and t-DMRG to
study the behaviour of the homogeneous BHMwith unit fill-
ing after a sudden quantumquench from the superfluid phase
with an initial value of the interaction strength 𝑈

𝑖
to a final

value 𝑈
𝑓
≫ 𝑈

𝑖
. Their simulations encompassed up to 18 sites

in two dimensions and up to 64 sites in 1 dimension. They
calculated the time-and space-dependent correlation func-
tions ⟨𝑎†

𝑥
(𝑡)𝑎

0
(𝑡)⟩ (note that Kollath et al. denote the boson

creation operators of the BHM by 𝑏† rather than 𝑎† as used
here) to characterize the dynamics after such a quench. This
correlation function is seen not to decay to zero, but after an
initial relaxation on a timescale of order 1/𝐽 is seen to have
small amplitude oscillations, with period 2𝜋/𝑈

𝑓
about a finite

value after a quench, as illustrated in Figure 6.
Kollath et al. investigated the decay of the time-dependent

correlation functions with distance after the decay of the
initial transient and found that there were two different
behaviours, depending on the final value of𝑈

𝑓
. For𝑈

𝑓
/𝐽 not

too large, the correlations fit reasonably well to thermal corre-
lations determined with QMC and suggest that the final state
can be viewed as thermalized. However, for large 𝑈

𝑓
, there

was a strongmemory of the initial state, and the decay of cor-
relations with distance wasmuch slower than found either for
a thermal state or in the ground state at𝑈 = 𝑈

𝑓
, as illustrated

in Figure 7, which they characterized as a nonthermal steady
state.

Kollath et al. [97] rationalized the slow relaxation they
found for large 𝑈

𝑓
by focusing on the particle and hole

excitations of the Mott insulator. If quasiparticle interactions
are ignored, then the effective Hamiltonian in the Mott
regime may be written in the form𝐻

0
= ∑k,𝛼 𝜔k𝛽

†

𝛼k𝛽𝛼k, with
𝛽

†

𝛼k a creation operator for a quasiparticle in the Mott insula-
tor. Thermalization then proceeds through the relaxation of
the quasiparticle distribution given by the initial conditions.
This requires processes in which quasiparticle number is not
conserved, which are strongly suppressed if the gapΔ is larger
than 𝑊/2 where 𝑊 ∼ 4𝑧𝐽 is the quasiparticle bandwidth.
Higher order processes could still lead to thermalization, but
on much longer timescales than accessible numerically. This

picture relies on having a dilute quasiparticle population, that
is, an initial state close to the transition, but at least in their
numerics, 𝑈

𝑖
= 2𝐽, appear to have been sufficiently close to

the transition (𝑈
𝑐
= 3.37𝐽 in 1 dimension [44] and𝑈

𝑐
= 16.7𝐽

in 2 dimensions [41]) for this physics to be observable.
The single particle correlations studied in [97] and also

density-density correlations ⟨𝑛
𝑗
𝑛

𝑗+𝑟
⟩ were calculated as a

function of time and position with similar 𝑈
𝑖
and 𝑈

𝑓
= 40𝐽

for average fillings ⟨𝑛⟩ = 1 and 0.5 by two of the authors
of [97] in [98]. They observed that the single particle and
density-density correlations showed a “light-cone” effect in
that there was a propagating front in the correlation with
velocity V

𝑠
. This behaviour is similar to that demonstrated by

Lieb and Robinson [137] for one dimensional spin systems
with finite range interactions, that at long distances there is
a maxi mal velocity at which correlations can spread. The
values of V

𝑠
for ⟨𝑛⟩ = 1, for which𝑈

𝑓
corresponds to theMott

phase, were on the order of 5-6𝐽, whereas the values of V
𝑠
for

⟨𝑛⟩ = 0.53 (for which the system remains superfluid) after the
change in𝑈were of the order of 4𝐽. Additionally, Lauchli and
Kollath [98] calculated the change in von Neumann entropy
for blocks of length 𝑙 as a function of time: 𝑆(𝑙, 𝑡) − 𝑆(𝑙, 0),
and found that this showed linear growth for short times
and saturated at a time 𝑡∗(𝑙) ≃ 𝑙/2V

𝑒
for periodic boundary

conditions and 𝑡∗(𝑙) ≃ 𝑙/V
𝑒
for open boundary conditions

with V
𝑒
≃ V

𝑠
in accord with predictions of Calabrese and

Cardy [145].
The dynamics of local observables both in homogeneous

systems and in the presence of a parabolic trapping potential
were studied by Bernier et al. [99] using a combination of
exact diagonalization calculations and t-DMRG to investigate
quenches of the form 𝑈(𝑡) = 𝑈

𝑖
+ (𝑡/𝜏)(𝑈

𝑓
− 𝑈

𝑖
) for the 1𝑑

BHM. By focusing on local observables, such as the local
compressibility 𝜅

𝑗
= ⟨𝑛

2

𝑗
⟩−⟨𝑛

𝑗
⟩

2, and the probability of occu-
pation of a site by 𝑛 bosons,𝑃

𝑛
, they observed that the dynam-

ics split into two regimes: short ramp times and long ramp
times as illustrated in Figure 8. For short ramp times (𝜏 ≲

ℎ/𝐽), the behaviour near the centre of a homogeneous system
and a trap is essentially identical, and indicative of local
dynamics, since the ramp timescale is less than the hopping
timescale. At longer times, the inhomogeneity of the trap
becomes apparent as density redistribution takes place, as
seen in different values for the local quantities in the presence
and absence of the trap. This behaviour was seen both for a
quench from superfluid to the Mott insulator (𝑈

𝑖
= 2𝐽 and

𝑈

𝑓
= 4𝐽) and for a quench within theMott insulator (𝑈

𝑖
= 4𝐽

and 𝑈
𝑓
= 6𝐽).

In subsequent work investigating local observables and
local currents in a trap, Bernier et al. [100] observed that
regions with density of order 1 boson per site (even if not in a
Mott insulator state) can act as “Mott barriers” that impede
particle transport, slowing down dynamics associated with
density redistribution in the trap. These ideas are discussed
further in the context of quench experiments by Hung et al.
[146] in Sections 4.2.2 and 4.2.3.

3.6.2. Mott Insulator to Superfluid Quench. Clark and Jaksch
[101] used TEBD for the one dimensional BHM to study
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= 40𝐽 obtained using (a) exact diagonalization and

t-DMRGmethods in 1 dimension and (b) exact diagonalization in 2 dimensions [97]. Adapted figure with permission from C. Kollath, A. M.
Lauchli, and E. Altman, Phys. Rev. Lett. 98, 180601 (2007). Copyright 2007 by the American Physical Society.
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Adapted figure with permission from C. Kollath, A. M. Läuchli, and E. Altman, Phys. Rev. Lett. 98, 180601 (2007). Copyright 2007 by the
American Physical Society.

the effect of varying the lattice depth 𝑉

0
(𝑡) with time on

the coherence in ramping from the Mott insulator to the
superfluid phase. They considered slow ramps in which the
lattice depth was evolved from the superfluid state with
𝑈/2𝐽 = 2 to the Mott insulator with 𝑈/2𝐽 = 40. Comparing
the exact numerical solution with TEBD for a system of
𝑀 = 7 bosons, they established that their slow ramp had an
infidelity of 1 − 𝐹 < 10

−4 so that their slow ramp could be

viewed as adiabatic.They then considered larger systemswith
𝑀 = 49 prepared with a slow ramp and studied how coher-
ence was reestablished as the lattice depth was reduced. To do
this, they studied a time-dependent correlation length 𝜉

𝑐
(𝑡).

They found that for a ramp in which𝑉
0
was reduced slowly in

a similar manner to how it was increased, that the restoration
of coherence was on a similar timescale either for a system
that had been prepared with a slow ramp or for a system
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Figure 8: Dependence of local observables on ramp time 𝜏 for both homogeneous systems and at the centre of a parabolic trap, 𝑛: average
density per site; 𝜅: compressibility; and 𝑃

𝑛
: the probability that a site has an occupation of 𝑛 particles. (a) For a protocol with 𝑈

𝑖
= 2𝐽 and

𝑈

𝑓
= 4𝐽, (b) for the same protocol with 𝑈

𝑖
= 4𝐽 and 𝑈

𝑓
= 6𝐽. Adapted figure with permission from J. S. Bernier, G. Roux, and C. Kollath,

Phys. Rev. Lett. Lett. 106, 200601 (2011). Copyright 2011 by the American Physical Society.

that had been prepared in the ground state for 𝑈/2𝐽 = 20,
with the timescale for single atom hopping governing the
establishment of coherence. In contrast, for a systemprepared
with a slow ramp and then subjected to a fast ramp, Clark
and Jaksch found that 𝜉

𝑐
increased quickly for short ramp

times and reached the value expected in the superfluid on
much shorter timescales than that of single-particle hopping,
leading them to suggest that higher-order correlations must
play a role in the establishment of coherence during a fast
quench.

3.6.3. Entanglement Growth. Numerical simulation of the
time dependence of quantum systems using approaches
based on matrix product states, such as t-DMRG and TEBD,
is limited in evolution times due to the growth of entangle-
ment [145, 147]. Motivated by an experiment in which there
was a quantum quench for which relaxation dynamics per-
sisted to timescales not accessible with DMRG [148], Daley
et al. [149] focused on the growth of entanglement during a
quench from a Mott insulator to a superfluid and proposed a
protocol to measure this entanglement growth by obtaining
the arbitrary order Renyi entropies

𝑆

𝑛
(𝜌) =

1

1 − 𝑛

logTr {𝜌𝑛} . (66)

They tested the scheme with t-DMRG to show its robustness
against measurement imperfections. Implementation of this
scheme experimentally could lead to quantitative insights
into the performance of quantum simulators [149].

3.7. Fermionization. In the limit that𝑈/𝐽 → ∞, there can be
no double occupancy of bosons on a site, which leads to the
notion of hard-core bosons, which obey bosonic commuta-
tion relations if they are not on the same site, that is, [𝑎

𝑖
, 𝑎

†

𝑗
] =

[𝑎

𝑖
, 𝑎

𝑗
] = [𝑎

†

𝑖
, 𝑎

†

𝑗
] = 0 if 𝑖 ̸= 𝑗, but have fermionic commutation

relations {𝑎
𝑖
, 𝑎

†

𝑖
} = 1, 𝑎2

𝑖
= [𝑎

†

𝑖
]

2

= 0 on the same site. In one
dimension, the hard-core boson model can be mapped onto
fermions by the use of the Jordan-Wigner transformation
[150]

𝑎

†

𝑖
=

̂

𝑓

†

𝑖

𝑖−1

∏

𝑗=1

𝑒

−𝑖𝜋𝑛
𝑓

𝑗
, 𝑎

𝑖
=

𝑖−1

∏

𝑗=1

𝑒

𝑖𝜋𝑛
𝑓

𝑗 ̂
𝑓

𝑖
, (67)

where the ̂

𝑓

†

𝑖
and ̂

𝑓

𝑖
are fermionic creation and annihilation

operators on site 𝑖, respectively, and 𝑛

𝑓

𝑖
=

̂

𝑓

†

𝑖

̂

𝑓

𝑖
is the

fermionic number operator on site 𝑖. This mapping removes
the hard-core constraint and allows for the efficient simula-
tion of out-of-equilibrium dynamics [150, 151] of hard-core
bosons.

An alternative fermionization scheme which allows for
a treatment of out-of-equilibrium dynamics of the BHM
when 𝑈 is finite was recently introduced by Barmettler et al.
[152] for the 1-dimensional BHM in the strongly interacting
regime, where there are small fluctuations around integer
filling. They truncated the Hilbert space to three states
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on each site, similarly to the slave particle approach, but
introduce different auxiliary bosons ̂𝑏†

𝑗±
, such that

𝑎

†

𝑗
=

√

𝑛 + 1

̂

𝑏

†

𝑗+
+

√

𝑛

̂

𝑏

𝑗−
, (68)

and for the three states on site 𝑗: |𝑛 + 𝑚⟩
𝑗
with𝑚 = ±1, 0, the

operators satisfy

̂

𝑏

†

𝑗+
|𝑛 ⟩

𝑗
= |𝑛 + 1⟩ ,

̂

𝑏

†

𝑗−
|𝑛 ⟩

𝑗
= |𝑛 − 1⟩

𝑗
,

𝑏

𝑗±
|𝑛 ⟩

𝑗
= 0,

(69)

with additional hard core constraints to ensure no double
occupancy: (̂𝑏†

𝑗±
)

2

=

̂

𝑏

2

𝑗±
= 0. In addition, there is not allowed

to be double occupancy of different species of bosons, which
implies the constraint

̂

𝑏

†

𝑗,+

̂

𝑏

𝑗,+
̂

𝑏

†

𝑗−

̂

𝑏

𝑗−
= 𝑛

𝑗+
𝑛

𝑗−
= 0. (70)

Barmettler et al. used a Jordan-Wigner transformation similar
to (67), to introduce two species of fermions (reflecting two
species of bosons):

̂

𝑏

𝑗,𝜎
= 𝑍

𝑗,𝜎
𝑐

𝑗,𝜎
, (71)

where

𝑍

𝑗,+
= 𝑒

𝑖𝜋∑
𝜎,𝑗
󸀠
<𝑗
𝑛
𝑗
󸀠
,𝜎
, 𝑍

𝑗,−
= 𝑍

𝑗,+
𝑒

𝑖𝜋𝑛
𝑗,+

, (72)

are nonlocal string operators which satisfy 𝑍†

𝑗,𝜎
= 𝑍

𝑗,𝜎
and

𝑍

2

𝑗,𝜎
= 1. This form removes the hard-core constraints on ̂𝑏

𝑗+

and ̂𝑏
𝑗−
individually, but not on the product 𝑛

𝑗+
𝑛

𝑗−
. This con-

dition may be satisfied with the projector P = ∏

𝑗
𝑃

𝑗
, where

𝑃

𝑗
= 1 − 𝑛

𝑗+
𝑛

𝑗−
, in which case the BHMHamiltonian may be

represented by

𝐻 = ∑

𝑗

P { − 𝐽 (𝑛 + 1) 𝑐

†

𝑗+
𝑐

𝑗+1,+
− 𝐽𝑛𝑐

†

𝑗+1,−
𝑐

𝑗−

− 𝐽
√
𝑛 (𝑛 + 1) (𝑐

†

𝑗+
𝑐

†

𝑗+1,−
− 𝑐

𝑗−
𝑐

𝑗+1,+
) +H.c.

+

𝑈

2

(𝑛

𝑗+
+ 𝑛

𝑗−
)}P.

(73)

In order to circumvent the complications of calculating with
the projector in theHamiltonian, Barmettler et al. studied the
problem with the approximation of unconstrained fermions
(UF), that is,P = 1. With this assumption, the Hamiltonian
may be diagonalized with a Bogoliubov transformation to the
form

𝐻UF = ∑
𝑘,𝜎

𝜖

𝜎
(𝑘) 𝛾

†

𝑘,𝜎
𝛾

𝑘,𝜎
, (74)

where 𝜖
𝜎
(𝑘) = −𝜎𝐽 cos(𝑘) + ℎ𝜔(𝑘) and

ℎ𝜔 (𝑘) =

1

2

√

[𝐸

+
(𝑘) + 𝐸

−
(𝑘)]

2

+ 4|Δ (𝑘)|

2
, (75)

with

𝐸

+
(𝑘) = −2𝐽 (𝑛 + 1) cos (𝑘) + 𝑈

2

,

𝐸

−
(𝑘) = −2𝐽𝑛 cos (𝑘) + 𝑈

2

,

Δ (𝑘) = 2𝑖𝐽
√
𝑛 (𝑛 + 1) sin (𝑘) .

(76)

Barmettler et al. found that for 𝑈/𝐽 < 4(𝑛 + 1), the UF
approximation breaks down.

Quench in the Mott Phase. In order to study the out-of-
equilibrium dynamics, Barmettler et al. chose an initial Fock
state with filling 𝑛 and considered an instantaneous quench
from this 𝐽/𝑈 = 0 state to a final 𝐽/𝑈 which remains within
the Mott phase. They calculated the time-dependent density-
density correlation function

𝐶

𝑑
(𝑡) = ⟨𝑛

𝑗
(𝑡) 𝑛

𝑗+𝑑
(𝑡)⟩ − ⟨𝑛

𝑗
(𝑡)⟩ ⟨𝑛

𝑗+𝑑
(𝑡)⟩ , (77)

for sites separated by 𝑑 and found that for 𝑑 > 1,

𝐶

𝑑
(𝑡) ≃ −(

𝑛 (𝑛 + 1) 𝐽𝑑

𝑈

)

2

(

𝐽

𝑑
(

̃

𝐽𝑡)

̃

𝐽𝑡

)

2

,
(78)

where ̃𝐽 = 2𝐽(2𝑛 + 1)/ℎ and 𝐽
𝑑
is a Bessel function.

Focusing in particular on the case of 𝑛 = 1, they studied
density correlations 𝐶

𝑑
(𝑡) with both DMRG and the UF

approximation for𝑈/𝐽 = 18 and𝑈/𝐽 = 9.These twomethods
both showed close agreement and a propagating front of
correlations, corresponding to doublon-holon pairs, with the
same constant velocity in both methods. By approximating
the expression (78) in the 𝑑 ≫ 1 limit as

𝐶

𝑑
(𝑡) ∼ −(

2𝑑

2/3
2

1/3
ℎ

3𝑈𝑡

)

2

Ai2 [−( 2
𝑑

)

1/3

(

6𝐽𝑡

ℎ

− 𝑑)] ,

(79)

Barmettler et al. made use of the fact that the Airy function
Ai(−21/3𝑧) has a peak for 𝑧

0
≃ 1.02 to infer that there is a

propagation front with correlations exponentially suppressed
for 𝑡 < 𝑡peak where

𝐽𝑡peak

ℎ

≃

1

6

[𝑑 + 𝑧

0
(

𝑑

2

)

1/3

] , (80)

from which it can be inferred that V
∞
= 6𝐽/ℎ is the velocity

at which correlations spread as 𝑑 → ∞ for large 𝑈/𝐽.
Barmettler et al. provided a similar analysis for noninteract-
ing bosons to deduce V

∞
= 4𝐽/ℎ when 𝑈/𝐽 = 0. In the

regime of validity of the UF approximation, they considered



ISRN Condensed Matter Physics 17

the relative velocity of quasiparticle pairs analytically, which
takes a maximum value

Vmax = max
𝑘

|V (𝑘)|

= max
𝑘

󵄨
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󵄨

󵄨

󵄨
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󵄨

2

𝑑

𝑑𝑘

𝜔 (𝑘)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≃

2𝐽 (2𝑛 + 1)

ℎ

(1 −

8𝑛 (𝑛 + 1) 𝐽

2

(2𝑛 + 1)

2
𝑈

2
) + 𝑂(

𝐽

4

𝑈

3
) ,

(81)

which corresponds to Vmax = 6𝐽/ℎ for 𝑛 = 1 and decreases
monotonically with increasing 𝐽/𝑈 from the 𝐽/𝑈 = 0 limit.

The fermionization procedure introduced by Barmettler
et al. gives very nice results that go beyond previous analytical
work on the one-dimensional BHM and, as discussed in
Section 4.4, also give good agreement with experiment. The
derivation of a velocity which governs the spreading of cor-
relations at large distances is an important result, as it gives a
concrete value for a Lieb-Robinson-like bound on the speed
at which correlations spread. The Lieb-Robinson bound was
originally formulated for interacting spins on a lattice [137,
153–155], but these results indicate that it also appears to hold
in the Mott insulating phase of the one-dimensional BHM.

3.8. Closed Time Path Approaches. The closed time path
(CTP) or Schwinger-Keldysh technique [156–161] is an
approach that allows for the calculation of both equilibrium
and out-of-equilibrium quantum dynamics within the same
formalism. In CTPmethods the problem is formulated in real
time (rather than imaginary time, as for the Matsubara for-
malism), allowing out-of-equilibrium problems to be tackled
without analytic continuation. The price to pay is that the
number of fields in the theory doubles, with a second copy
of each field propagating backwards in time. Consequently
in calculations of Green’s functions, the notion of time
ordering needs to be replaced by that of contour ordering
[159] on a contour such as illustrated in Figure 9. There are
several reviews that provide a detailed introduction to CTP
techniques [158–161], so few details will be given here.

Several authors have used these approaches to study the
BHMboth from theweakly interacting limit (large 𝐽/𝑈) [162–
166] and the strongly interacting limit (small 𝐽/𝑈) [112, 120,
167, 168]. The Schwinger-Keldysh approach has also been
used to study out-of-equilibriumdynamics for the BHMwith
periodic driving [20], including allowing for the possibility
of ohmic dissipation [20, 169]. I first discuss the two-particle
irreducible formalism which has a weak interaction starting
point and then discuss the strongly interacting approach.

3.8.1. Two Particle Irreducible Formalism. The two particle
irreducible (2PI) closed-time-path (CTP) formalism for the
BHM has been developed in detail by Rey et al. [162] and
Temme and Gasenzer [165] who studied the 1/N expansion.

Figure 9: Contour for the Schwinger-Keldysh technique.

The 2PI formalism can be obtained by starting from the
action for the complex fields Φ and Φ∗ in the Bose Hubbard
model in the form

𝑆 [Φ] = ∫𝑑𝑡∑

𝑖

Φ

𝑎

𝑖
(𝑡) 𝜏

𝑦
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ℎ𝜕

𝑡
Φ

𝑏

𝑖
(𝑡)

+ ∫𝑑𝑡 { (𝐽Φ

𝑎

𝑖+1
(𝑡) 𝜏

𝑥

𝑎𝑏
Φ

𝑏

1
(𝑡))

−

𝑈

4N
[𝜏

𝑥

𝑎𝑏
Φ

𝑎

𝑖
(𝑡)Φ

𝑏

𝑖
(𝑡)]

2

} ,

(82)

where a compact notation has been introduced, withΦ1

𝑖
= Φ

𝑖

andΦ2

𝑖
= Φ

∗

𝑖
, and the matrices 𝜏𝑥 and 𝜏𝑦 have the same form

as the corresponding Pauli matrices but are labelled so as not
to be confused with spin. The quantities studied are 𝜙𝑎

𝑖
(𝑡) =

⟨Φ

𝑎

𝑖
(𝑡)⟩ and𝐺𝑎𝑏

𝑖𝑗
(𝑡, 𝑡

󸀠
) = ⟨𝑇

𝐶
Φ

𝑎

𝑖
(𝑡)Φ

𝑏

𝑖
(𝑡

󸀠
)⟩−𝜙

𝑎

𝑖
(𝑡)𝜙

𝑏

𝑖
(𝑡

󸀠
), where

𝑇

𝐶
indicates contour ordering. The theory is specified by the

effective action Γ[𝜙, 𝐺], which takes the form

Γ [𝜙, 𝐺] = 𝑆 [𝜙] +

𝑖

2

Tr [ln𝐺−1
] +

𝑖

2

Tr [𝐷−1
(𝜙)𝐺]

+ Γ

2
[𝜙, 𝐺] ,

(83)

where

𝑖𝐷

𝑖𝑗𝑎𝑏
(𝑡, 𝑡

󸀠
)

−1

=

𝛿𝑆 [𝜙]

𝛿𝜙

𝑎

𝑖
(𝑡) 𝛿𝜙

𝑏

𝑗
(𝑡

󸀠
)

, (84)

and Γ
2
is the two-particle irreducible generating functional.

Γ

2
can be described as an infinite sum of diagrams from the

expansion of interaction terms in 𝑆[𝜙+𝜑] of cubic and higher
order in 𝜑𝑎

𝑖
= Φ

𝑎

𝑖
− 𝜙

𝑎

𝑖
[162].

In practice, various approximation schemes keep some
subset of these diagrams and can be classified based on which
terms are kept. The simplest approximation is to assume that
Γ[𝜙, 𝐺] = 𝑆[𝜙], corresponding to the mean field approx-
imation. The Bogoliubov (one-loop) approximation can be
obtained if the effective action is taken to be (83) with Γ

2

ignored. Approximations that take into account interactions
more carefully include the time-dependent Hartree-Fock-
Bogoliubov (HFB) approximation, in which Γ

2
is truncated to

keep only the first-order diagram in 𝑈. This approximation
conserves energy and particle number but violates Gold-
stone’s theorem.The expansion can be viewed as one in𝑈𝑡/𝐽,
where 𝑡 is time, and hence will be most accurate for short
times or small 𝑈/𝐽. It is possible to keep higher-order terms
in Γ

2
—second-order expansions were considered by Rey et al.

[162] and Temme and Gasenzer [165], who both considered a
1/N expansion, which simplifies the second-order expansion
of Γ

2
. From each of these various effective actions, saddle

point equations ofmotion can be derived, whichmay be quite
lengthy; the full expressions for the second order expansion
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are listed in Appendix B of [162]. These equations of motion
may also be used to derive a quantum kinetic equation, as was
done by Rey et al. in [163].

An additional issue discussed in [162] is that of conserva-
tion laws: for a closed system, the evolution is unitary in time,
so energy must be conserved. However, particular approxi-
mation schemes for Γmay not conserve energy. On the other
hand, schemes which are 𝜙 derivable, that is, the self-energy
may be written as the derivative of a functional of 𝐺 [170] do
conserve particle number, energy, and momentum, which is
the satisfied for the cases considered in [162]. A comparison of
the results obtained for the approximation schemes outlined
in [162] are shown in Figure 10 and compared against the
results of exact dynamical evolution in small systems. The
condensate population as a function of time is shown for
initial conditions in which the condensate starts all in a single
well, for 𝑁 = 20, 40, and 80 particles with 𝐽 = 1/2 and
𝑁𝑈/𝐽 = 4. The Hartree-Fock Bogoliubov approximation is
seen to be fairly poor at describing the time development
of the condensate, with the 1/𝑁 approach giving the most
accurate account of the time evolution for the condensate
population per well as a function of time as𝑁 becomes larger.

One can see that the range of couplings considered are
very much in the weakly interacting limit—this suggests the
need for other methods to tackle questions relating to the
crossing of the superfluid Mott insulator phase transition.

3.8.2. Strong Coupling. Sengupta and Dupuis [119] developed
a strong coupling nonperturbative approach to the BHMwith
features that make it particularly attractive for generalization
to real time. In particular, their approach is exact in the limit
of both small (𝑈 = 0) and large (𝐽 = 0) interactions and
obtains the expected features in the excitation spectrum in
both the superfluid and the Mott insulating phases. It also
naturally allows for the calculation of nonlocal correlations.
I first briefly recap the equilibrium calculation of Sengupta
and Dupuis and then discuss generalizations of this approach
using the Schwinger-Keldysh method [112, 120].

Sengupta and Dupuis started with a path integral form
for the BHM and then performed two Hubbard Stratonovich
transformations to write the generating functional as

𝑍 = 𝑍

0
∫D [𝜓

∗
, 𝜓, 𝜙

∗
, 𝜙] 𝑒

(𝜓|𝐽𝜓)−[(𝜓|𝜙)+𝑐.𝑐.]+𝑊[𝜙
∗

,𝜙]
, (85)

where 𝑍
0
is the generating functional when 𝐽 = 0, with the

notation (𝜙 | 𝜓) = ∫𝛽
0
𝑑𝜏∑r 𝜙

∗
(r)𝜓(r), where 𝜏 is imaginary

time and 𝛽 is inverse temperature. The term
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,

(86)

that enters in the action is evaluated with all the fields at the
same site, and

𝐺

𝑅𝑐

{
𝑎
𝑖
,𝑏
𝑖}

= (−1)

𝑅
⟨𝜓

𝑎
1
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𝑎
𝑅

𝜓

∗

𝑏
𝑅

⋅ ⋅ ⋅ 𝜓

∗

𝑏
1

⟩ , (87)

is the connected local 2𝑅 point Green’s function. By integrat-
ing out the 𝜙 field in the generating functional, Sengupta and

Dupuis obtained an effective action that to quartic order in
the field 𝜓 takes the form

𝑆 [𝜓

∗
, 𝜓] = −∑
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𝑏
2

𝜓

𝑏
1

,

(88)

where 𝐺−1 is the Green’s function in the local limit and ΓII
is the two particle vertex in the local limit. Sengupta and
Dupuis approximated ΓII by its static value and introduced
𝑔 = (1/2)Γ

II
|static. This leads to the effective action

𝑆 = −∫

𝛽

0

𝑑𝜏𝑑𝜏

󸀠
∑

r,r󸀠
𝜓

∗

r (𝜏) [𝐺
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(r, 𝜏, r󸀠, 𝜏󸀠)

+𝐽r,r󸀠𝛿 (𝜏 − 𝜏
󸀠
)] 𝜓r󸀠 (𝜏

󸀠
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+

𝑔
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∫

𝛽

0

𝑑𝜏∑

r
𝜓

∗

r 𝜓
∗

r 𝜓r𝜓r,

(89)

which has the attractive feature that it leads to the correct
Green’s function −⟨𝜓r(𝜏)𝜓

∗

r󸀠(𝜏
󸀠
)⟩ in both the strong interac-

tion (𝐽 = 0) and noninteracting (𝑈 = 0) limits. This feature
makes this approach particularly appealing for the study of
out-of-equilibrium dynamics, since it gives the hope that one
can accurately represent the behaviour of the system over a
wide range of parameters that cover both the superfluid and
Mott insulating phases.

By taking a saddle point approximation to the action, and
then expanding to quadratic order in fluctuations, Sengupta
and Dupuis obtained the following results for the excitations
in the Mott and superfluid phases, respectively. In the Mott
phase, they found that the Green’s function G(k, 𝑖𝜔) =

−⟨𝜓(k, 𝑖𝜔)𝜓∗
(k, 𝑖𝜔)⟩ has the form

G (k, 𝑖𝜔) = 1 − 𝑧k
𝑖𝜔 − 𝐸

−

k
+

𝑧k
𝑖𝜔 − 𝐸

+

k
, (90)

where

𝐸

±

𝑘
= −𝛿𝜇 +

𝜖k
2

±

1

2

[𝜖

2

𝑘
+ 4𝜖

𝑘
𝑈𝑥 + 𝑈

2
]

1/2

, (91)

with 𝜖
𝑘
the Fourier transform of the hopping −𝐽r,r󸀠 , 𝑥 = 𝑛0 +

1/2 and

𝑧k =
𝐸

+

k + 𝛿𝜇 + 𝑈𝑥

𝐸

+

k − 𝐸
−

k
, (92)

with 𝛿𝜇 = 𝜇 − 𝑈(𝑛
0
− 1/2) where 𝑛

0
is the number of bosons

per site for chemical potential 𝜇 when 𝐽 = 0. In the Mott
insulating phase, the modes 𝐸±k are gapped and the system
becomes unstable to superfluidity when the energy of one or
other of themodes vanishes for k = 0. In the superfluid phase,
the expressions for the spectrum are more complicated, and
fourmodes are found±𝐸±k , two of which are gapless as k → 0

and have the form 𝐸

−

k = 𝑐|k|, and the other two are gapped,
as illustrated in Figure 11.
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Figure 10: Condensate population per well in each well of a two-well system and total condensate population as a function of time (in units
of ℎ/𝐽) for parameters 𝐽 = 1/2,𝑁𝑈/𝐽 = 4, and𝑁 = 20, 40, 80 as calculated exactly, using second-order expansion, 1/𝑁 expansion, and the
Hatree-Fock Bogoliubov approximation [162]. Adapted figure with permission from A. M. Rey, B. L. Hu, E. Calzetta, A. Roura, and C. W.
Clark, Phys. Rev. A 69, 033610 (2004). Copyright 2004 by the American Physical Society.

Both Grass et al. [120] and Kennett and Dalidovich [112]
used the Schwinger-Keldysh technique to construct theories
for the real-time dynamics of the BHM.Grass et al. developed
a real-time Ginzburg-Landau theory based on the field the-
oretic approach developed in [171, 172] and used this theory
to calculate collective modes of the BHM, finding amplitude
and sound modes in the superfluid and particle and hole
excitations in the Mott insulator, as expected. Grass et al. also
illustrated the power of this approach by expanding the
Green’s functions in the equations ofmotion in the superfluid
regime, they were able to obtain the equation of motion

𝑖

𝜕Ψ
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= −∑

𝑗

𝐽

𝑖𝑗
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2
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󵄨

󵄨

󵄨

󵄨

Ψ

𝑖

󵄨

󵄨

󵄨

󵄨

2

, (93)

which is the lattice version of the Gross-Pitaevski equation
(GPE) [102].

A similar approach developed by Kennett andDalidovich
[112] generalizes the theory of Sengupta and Dupuis to real
time. We determined the effective action to quartic order
for the BHM within the strong-coupling Schwinger-Keldysh
approach and then used this to derive equations of motion to
study the out of equilibrium dynamics.

The approach followed in Kennett and Dalidovich [112]
was to write a path integral for the BHM

Z = ∫ [D𝑎
∗
] [D𝑎] 𝑒

𝑖𝑆BHM[𝑎
∗

, 𝑎]
, (94)

where 𝑎
𝑖𝑎
is the field at site 𝑖 on contour 𝑎, with 𝑎 = 1 or 2, and

with the notation 𝜏𝑖 representing the 𝑖th Pauli matrix that acts
in Keldysh rather than spin space. We performed a Keldysh
rotation from the 1, 2 basis to the quantum (𝑞), classical (𝑐)
basis [168, 173–175]:

(

𝑎

1
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2
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𝑐
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𝑎

1
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𝑎

2
(𝑡)

) , (95)

where 𝑎
𝑞
and 𝑎

𝑐
are the quantum and classical components of

the field and

̂

𝐿 =

1

√
2

(

1 −1

1 1

) . (96)

The effect of this on the action is that 𝜏3 in the 1, 2 basis
becomes 𝜏1 in the 𝑞, 𝑐 basis. Similarly to Sengupta and
Dupuis, we performed two Hubbard-Stratonovich transfor-
mations, the first of which decouples the hopping term and
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Phys. Rev. A 71, 033629 (2005). Copyright 2005 by the American
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the second leads to the effective action to quartic order in
terms of 𝑧 fields (one can show that the Green’s functions for
𝑧 are the same as those for the original field 𝑎 [112, 119]) as

𝑆eff [𝑧
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The matrix Green’s functions 𝐺 contains the retarded,
advanced, andKeldyshGreen’s functions.TheseGreen’s func-
tions, along with the two-particle connected Green’s function
𝐺

2𝑐 are evaluated with respect to the single-site Hamiltonian
̂

𝐻

0
: full expressions are presented in [112]. The mean field

phase boundary can be determined from the effective action
equation (97) from the vanishing of the coefficient of 𝑧∗

𝑞
𝑧

𝑐
.

Figure 12: Schematic diagram for the coefficient of the quartic term
in the effective action 𝑢
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The diagram corresponding to the interaction term 𝑢 is
illustrated schematically in Figure 12.

The following symmetry relations hold for the interaction
kernel 𝑢 from the definition above:

𝑢

𝑎𝑏𝑐𝑑
(𝑡

1
, 𝑡

2
, 𝑡
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, 𝑡
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3
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4
)

= 𝑢

𝑎𝑏𝑑𝑐
(𝑡

1
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2
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3
) ,
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(this corrects [112]) and it may also be shown [112] that

𝐺

2𝑐

𝑖𝑎
5
𝑎
6
𝑎
󸀠

6
𝑎
󸀠

5

(𝑡

5
, 𝑡

6
, 𝑡

󸀠

6
, 𝑡

󸀠

5
) = 𝐺

2𝑐

𝑖𝑎
6
𝑎
5
𝑎
󸀠

6
𝑎
󸀠

5

(𝑡

6
, 𝑡

5
, 𝑡

󸀠

6
, 𝑡

󸀠

5
)

= 𝐺

2𝑐

𝑖𝑎
5
𝑎
6
𝑎
󸀠

5
𝑎
󸀠

6

(𝑡

5
, 𝑡

6
, 𝑡

󸀠

5
, 𝑡

󸀠

6
) .

(100)

Grass et al. [120, 168] also noted similar symmetry relations
for this correlation function under interchange of Keldysh
indices.These symmetries imply that𝐺2𝑐 has only 8 indepen-
dent components:𝐺2𝑐

𝑞𝑞𝑞𝑞
,𝐺2𝑐

𝑐𝑞𝑞𝑞
,𝐺2𝑐

𝑞𝑞𝑞𝑐
,𝐺2𝑐

𝑞𝑞𝑐𝑐
,𝐺2𝑐

𝑐𝑐𝑞𝑞
,𝐺2𝑐

𝑐𝑞𝑐𝑞
,𝐺2𝑐

𝑞𝑐𝑐𝑐
,

and 𝐺2𝑐

𝑐𝑐𝑐𝑞
. The remaining four-point function 𝐺2𝑐

𝑐𝑐𝑐𝑐
= 0 by

causality [161]. Explicit expressions for each of the nontrivial
components were written down in [112].

A simplified low frequency equation of motion for the
superfluid order parameter 𝑧 can be derived from the action
that applies away from the degeneracy points of the Mott
lobes (in which case only the component 𝐺2𝑐

𝑐𝑞𝑞𝑞
is required).

Equations of motion that allow for high frequencies and
spatial variations of the order parameter and its correlations
can also be derived. Kennett andDalidovich focused on k = 0
and defined 𝛿(𝑡) = −2𝑑𝑗(𝑡), where the hopping is taken to be
𝐽(𝑡) = 𝐽

0
+ 𝑗(𝑡) with 𝐽

0
chosen so that

2𝑑𝐽

0
+ ] = 0, (101)

(i.e., 𝐽
0
lies on the mean field phase boundary for a given 𝜇).

Hence, the approximate equation of motion is

𝜅

2 𝜕
2
𝑧

𝜕𝑡

2
+ 𝑖𝜆

𝜕𝑧

𝜕𝑡

+ 𝛿 (𝑡) 𝑧 + 𝑢|𝑧|

2
𝑧 = 0,

(102)

where the coefficients 𝜅2, 𝜆, and 𝑢 can all be calculated in
terms of𝑈 and 𝜇 [112]. We studied (102) for fixed 𝜇 and time-
varying 𝐽.
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For fixed 𝜇 there are two possibilities for the dynamics:
(a) the particle-hole symmetric case (the transition at the tip
of the Mott lobe), in which case 𝜆 = 0, and (b) the generic
case, in which 𝜆 ̸= 0. The function 𝛿(𝑡) controls the traversal
of the quantum critical point. We chose

lim
𝑡→−∞

𝛿 (𝑡) = −𝛿

0
; lim

𝑡→∞

𝛿 (𝑡) = 𝛿

1
. (103)

In our numerics, we used

𝛿 (𝑡) = (

𝛿

0
+ 𝛿

1

2

) tanh( 𝑡

𝜏

𝑄

) +

𝛿

1
− 𝛿

0

2

, (104)

where we introduced a timescale 𝜏
𝑄
which is the characteris-

tic time for 𝛿(𝑡) to cross from −𝛿

0
to 𝛿

1
[111]. In the vicinity

of the transition 𝑡 = 0 is linear in 𝑡. Functional forms of 𝛿(𝑡)
which are not linear in 𝑡 in the vicinity of 𝑡 = 0 may lead to
differing behaviour in the long-time limit [79].

We solved (102) numerically with 𝜆 = 0 for a variety
of values of 𝜏

𝑄
, and found that for 𝑡 ≫ 𝜏

𝑄
the form of the

solution is that 𝑧(𝑡) oscillates in a periodic manner with a
magnitude that decreases with increasing 𝜏

𝑄
. When averaged

over a period 𝑇 at times 𝑡 ≫ 𝜏

𝑄
,

⟨𝑧⟩

𝑇
=

1

𝑇

∫

𝑡+𝑇

𝑡

𝑑
̃
𝑡𝑧 (

̃
𝑡) = 0,

(105)

as would be expected in the Mott insulating state. Defining
𝑧max(𝜏𝑄) = lim

𝑡→∞
|𝑧(𝑡)| we found that 𝑧max(𝜏𝑄) decreases

with increasing 𝜏
𝑄
without any indication of saturation.

In the generic case in which 𝜆 ̸= 0, we solved (102) numer-
ically for a variety of values of 𝜏

𝑄
as is displayed with time

scaled by 𝜏
𝑄
in Figure 13 for 𝜇/𝑈 = 0.25 (well away from

both degeneracy and the particle hole symmetric case). Both
the real and imaginary parts of 𝑧(𝑡) are oscillatory functions,
each of which has a vanishing average over a period for times
greater than zero. The nonzero amplitude of 𝑧 at long times
indicates that there ismemory of the nonzero value of 𝜌 in the
superfluid phase and that the final state is a metastable state
rather than theMott insulator in which 𝜌 = 0. The collapse of
traces with different 𝜏

𝑄
after scaling the timewith 𝜏

𝑄
indicates

that |𝑧| has a finite value even when 𝜏
𝑄
becomes large.

To determine the fate of the system at long quench times,
we defined 𝑧max = lim

𝜏
𝑄
→∞

𝑧max(𝜏𝑄) and calculated this as a
function of chemical potential. Apart from the particle-hole
symmetric point, it appears that there is a transition to a
metastable state in which 𝑧max ̸= 0. Whilst it is true that the
spatial dependence of 𝑧 and higher frequency components
were ignored in (102), it seems reasonable that the metastable
state identified at the mean field level may persist even when
these are taken into account.

The calculations discussed above are for fixed chemical
potential rather than fixed particle number, as is found in a
cold atom system. However, within the LDA fixed chemical
potential would correspond to studying dynamics at fixed
radius.The results found for the long-time limit of 𝑧max are in
accordance with this idea. There appears to be equilibration
as 𝑧max → 0 in the particle-hole symmetric case, where there
is no change in the number of bosons per site, in which

0
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Figure 13: Dynamics of |𝑧(𝑡)| normalized to unity in the generic
case, for a variety of 𝜏

𝑄
with time rescaled by 𝜏

𝑄
for a quench from

2𝑑𝐽/𝑈 = 2.0 to 2𝑑𝐽/𝑈 = 0.0. Figure adapted from [112].

only local equilibration takes place. For other values of the
average number of bosons per site changes in crossing from
the superfluid to theMott insulator in which case global mass
transport is required for equilibration (which is not captured
within the equation of motion studied in [112]).

3.9. Exact Results

3.9.1. Spectral Moments. Perturbative expansions in 𝐽/𝑈 [41–
43] have allowed for very accurate determination of the Mott
insulator phase boundary and the momentum distribution
in the Mott insulator phase [176]. Very recently Freericks et
al. [177] calculated exact sum rules for the spectral functions
of the retarded Green’s function 𝐺

𝑅 and self-energy Σ

𝑅

allowing for systems that are out of equilibrium and spatially
inhomogeneous. The retarded Green’s function is defined as

𝐺

𝑅

𝑖𝑗
(𝑡

1
, 𝑡

2
) = 𝐺

𝑅

𝑖𝑗
(𝑇, 𝑡)

= −𝑖𝜃 (𝑡) ⟨[𝑎

𝑖
(𝑇 +

𝑡

2

) , 𝑎

†

𝑗
(𝑇 −

𝑡

2

)]⟩ ,

(106)

where operators are in theHeisenberg picture,𝑇 = (𝑡
1
+𝑡

2
)/2,

𝑡 = 𝑡

1
− 𝑡

2
, and the average is taken with respect to the state

operator

𝜌 =

𝑒

−𝛽𝐻(𝑡󳨀→−∞)

𝑍

,

(107)

where 𝑍 = Tr[𝑒−𝛽𝐻(𝑡→−∞)
]. The spectral moments of the

retarded Green’s function are

𝜇

𝑅

𝑛𝑖𝑗
= − Im [𝑖

𝑛 𝜕
𝑛

𝜕𝑡

𝑛
𝐺

𝑅

𝑖𝑗
(𝑇, 𝑡)]

𝑡=0
+

, (108)
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(note that terms involving derivatives of 𝜃(𝑡) do not con-
tribute to thesemoments). Freericks et al. [177] calculated the
general expressions for these moments and obtained specific
analytic results in the strong coupling regime when 𝑈 ≫ 𝐽.
They also compared themoments as calculatedwithin several
different methods numerically: VCA, QMC, DMRG, and
strong-coupling perturbation theory for the 1 dimensional
BHM in the Mott insulating state with 𝑛 = 1. They found
that VCA was the best performing method and that both
QMC and DMRG had errors on the order of a few percent
for the spectral moments.They argued that the reason for the
differences in performance is a result of QMC and DMRG
having a cutoff that means that they focus on low energy
states, whereas VCA, a method that works best at strong cou-
pling, retains information about higher energy states that can
be important for higher order spectral moments. These sum
rules are an important step towards benchmarking analytical
and numerical methods, both in and out of equilibrium.They
may prove particularly important for testingmethods that try
to span the quantum critical point.

3.9.2. Quench from 𝐽 = 0 to 𝑈=0. One of the few examples
of an exact result in this field was provided by Cramer et al.
[104], who showed that for a quench from 𝐽 = 0 to 𝑈 = 0

with an initialMott insulator ground state in 1 dimension, the
final state, whilst not the superfluid state, is one that locally
maximizes the entropy, in the sense that the entanglement
between a particular site and the rest of the chain becomes
maximal. In the infinite system size limit, whilst the system
is locally relaxed, it never fully relaxes to an equilibrium
state, and for large but finite lattices with 𝑁 sites, there will
be recurrences on times of order 𝑁. The physical picture
behind this result is that for a lattice site (or sites) within the
“lightcone” defined by excitations in the system, there is local
mixing of the state, whereas contributions from outside the
“lightcone” are exponentially suppressed similar to the Lieb-
Robinson bound for spin systems [137]. In quenches from
the Mott insulator to the superfluid phase, the idea of a
“lightcone” reoccurs in both theoretical and experimental
results. Cramer et al. argued that their results are quite general
and also apply to initial states of the form∏

𝑁

𝑖=1
|𝑚

𝑖
⟩, where the

occupations on different sites𝑚
𝑖
may differ.They also argued

that the lightcone physics underlying the arguments in one
dimension should apply in higher dimensions, so that there
will be local relaxation inside the causal cone.

3.10. Summary. Through the variety of techniques that have
been applied to quantum quenches in the BHM and the
particular calculations discussed in previous sections, several
themes become clear. Both analytic andnumerical techniques
suggest that when there is a quench from superfluid to
the Mott insulator, there can be equilibration if the final
value of 𝑈/𝐽 is not too large [97], but for larger values of
𝑈/𝐽 a frozen nonequilibrium state results [87, 97, 108, 112],
and in the presence of a trap, the Mott insulating regions can
impede relaxation through mass transport [94, 99]. These
results leave a number of questions that can be pursued both
theoretically and experimentally. Kollath et al. [97] asked

about the eventual relaxation after a deep quench from super-
fluid to Mott insulator and whether there may be aging-like
phenomena. Natural quantities to look at in the context of
out-of-equilibrium physics are two-time correlation func-
tions, such as the two-time density density correlation func-
tion

𝐶 (r, r󸀠, 𝑡, 𝑡󸀠) = ⟨𝑛 (r, 𝑡) 𝑛 (r󸀠, 𝑡󸀠)⟩ − ⟨𝑛 (r, 𝑡)⟩ ⟨𝑛 (r󸀠, 𝑡󸀠)⟩ .
(109)

If there is a separation of fast and slow timescales for relaxa-
tion then one might expect a quantity such as

𝐶 (𝑡, 𝑡

󸀠
) = ∑

r
𝐶 (r, r, 𝑡, 𝑡󸀠) , (110)

to display behaviour similar to that seen for aging in glassy
systems, in which case it could be separated into a fast time-
translation invariant piece, and a slower piece that depends
on the two times, 𝑡 and 𝑡󸀠:

𝐶 (𝑡, 𝑡

󸀠
) = 𝐶fast (𝑡 − 𝑡

󸀠
) + 𝐶slow (𝑡, 𝑡

󸀠
) , (111)

with 𝐶fast decaying to zero with a timescale that is much
shorter than the typical timescale for decay of 𝐶slow, so that
𝐶slow is essentially constant whilst 𝐶fast decays. If aging is
present in theMott insulators for large𝑈/𝐽, then the simplest
decay one might expect for 𝐶slow is of the form (with 𝑡 > 𝑡󸀠)

𝐶slow ∼ 𝑓(
ℎ (𝑡)

ℎ (𝑡

󸀠
)

) , (112)

where ℎ(𝑡) is a monotonically increasing function of 𝑡,
possibly ℎ(𝑡) ∝ 𝑡 and 𝑓(𝑥) ∼ 𝑥−𝛼 for some 𝛼 [178].

In going from the Mott insulator to superfluid, there are
a variety of results to reconcile. Several groups predict oscil-
lations in the amplitude of the superfluid order parameter
[91, 96], which are yet to be seen experimentally [138]. Scaling
theory predictions of the residual energy and defect forma-
tion probability were also not found to match calculations by
Trefzger and Sengupta [91] using a projection operator for-
malism. Navez and Schützhold [93] found a light-cone-like
behaviour of the growth of the amplitude of the superfluid
order parameter after a quench with diffusive growth of the
phase coherence. Several groups found numerical and analyt-
ical evidence of a light-cone defined by a maximum velocity
for the growth of density correlations both in quenches
from superfluid to the Mott insulator and within the Mott
insulating state [98, 99, 152] in 1 dimension. Regarding the
quenches from the Mott insulator to superfluid, it would
be desirable to see whether signatures of the KZM survive
as expected in other methods than the projection operator
approach, and whether the results of Navez and Schützhold
can be found with other methods as well. It would also be
very interesting to seewhether the Lieb-Robinson-like bound
of a maximal velocity found in the BHM in 1 dimension
survives to higher dimensions than one—the results of the
1/𝑍 expansion suggest this may be possible [93] although the
velocity found in [93] had quite a different form as a function
of 𝐽 and 𝑈 than found in one dimension.
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On the technical side, most of the methods considered
are accurate when either𝑈 is small or 𝐽 is small, and in some
cases in both limits (e.g., the closed time path approaches
based on strong coupling theory). Numerical methods such
as QMC and DMRG have provided very accurate determi-
nations of the phase diagram in equilibrium but are not
easily generalizable either to out of equilibrium situations
(QMC) or dimensions higher than 1 (DMRG and TEBD).
Other methods such as the Gutzwiller mean field are rea-
sonably straightforward to calculate with and can provide
qualitatively correct behaviour for single-particle properties
but in the simplest formulation do not contain information
about nonlocal correlations. Formulations such as the gener-
alization of Sengupta and Dupuis’ nonperturbative approach
to real time in the context of closed time path methods
seem to be an avenue that is worth exploring further for
studying dimensions higher than 1. For all methods, however,
the out-of-equilibrium sum rules introduced by Freericks
et al. [177] are a particularly welcome development that can
help to benchmark methods and provide consistency checks
between methods.

4. Experiment

The traversal of the quantum phase transition between the
Mott insulating and superfluid phases achieved by Greiner
et al. [6] provided a dramatic experimental demonstration
of the realization of the BHM in a three-dimensional optical
lattice.This followed earlier work byOrzel et al. [139] showing
number squeezing in a two-well system and was quickly
followed by a number of other realizations of the BHM and
quantum phase transitions of bosons in optical lattices [57,
58, 179–185]. These results and more recent experiments on
out-of-equilibrium dynamics in the BHM [138, 146, 186–188]
are discussed in this section.

Greiner et al. [6] were able to access the Mott insulator to
superfluid transition by changing the strength of their optical
lattice 𝑉

0
, which has the effect of changing the ratio 𝐽/𝑈 in

the BHM as discussed in Section 2.3. As indicated in (14),
the hopping, 𝐽, is much more sensitive to changes in 𝑉

0
than

the interaction strength𝑈; hence, increasing the depth of the
lattice increases the strength of interactions and makes the
Mott phase more accessible. Greiner et al. obtained time
of flight images of the atoms released from the trap, which
showed a central peak and satellite peaks for weak lattice
strengths, related to the quasimomentum distribution in the
superfluid phase. As the depth of the optical lattice was
increased, these peaks gained in strength up to about 𝑉

0
≃

13𝐸

𝑅
and then decreased in strength with increasing 𝑉

0
, and

no interference pattern was visible for 𝑉
0
≃ 20𝐸

𝑅
.

To demonstrate that this change in the time of flight pat-
tern was due to the formation of a Mott insulator rather than
decoherence, Greiner et al. performed two experiments in
which the depth of the lattice was lowered to 𝑉

0
= 22𝐸

𝑅
, the

system held for 20ms, and then 𝑉
0
was changed to 9𝐸

𝑅
(a

value expected to correspond to the superfluid regime). The
peaks in the time of flight images became sharp within 2ms
(on the order of the tunnelling time 𝜏tunnel ≃ ℎ/𝐽 between two

neighbouring lattice sites) when this protocol was followed.
On the other hand, when phase coherence was deliberately
destroyed using a magnetic field gradient in the superfluid
phase, no phase coherence was seen following the same
protocol in𝑉

0
even 400ms after the ramp down as illustrated

in Figure 14. The results of extensive experiments that reveal
the boundary of the Mott insulating phase as a function of
lattice depth and characteristic density for a two-dimensional
optical lattice [57] are shown in Figure 15.

The experimental protocols used for subsequent investi-
gations of the transition from superfluid to Mott insulator
or vice versa have mainly followed similar approaches, in
which the depth of the optical lattice has been varied as
a function of time to change the strength of interactions.
Another possibility is the use of the Feshbach resonances to
increase the strength of interactions 𝑈, via changing the 𝑠-
wave scattering length 𝑎

𝑠
, recently realized experimentally by

Mark et al. [189]. In changing parameters in the Hamiltonian
with time, if the goal is to study the BHM, then the changes
must not be so fast as to cause significant excitation of bosons
out of the lowest Bloch band. For a ramp time 𝑡ramp, this
implies that the characteristic frequency 𝑓 ≃ 1/𝑡ramp for the
ramp should be such that 𝑓 ≪ ], where ] = √4𝐸

𝑅
𝑉

0
/2𝜋, the

energy for the lowest excitation to the first excited Bloch band
[101, 190, 191].

In this section, I focus on experiments investigating out-
of-equilibrium behaviour in the Bose Hubbard model. In
Section 4.1, I discuss quantum phase revivals, and in Sections
4.2 and 4.3, I discuss quantum quenches from superfluid to
Mott insulating states and fromMott insulating to superfluid
states, respectively. In Section 4.4, I review recent experi-
ments in which a quench within the Mott phase was studied.
In Section 4.5, I discuss issues that may arise in trying
to characterize out-of-equilibrium states, both in imaging
and thermometry.

4.1. Quantum Phase Revivals. A related experiment to the
crossing of the superfluid Mott insulator transition demon-
strated in [6] is that of phase revivals [183, 193]. In such an
experiment, an initially superfluid state is quickly quenched
into the Mott phase by increasing the lattice depth nona-
diabatically, so that tunnelling between sites is strongly
suppressed.The state is held in theMott phase for a time 𝑡, and
then the trapping potential and the optical lattice potential
are turned off and a time of flight image is taken. Greiner
et al. [183] monitored the collapse and revival of coherent
peaks in the interference pattern as illustrated in Figure 16
to determine the ratio of coherent atoms as a function of 𝑡.

The simplest picture to explain this was outlined in [183].
In the infinite system size limit, one can view an initial state
which is a noninteracting Bose Einstein Condensate (BEC)
as a product of local coherent states [194] for𝑁 bosons on𝑀
sites:
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Figure 14: (a) Experimental sequence of lattice depth used in [6]. After a time 𝑡, the interference pattern was measured by releasing the atoms
from the trapping potential. (b)The width of the central interference peak in time of flight images for different ramp down times 𝑡. The open
circles correspond to a phase incoherent state and the closed circles correspond to a state reached following the protocol shown in (a). The
solid line is a fit with a double exponential decay with time constants 𝜏

1
= 0.94(7)ms and 𝜏

2
= 10(5)ms. Also shown are absorption images

of the interference patterns after ramp-down times of (c) 𝑡 = 0.1ms, (d) 4ms, and (e) 14ms. Adapted with permission from Macmillan
Publishers Ltd: Nature, M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Nature 415, 39 (2002), copyright 2002.

where the coherent state on site 𝑖 is parametrized by 𝛼
𝑖
, |𝑛

𝑖
⟩ is

a state with 𝑛
𝑖
bosons on site 𝑖, and |vac⟩ is the vacuum state.

After a quench 𝐽/𝑈 → 0, the time evolution arises solely
from ̂

𝐻

0
and so the time evolution operator factorizes and for

a Fock state with occupation 𝑛
𝑖
on site 𝑖, takes the form [97,

183] (with ℎ = 1)

𝑈 (𝑡) =

𝑀

∏

𝑖=1

𝑒

(𝑖/2)𝑈𝑛
𝑖
(𝑛
𝑖
−1)𝑡

. (114)

This leads to the time dependence
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and since 𝑛
𝑖
(𝑛

𝑖
−1)/2 is an integer, the statewill have a periodic

time dependence, with a revival time of 𝑡rev = 2𝜋/𝑈. Hence,
the coherent fraction
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where 𝜓
𝑖
(𝑡) = ⟨𝜑(𝑡)|𝑎

𝑖
|𝜑(𝑡)⟩ will also have a periodic time

dependence with a revival time 𝑡rev.
However, it was pointed out by Schachenmayer et al. [194]

that this picture is too naive. This is because the state 𝜑
0

implies a coherent superposition of states with different num-
bers of particles. This is to be contrasted with the situation
in a quantum revival experiment in which there are a fixed
number of particles 𝑁. The authors of [194] used a number
conserving initial state
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which may be shown to have the form |BEC
𝑁
⟩ = 𝑃

𝑁
|𝜑

0
⟩,

where 𝑃
𝑁
projects states onto a subspace of the Hilbert space

with fixed total particle number𝑁. Schachenmayer et al. cal-
culated

𝑛

𝑞
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Figure 15: Experimentally determined phase diagram of bosons
in a two-dimensional optical lattice [57] as a function of lattice
depth (equivalently interaction strength) and characteristic density.
Each circle on the phase diagram corresponds to an individual
measurement. The blue region was predicted to support a Mott
insulating phase in QMC calculations [192]. The red ovals mark
the experimentally determined transition boundary to be compared
with the blue line of theory. The size of the ovals represent the
respective uncertainties in the phase boundary in density and chem-
ical potential. The yellow dashed line is a fit to the experimentally
determined phase boundary, and the green dashed line shows a
set of data at fixed atom number 𝑁

2𝐷
≃ 3500. Adapted figure

with permission of I. B. Spielman from K. Jiménez-Garcia, R. L.
Compton, Y.-J. Lin, W. D. Phillips, J. V. Porto, and I. B. Spielman,
Phys. Rev. Lett. 105, 110401 (2010). Copyright 2010 by the American
Physical Society.
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Figure 16: Ratio of coherent atoms as a function of time 𝑡 after
a quench from the superfluid phase to the Mott insulating phase
[183]. The initial lattice depth was 𝑉

𝐴
= 8𝐸

𝑅
and the final lattice

depth 𝑉
𝐵
= 35𝐸

𝑅
. The quench from 𝑉

𝐴
to 𝑉

𝐵
was made in 50 𝜇s.

Adapted with permission from Macmillan Publishers Ltd: Nature,
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
Nature 419, 51 (2002), copyright 2002.

for both a homogeneous and a trapped system, making use
of the projected state with fixed𝑁. In a homogeneous system,
they found that their results converged to the naive calcula-
tion for 𝑀 ≃ 5, but for bosons in a trap, they found that
for 𝑁 = 𝑀, the relative error in the naive calculation scales
as ∼ 1/𝑁, corresponding to about a 1% error for a system
with 50 sites. This is quantitatively small, but nevertheless,
conceptually important.

The simplest analysis of quantum phase revivals ignores
tunnelling during the quench, or nonzero interactions before
the quench thatmodify the initial state fromapurely coherent
state. Schachenmayer et al. considered the effect of this
physics using TEBD and found that it could lead to damping
of revivals with time, which can be seen in Figure 16. Previous
investigations of the effect of tunnelling on quantum phase
revivals [108, 115] found similar results.

The time dependence of quantum phase revivals has also
been used to show evidence of multiparticle interactions that
arise from virtual transitions of bosons from the lowest Bloch
band to higher Bloch bands, up to six-body interactions [188].
Tiesinga and Johnson [106] showed (using a mean field
approximation) that these multiband effects in quantum
phase revivals can be used to infer the number squeezing in
the initial superfluid state.

4.2. Quench from Superfluid to Mott Insulator. Two recent
experiments [146, 186] explored relaxation after a quench
from a superfluid to a Mott insulator, yet found rather
different results. Bakr et al. [186] found fast relaxation,
whereas Hung et al. [146] found slow relaxation, relative to
natural timescales in the dynamics. I review these experi-
ments and discuss the time-dependent Gutzwiller mean field
calculations by Natu et al. [94] that suggest a picture of two
timescales for equilibration in a trap.

4.2.1. Fast Dynamics. In an important step in the imaging of
cold atom systems, Bakr et al. [186] demonstrated single
atom-single lattice site imaging that allows for site-resolved
observations of dynamics in both space and time. They
applied this imaging to follow the out-of-equilibriumdynam-
ics after a quench from a superfluid to a Mott insulator. In
an experiment using a few thousand 87Rb atoms in a two-
dimensional optical lattice, they used the following protocol.
After loading atoms into the trap, they adiabatically increased
the depth of their trap to 𝑉

0
= 11𝐸

𝑅
(corresponding to a

superfluid state).They then ramped up the depth of their trap
to 𝑉

0
= 16𝐸

𝑅
, in a time 𝑡ramp that ranged between 0.2 and

20ms. They observed the probability that there were an odd
or even number of atoms on each site (corresponding to 𝑛 = 1
or 𝑛 = 2, respectively, as a function of 𝑡ramp as illustrated
in Figure 17). The time constant for 𝑛 = 1 was found to be
3.5 ± 0.5ms and for 𝑛 = 2 it was found to be 3.9 ± 1.3ms.
These timescales were noted to be short compared to the
timescale ℎ/𝐽

𝑐
∼ 68ms (where 𝐽

𝑐
is the critical value of the

hopping) and comparable to the timescale ℎ/𝑈
𝑐
∼ 4.1ms.

4.2.2. Slow Dynamics. An example of very slow dynamics
after a quench from superfluid to the Mott insulator was
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Figure 17: The probability of having an odd number of atoms on
each site as a function of ramp time averaged over 19 data sets. The
squares correspond to sites with 𝑛 = 1 and the circles to sites with
𝑛 = 2 and the curves are exponential fits to the data.The inset shows
the ramp used in the experiment, with a fixed adiabatic exponential
ramp to lattice depth 𝑉

0
= 11𝐸

𝑅
followed by a linear ramp with

variable duration [186]. FromW. S. Bakr, A. Peng,M. E. Tai, R.Ma, J.
Simon, J. I. Gillen, S. Fölling, L. Pollet, and M. Greiner, Science 329,
547 (2010). Adapted with permission from AAAS.

realised in the experiment of Hung et al. [146]. Studying the
dynamics of trapped 133Cs atoms using in situ imaging, they
prepared a condensate which was then loaded into a pancake
trap, and then a two dimensional optical lattice was slowly
turned on over 30ms, to reach a lattice depth of 𝑉 = 0.4𝐸

𝑅
.

The lattice was then ramped to a final depth of𝑉
𝑓
up to about

13𝐸
𝑅
(corresponding to 𝑈/𝐽 = 41, implying a Mott insulator

in a homogeneous system) using the protocol [101]

𝑉 (𝑡) =

𝑉

𝑓
(1 + 𝛾)

1 + 𝛾𝑒

4(𝑡−𝜏
𝑐
)
2

/𝜏
2

𝑐

, (119)

so that 𝑉 = 𝑉

𝑓
at time 𝑡 = 𝜏

𝑐
(chosen to be 20ms for the data

shown in Figure 18), and 𝛾 is chosen so that𝑉(0) = 0.4𝐸
𝑅
. At

values of𝑉
𝑓
higher than∼13𝐸

𝑅
, the timescale of the dynamics

started to reach that of three-body recombination, limiting
the resolution of mass transport. They characterized the
relaxation to equilibrium by investigating the mean square
deviation of the density after hold time 𝑡hold from its long time
(𝑡hold of order 500–800ms) limit as

Δ (𝑡hold) = {∑
𝑖

[𝑛

𝑖
(𝑡hold) − 𝑛long times]

2

} . (120)

They found that even for timescales longer than the micro-
scopic timescale 𝑡 ∼ ℎ/𝐽 ∼ 15–75ms, there was still decay of
Δ, which could be fittedwith a single exponential decay.These
results are illustrated in Figure 18.

In the deep trap limit, kinetic energy can be essentially
ignored, and the average number of particles per site can
be calculated from 𝑛 = ∑

𝑛
𝑛𝑃

𝑛
, where 𝑃

𝑛
= 𝑒

−𝛽(𝐻−𝜇𝑛)
/Ξ,

with 𝐻 ≃ (𝑈/2)𝑛(𝑛 − 1) and the grand canonical partition

function Ξ = ∑

𝑛
𝑒

−𝛽(𝐻−𝜇𝑛). Hung et al. induced three-body
recombination losses after different hold times. By comparing
these losses with the expectation for thermally occupied sites,
for a hold time of 𝑡hold ∼ 800ms they calculated an effective
temperature for the insulating centre of the cloud of 𝑇eff ∼
6 nK, considerably lower than the 𝑇eff ∼ 20 nK that they
found in the superfluidwings of the trap.These results suggest
that although there may have been local equilibration, even
on the large timescales considered, global equilibrium was
not established.

4.2.3. Two Time Scales. At first glance the results obtained
by Bakr et al. [186] and Hung et al. [146] do not seem to be
particularly compatible in that in one case relaxation times
much less than ℎ/𝐽were observed and in the other relaxation
times larger thanℎ/𝐽were observed.However, calculations by
Natu et al. [94] illustrate how they can be reconciled within
a picture of two timescales for relaxation, specifically, very
quick local equilibration and then slower mass transport.
They noted that the initial state before the quench can
strongly influence equilibration depending on whether it
leads to impeded mass transport or not.

Natu et al. [94] used the time-dependent Gutzwiller
approach to study the Bose Hubbard model with an external
trapping potential. By making use of the explicit lattice depth
dependence of 𝐽 and 𝑈 (14), they tracked the effects of
changing the depth of the lattice with time in the manner

𝑉 (𝑡) = 𝑉

𝑖
+

(𝑉

𝑓
− 𝑉

𝑖
) 𝑡

𝜏

𝑟

,

(121)

where 𝑉
𝑖,𝑓

are the initial and final values of the lattice poten-
tial and 𝜏

𝑟
is the ramp time. By comparing a homogeneous

system with 1 atom per site with different initial configura-
tions of bosons in a trap as in experiments in [146, 186, 195],
Natu et al. argued that local equilibration will be fast, but the
speed of global relaxation is strongly affected by whether
there needs to be mass transport from one region of the trap
to another, particularly if there is a Mott insulating phase,
which can act as a barrier to particle diffusion (this is the
“Mott barrier” idea discussed by Bernier et al. [99]).

Evidence of slow relaxation and local, but not global equi-
libration is illustrated in Figure 19 for an initially superfluid
configuration. The figure shows the initial and final density
distribution, 𝜇(𝑛(𝑟)) + 𝑉trap, and the coherences 𝐶

𝑖
(𝑡). In

equilibrium, 𝜇(𝑛(𝑟)) + 𝑉trap = 𝜇, but this is not the case in
Figure 19, where it can be seen to have local plateaux, but is
not globally flat. The plot of coherences 𝐶

𝑖
= −⟨𝑎

𝑖
⟩∑

𝑗
⟨𝑎

∗

𝑗
⟩

illustrates that for parameters appropriate to 87Rb, relaxation
timescales can be on the order of 200ms, much longer than
ℎ/𝑈

𝑖
∼ 3.3ms, as seen by Hung et al.

Further confirming the two-timescales picture, Natu et al.
investigated other initial conditions in which particle trans-
port across aMott insulating regionwas not needed for global
equilibration and found that this can lead to fast global equili-
bration as seen by Bakr et al.

4.3. Quench from Mott Insulator to Superfluid. A quench
from a Mott insulator to a superfluid phase may lead to
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Figure 18: The evolution of the density profile following a 20ms lattice ramp to (a) 𝑉
𝑓
= 10𝐸

𝑅
and (b) 𝑉

𝑓
= 12𝐸

𝑅
. The density profiles at

three different hold times are illustrated: 0 (squares), 200ms (circles), and 500ms (triangles).The insets show the time evolution of Δ for each
value of 𝑉

𝑓
, each fitted to a single exponential. The fits of the decay times against 𝑉

𝑓
are shown in (c), along with the appropriate phase of

the system [146]. Adapted figure with permission from C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Phys. Rev. Lett. 104, 160403 (2010).
Copyright 2010 by the American Physical Society.

a proliferation of defects through the Kibble-Zurek mecha-
nism.An experiment that investigated such issueswas carried
out by Chen et al. [138]. The authors investigated 87Rb in a
three-dimensional optical lattice inwhich theMott insulating
layers emerge for lattice depths greater than 𝑉

0
= 13𝐸

𝑅
.

They considered quenches at rates 1/𝜏
𝑄
= (𝑑/𝑑𝑡)(𝐽/𝑈)which

were sufficiently slow so as not to excite atoms into higher
vibrational states: 1/𝜏

𝑄
∼ (0.001–0.2)𝑈

𝑐
/ℎ.The quenches con-

sideredwere from variable initial lattice depth to a final lattice
depth of ∼4𝐸

𝑅
corresponding to 𝐽 ∼ 𝑈.

In order to obtain a measure of the number of excitations
produced during the quench, Chen et al. obtained time
of flight (TOF) images after a relatively long expansion of
about 50ms, to enhance the visibility of vortices and other

excitations through large density fluctuations. They fitted the
TOF images with a smooth profile 𝑓, which was the combi-
nation of a Thomas-Fermi profile with a Gaussian and then
measured the amount of excitation 𝜒2 as the deviation from
the smooth profile via

𝜒

2
= ∑

𝑖𝑗

𝜒

2

𝑖𝑗
= 𝛼

∑

𝑖𝑗
((O

𝑖𝑗
− 𝑓

𝑖𝑗
)

2

/𝑓

𝑖𝑗
)

∑

𝑖𝑗
O
𝑖𝑗

,
(122)

where 𝑖 and 𝑗 are pixel indices, O is the measured optical
depth, and 𝛼 is a constant that they determined via numerical
simulation. They found in each case that a condensate was
present, with a condensate fraction that varied between 0.35
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Figure 19: Slow dynamics after a quench in a trap. (a) Density of particles in the trap as a function of radius—the initial superfluid state is
indicated with a solid line, and the final density profile with a dashed line, which differs strongly from the equilibrium configuration (dots).
(b) 𝜇(𝑛(𝑟)) + 𝑉trap as a function of radius after the quench—for large values of 𝑟 there are no particles, and the points represent 𝑉(𝑟). (c)
Density plot of the time-dependent coherences shows the growing Mott insulating regions that separate the brighter superfluid regions [94].
Adapted figure with permission from S. S. Natu, K. R. A. Hazzard, and E. J. Mueller, Phys. Rev. Lett. 106, 125301 (2011). Copyright 2011 by the
American Physical Society.

and 0.6. Based on numerical simulations of the three dimen-
sional time-dependent Gross-Pitaevskii equation, Chen et al.
argued that in the noninteracting limit, 𝜒2 accurately repre-
sents the fraction of the Bogoliubov excitations for a trapped
condensate.They also pointed out that in the non-interacting
limit, 𝜒2 should be proportional to the number of excited
atoms.

In the Mott insulating phase, there are large fluctuations
in the relative phases between different sites, and in the
Kibble-Zurek mechanism, these are frozen in after a quench
is started due to the diverging relaxation time near the critical
point. After the system reaches the superfluid phase, these
excitations can start to relax. The relaxation of these excita-
tions as measured by 𝜒2 − 𝜒2

0
is illustrated in Figure 20 (note

that 𝜒2
0
≃ 0.06 was determined by an average over all images

without a Mott insulating shell). The authors also considered
kinetic energy as a function of quench rate to obtain an
estimate of the quench-induced heating.

In the Kibble-Zurek mechanism, the quench rate 1/𝜏
𝑄

controls defect formation and the expectation is that the
number of excitations in 3-dimension scales as [66]

𝑛ex ∼
1

𝜏

3]/(]𝑧+1)
𝑄

. (123)

Figure 20 illustrates that (𝜒2 − 𝜒

2

0
) ∼ 1/𝜏

𝑟

𝑄
, with 𝑟 =

0.31±0.03.The experimental value differs substantially for the
expectations for either a generic phase transition 𝑛ex ∼ 1/𝜏

3/4

𝑄

or for the transition in the XY universality class, for which
𝑛ex ∼ 1/𝜏𝑄. There are a number of possibilities as to why the
predictions of scaling theory do not match with experiments.
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Figure 20: Dependence of excitations on quench rate 1/𝜏
𝑄
. (a), 𝜒2

with an offset subtracted is shown against quench rate, and (b), the
kinetic energy (KE) per particle (with the quench KE

0
subtracted) is

plotted against quench rate.The experimental protocol for the lattice
depth is shown in the inset [138]. Adapted figure with permission
from D. Chen, M. White, C. Borries, and B. DeMarco, Phys. Rev.
Lett. 106, 235304 (2011). Copyright 2011 by the American Physical
Society.

First, the finite length scales for the phases in the trapmay cut
off the quantum critical scaling, and thermal effects may also
play a role in changing the density of excitations. Additionally,
Chen et al. pointed out that the nature of the excitation
may affect the scaling, for instance, for vortex excitations
𝑛ex ∼ 1/𝜏

1/2

𝑄
. Further theoretical investigation of the Mott

insulator to superfluid quench in a trap is needed in order
to understand these experimental results for the number of
excitations.

4.4. Quench within a Mott Insulator. Light-cone-like spread-
ing of correlations was recently observed in experiments by
Cheneau et al. [196] on the one-dimensional BHM. A two-
dimensional gas of 87Rb was loaded into 10 decoupled 1-
dimensional chains, with 10–18 particles in each chain, with
𝑉

0
= 20𝐸

𝑟
(𝑈/𝐽 = 40), corresponding to an 𝑛 = 1 Mott

insulator in each chain. From this initial state, the lattice was
reduced in depth in a quench to give values of𝑈/𝐽 of roughly
5.0, 7.0 and 9.0. Cheneau et al. measured the two-point parity
correlation function [124]

𝐶

𝑑
(𝑡) = ⟨𝑠

𝑗
(𝑡) 𝑠

𝑗+𝑑
(𝑡)⟩ − ⟨𝑠

𝑗
(𝑡)⟩ ⟨𝑠

𝑗+𝑑
(𝑡)⟩ , (124)

where

𝑠

𝑗
(𝑡) = 𝑒

𝑖𝜋[𝑛
𝑗
(𝑡)−𝑛]

, (125)

and 𝑑 is the distance between sites. Note that 𝑠
𝑗
gives +1 for

no quasiparticles on a site and −1 for the presence of a quasi-
particle.The results obtained frommeasuring𝐶

𝑑
(𝑡) and aver-

aging over more than 1000 chains are shown in Figure 21.The
correlations showed a front-like spreading, with a constant
velocity for 𝑑 = 2–6, in good agreement with t-DMRG
calculations and an analyticalmodel developed by Barmettler
et al. [152] discussed in Section 3.7.

4.4.1. Superlattice Initial State. Another example of a quench
within the Mott state was studied by Trotzky et al. [148] for
small one-dimensional systems.They prepared a collection of
isolated 1𝑑 Bose Hubbard chains, with an average of𝑁 = 31

particles, each with an initial state |𝜓
0
⟩ = | . . . , 1, 0, 1, 0, 1, . . .⟩

in which all atoms were on “even” sites, prepared using a
superlattice potential. They then removed the superlattice in
200𝜇s and followed the subsequent ensemble average of the
filling of bosons on odd sites as a function of time, 𝑛odd, which
relaxed from 0 to ∼0.5 on a timescale of a few ms. Ensemble
averaged DMRG calculations were fairly successful in fitting
the time dependence of the 𝑛odd(𝑡) but gave slightly more
accurate results for 𝑈/𝐽 ≤ 6 when a next-nearest neighbour
hopping termwas allowed in the BHM, as calculated from the
single-particle band structure. The amplitude of the oscilla-
tions in 𝑛odd was observed to decay as 𝑡

−𝛼 with 𝛼 = 0.86±0.07
over a range of intermediate𝑈/𝐽 ≲ 10, which is considerably
faster than the value of 𝛼 = 0.5 expected in the limits of no
interactions or hardcore bosons (infinite interactions) [148].
This behaviour is captured well by time-dependent DMRG,
but is currently a challenge for analytical models. For 𝑈/𝐽 ≥
10, the agreement between experiment and theory was less
strong—Trotzky et al. suggested this might be due to non-
adiabatic heating or interchain tunnelling. This work pre-
sented a nice comparison of theoretical and experimental
work but highlighted a limitation of t-DMRG, in that the
experiment ran for longer times than the calculations could
be performed for—the limiting factor being the growth of
entanglement entropy [145].

4.5. Interpreting Experiments. In order to interpret and
understand experiments on cold atoms in Bose Hubbard sys-
tems both imaging and thermometry are key. I discuss both
of these in the context of studying out-of-equilibriumdynam-
ics.

4.5.1. Imaging. The imaging techniques for cold atoms in
optical lattices can roughly be classified as those that measure
properties of the system in momentum space, and are most
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Figure 21: Time dependence of the parity correlation function
𝐶

𝑑
(𝑡) measured for bosons in one dimensional chains prepared

with 𝑈/𝐽 = 40 and then quenched to 𝑈/𝐽 = 9. The circles are
experimental data averaged over more than 1000 chains, the green
line is the result of t-DMRG calculations for a homogeneous system,
and the dashed-line is the result of calculations with the analytical
model developed in [152]. The inset shows the experimental data
as a colour map [196]. Adapted with permission from Macmillan
Publishers Ltd: Nature, M. Cheneau, P. Barmettler, D. Poletti, M.
Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S.
Kuhr, Nature 481, 484 (2012), copyright 2012.

suited to the superfluid phase, and those that measure
properties in real space and are more suited to the Mott
insulating phase. I will focus first on momentum space.

The experiments by Greiner et al. [6] demonstrated the
traversal of the quantum critical region separating superfluid
andMott insulator bymeasuring themomentumdistribution
of atoms in the trap, taking advantage of the mapping of
momentum onto position after atoms are released from the
trapping potential.The resulting interference pattern in space

takes the form [185]

𝑛 (r) = (𝑚
ℎ𝑡

)

3󵄨
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑤 (k = 𝑚r
ℎ𝑡

)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑆 (k = 𝑚r
ℎ𝑡

)
(126)

and depends on 𝑆(k) = ∑

𝑖,𝑗
𝑒

𝑖k⋅(r
𝑖
−r
𝑗
)
⟨𝑎

†

𝑖
𝑎

𝑗
⟩, multiplied by a

Wannier envelope |𝑤|2. If there is long-range phase coher-
ence, then the correlation function ⟨𝑎†

𝑖
𝑎

𝑗
⟩ has a correlation

length of the order of the lattice, leading to a sharp peak at
k = 0 alongwith satellite peaks due to the presence of a lattice.
The disappearance of these peaks was argued to indicate
the disappearance of superfluidity and the entry into a Mott
phase. However, peaks are also present in both the normal
and Mott phases, albeit less sharp [38]. It has been suggested
that a better quantity to measure is the visibility [38, 185],
which, if measured so that the Wannier envelope cancels,
takes the form [185]

V =

𝑛max − 𝑛min
𝑛max + 𝑛min

=

𝑆max − 𝑆min
𝑆max + 𝑆min

, (127)

where 𝑛min and 𝑛max are the minimum and the maximum of
the density distribution. At small 𝑈, the visibility tends to 1,
indicating the presence of a superfluid and then drops rapidly
for𝑈/𝑧𝐽 larger than the critical value [179, 181, 185]. At lowest
order in perturbation theory in 𝐽/𝑈, it can be estimated that
[185]

V ≃

4

3

(𝑛

0
+ 1)

𝑧𝐽

𝑈

(128)

which is in accordance with calculations using QMC [197]
and an analytic strong coupling approach [198] both of which
suggest V ∼ (𝑈/𝑧𝐽)

−1. Gerbier et al. [185] found good
experimental agreement with this form up to a lattice depth
of 𝑉

0
= 30𝐸

𝑅
corresponding to 𝑈/𝑧𝐽 ≃ 200, where they

suggested that adiabaticity in the preparation of the state may
have broken down.

The issue of adiabaticity also arises in imaging as was
recently discussed in detail by Natu et al. [199]. In the band
mapping protocol lattice strength is reduced over some time-
scale 𝜏, during which the quasimomentum distribution is
mapped to momentum, followed by a ballistic expansion in
which the momentum distribution is mapped to position
and then imaged as 𝑛(r). This can be viewed as an accurate
representation of the quasimomentum distribution provided
that 𝜏 is slow enough (𝜏 ≫ ℎ/𝐸bg, where 𝐸bg is the band
gap) that the quasimomentum states can adiabatically evolve
into momentum states and fast enough (𝜏 ≪ 1/], where ]
is the trap frequency) that occupation numbers of quasimo-
mentum states do not change. These conditions can be met
for a sufficiently weakly interacting Bose gas [199]. However,
interactions introduce an additional timescale ℎ/𝑈. For band
mapping to be successful one should have 𝜏 ≪ ℎ/𝑈, 1/] as
well as 𝜏 ≫ 1/𝐸bg which may become difficult to satisfy for
large interactions. Natu et al. suggest that turning off interac-
tions prior to bandmappingmight be away to avoid the prob-
lem of quasimomentum redistribution that can result from
interactions during band mapping.

It was pointed out in [200] that noise correlations
can be used to characterize the Mott insulating state.
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Spielman et al. [181] used noise correlations determined from
the autocorrelation function of 𝑛(k) determined from time of
flight images

𝑆 (𝛿𝑘

𝑥
, 𝛿𝑘

𝑦
)=⟨∫𝑑𝑘

𝑥
𝑑𝑘

𝑦
𝑛 (𝑘

𝑥
, 𝑘

𝑦
) 𝑛 (𝑘

𝑥
+ 𝛿𝑘

𝑥
, 𝑘

𝑦
+ 𝛿𝑘

𝑦
)⟩ ,

(129)
where ⟨⋅ ⋅ ⋅ ⟩ indicates an average over images to locate the
transition between superfluid and the Mott insulator in a 2D
BHM.This was done by tracking the growth of the area under
the noise correlation curve with increasing 𝐽/𝑈. Whilst not
necessarily an easy measurement, the equilibrium baseline
established in [181] might allow for the determination of
whether superfluid order persists to 𝑈/𝐽 values larger than
the equilibrium transition in a quench from superfluid to
Mott insulator, by measuring autocorrelations of 𝑛(𝑘

𝑥
, 𝑘

𝑦
, 𝑡).

If there was persistence of superfluid order, this would imply
a divergence in the area under the noise correlation curve at
a smaller value of 𝐽/𝑈 than seen in the equilibrium case for
times much less than the global equilibration time.

Real space images of bosons in optical lattices have
become available in the past few years due to the work of sev-
eral groups on in situ observation of coarse-grained density
[146, 201, 202] of atoms in trapped two-dimensional optical
lattices and single-site imaging [186, 195, 203, 204]. These
techniques allow for detailed characterization of the prop-
erties of the Mott insulating phase. By measuring the local
compressibility 𝜅(𝑟) = 𝜕𝑛/𝜕𝜇(𝑟), Gemelke et al. [201] were
able to observe the vanishing of the compressibility in the
centre of a trap for which the density was 𝑛 = 1 as
expected for theMott insulator. In the single site fluorescence
imaging used in [186, 195, 203], the technique allows the
determination of whether there is an even or an odd number
of bosons on a site. This has allowed for the imaging of the
“wedding cake” structure of the BHM in a trap with a Mott
insulator with four bosons per site in the centre [186]. It has
also allowed the measurement of correlation functions such
as the time-dependent parity correlation function illustrated
in Figure 21 and the prospect of further out-of-equilibrium
measurements of number statistics and correlations to come.

In addition to the techniques discussed above, methods
such as lattice modulation [179, 180, 205, 206] or Bragg spec-
troscopy [207–209] allow for the measurement of collective
excitations although it is less clear that such finite frequency
measurements can be useful for out-of-equilibriumdynamics
where time translation invariance is broken.

4.5.2.Thermometry. There are two crucial challenges relating
to thermometry in cold atom experiments—the first is
to achieve cooling to very low temperatures, so that the
quantum phenomena of interest are accessible, the second to
develop thermometry to establish that the desired tempera-
tures have in fact been reached [210].

In order for the physics of quantum quenches to be
observable in experiment, it is essential that atoms be cooled
to very low temperatures and that changes of parameters
in time (e.g., changing the depth of the optical lattice) do
not lead to significant heating [210–212]. Whilst out-of-
equilibrium experiments are not carried out adiabatically, it

is useful to compare to an adiabatic baseline. Pollet et al. [197]
considered the temperature changes for isentropic trajec-
tories in which 𝑈/𝐽 was increased for both the 1- and 2-
dimensional BHM in a trap. In both cases, they found that
𝛽𝐽 decreased, and 𝛽𝑈 increased, with 𝛽 the inverse temper-
ature. These results would suggest that for low initial tem-
perature, it is possible to reach the Mott insulator phase in
a quench from a superfluid even given concerns about the
possibility of heating [211, 212]. A complicating factor for
experiments involving the BHM is that the zero temperature
phase diagram is considerably simpler than that at finite
temperature. The Mott insulating phase is only truly incom-
pressible at zero temperature, but signatures of strongly sup-
pressed compressibility are calculated to persist to tempera-
tures of order 𝑘

𝐵
𝑇

∗
∼ 0.2𝑈 [39, 213]. Additionally, at finite

temperature, the portion of the phase diagram with a super-
fluid state shrinks with increasing temperature leading to
normal as well as superfluid regions—all of these regimes
may be present simultaneously in a parabolic trap.The possi-
bility of overlapping quantum critical regions [60] at higher
temperatures futher complicates the picture.

As stated succinctly in the review byMcKay andDeMarco
[210], this leads to the challenge “to develop thermometry
methods that do not rely on unverified theoretical results and
that can be experimentally validated”. Techniques that have
been used or suggested for thermometry include using the
quasimomentum distribution [58, 181, 214] or the in-trap size
of the gas [214] or probes that make use of real space imaging.
In the Mott phase, either fitting the density distribution [146,
201] or site occupancy statistics have been used for thermo-
metry [186]. A conceptually attractive approach is to use the
fluctuation dissipation theorem, which can be expressed
within the LDA as [215, 216]

𝑘

𝐵
𝑇

𝜕 ⟨𝑛 (r)⟩
𝜕𝜇 (𝑟)

= ∫𝑑r󸀠 [⟨𝑛 (r) 𝑛 (r󸀠)⟩ − ⟨𝑛 (r)⟩ ⟨𝑛 (r󸀠)⟩] ,

(130)

where the ⟨𝑛(r)⟩ are to be understood as coarse-grained over
some small region in space. Gemelke et al. [201] implemented
this approach and found results that were in qualitative agree-
ment with the fluctuation dissipation theorem.The advantage
of the fluctuation-dissipation approach to thermometry is
that it is model independent, but it does rely on the assump-
tion that the LDA holds [216].

The validity of the LDA for cold atoms in a trap was
recently questioned based on the phase diagram obtained in
experiments in [57] (Figure 15). Zero temperature QMC cal-
culations [192] along with the LDA give a fair account of the
experimental data, but there are systematic deviations in the
data. Jiménez-Garćıa et al. [57] argued that these indicated the
breakdownof the LDA, a point of view thatwas also expressed
by Mahmud et al. [39], who performed finite temperature
QMC calculations for cold atoms in a trap with 𝑇/𝐽 = 1 (as
compared to the reported 𝑇initial/𝐽 = 0.9 in the experiment).
These calculations were also not in complete agreement with
experiment but captured the possibility that the could be
points reported as the Mott insulator (i.e., nonsuperfluid)
below the line indicating the edge of the Mott insulator
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phase in Figure 15.Obtaining quantitative agreement between
experiment and QMC simulations for the phase boundaries
of trapped bosons in an optical lattice is still work in progress,
especially for stronger interactions [56].

From the theory side, there has been considerable work
aside from the QMC simulations mentioned above on the
properties of the BHM at finite temperature [48, 56, 112, 125,
126, 197, 198, 211, 213, 217–220], but most has focused on the
equilibrium properties of the model. There is still plenty of
scope to consider the effect of thermal initial states on out-
of-equilibrium dynamics.

5. Conclusions and Future Directions

I briefly highlight some possible future directions that might
give opportunities for studying out-of-equilibrium dynamics
both using quantum quenches and with protocols in the
BHM beyond those mentioned already, and then provide
some concluding comments relating the material reviewed in
this paper.

5.1. Future Directions. The following directions are notmeant
to be an exhaustive list of possible interesting extensions of
current research, but each seems to have the potential for
new results both in out-of-equilibriumdynamics and broader
contexts, such as quantum simulation.

5.1.1. Two and Higher Component Bose HubbardModels. Two
(and higher) component Bose-Hubbard models have started
to attract theoretical [5, 221–227] and experimental attention
[207, 228] as they allow the prospect of studying bosons with
spin (strictly pseudospin). The interplay of spin degrees of
freedom with all of the other physics discussed in this paper
suggests a smorgasbord of out-of-equilibrium physics to be
explored in many varied parameter regimes [229–231] and
in exotic quantum phases such as spin liquids [232]. Such
models also open the door to studying spin-orbit coupling of
bosons [233, 234].

5.1.2. Designer Initial States. Weitenberg et al. [203] recently
demonstrated the ability to selectively remove atoms with
site resolved accuracy with a fidelity of around 95% from a
Mott insulating state. As they point out, this leads to the very
exciting possibility of observing quantum dynamics at the
single atom level with designer initial states. It has also
recently been shown theoretically [235] that for special initial
states with clusters of doubly occupied sites in the 1-dimen-
sional BHM, there can be freezing of the dynamical evolution.
These results may help to shed light on the nature of
dynamical freezing seen after superfluid to Mott insulator
quenches.

5.1.3. Novel Geometries. Beyond the cubic lattice geometry
considered here, several other geometries have been used
to consider the BHM, and in some cases to study out-of-
equilibrium dynamics. The creation of toroidal confining
potentials, through the intersection of two different red

detuned laser beams [236, 237] and the engineering of weak
links to control superflow of a condensate in such a trap [237],
leads naturally to the thought that it might be possible to
create a BoseHubbardmodel with a circular geometry. Such a
situation was considered in [238], where QMC simulations of
such a 1 dimensional BHM were used to determine the exis-
tence of a compressible, non-superfluid state in addition to
the superfluid andMott states dubbed the “local Mott” phase.
Experimental work on out-of-equilibrium dynamics of the
BHM in coupled one dimensional systems [239] has stimu-
lated theoretical investigations of the BHM on ladders [240,
241]. Finally,more exotically, Hamma et al. [242] have studied
the BHMwith an evolving graph as a toy model for emerging
spacetime.

5.2. Conclusions. Much has been learned about out-of-equili-
brium dynamics in the BHM, both experimentally and the-
oretically, but there remain many opportunities to improve
our understanding of this system. On the theory side, the
most pressing need is the ability to have theories or numerical
approaches that can go beyond the mean field level and
address questions of out-of-equilibrium dynamics in dimen-
sions larger than one accurately in both the superfluid and
the Mott insulating regimes. This should allow clearer inves-
tigations of the slow dynamics seen in quenches from the
superfluid to the Mott insulator and whether (or how) the
Lieb-Robinson bounds seen in density and parity correlation
functions in one dimension persist to higher dimensions.
On the experimental side, investigations in two or higher
dimensions of the light-cone physics observed in [196] would
be welcomed to investigate the question of Lieb-Robinson
bounds in dimensions larger than one in the BHM. In both
theory and experiment, there also seem to be opportunities
to explore situations where there is a lack of thermalization
and possible frozen states in the Mott insulators in more
detail through the study of quantities that have proven
very useful in glassy systems, such as two time correlations
and out-of-equilibrium effective temperatures extracted from
the fluctuation dissipation relation (FDR). The separation
of fast and slow timescales after a quench into the Mott
phase seen in some experiments [146] and theoretical works
[94, 97, 112] suggests the possibility of scaling in two time
correlation functions, as seen in glassy systems [178] and
outlined in Section 3.10. In addition, the study of the two
space and two time correlation functions𝐶(r, r󸀠, 𝑡, 𝑡󸀠) defined
in (109) should allow for the study of a growing dynamic
correlation length when there is slow dynamics. The FDR
expression (130) should hold in equilibrium, but it can also be
inverted to define a temporally and spatially varying effective
temperature that could be used to monitor the equilibration
in space and time after a quantum quench via

𝑘

𝐵
𝑇eff (r, 𝑡)=

∫𝑑r󸀠 [⟨𝑛 (r, 𝑡) 𝑛 (r󸀠, 𝑡)⟩−⟨𝑛 (r, 𝑡)⟩ ⟨𝑛 (r󸀠, 𝑡)⟩]
(𝜕 ⟨𝑛 (r, 𝑡)⟩ /𝜕𝜇 (𝑟))

.

(131)

Work in this direction was already undertaken in [146]: it was
noted that the temperature in the centre of the trap was 6 nK
after a quench, whereas the temperature in the superfluid
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wings was 20 nK even after long hold times of 800ms, show-
ing evidence of a lack of global equilibration. Finally, further
study of quenches from the Mott insulating to superfluid
phase seems warranted, given the intriguing scalings found
by Chen et al. [138] that do not seem to be in full accord
with the predictions of the Kibble-Zurek mechanism. Inves-
tigation of a wider range of quench rates, especially very
slow quench rates might also allow access to some of the
predictions of [68, 69] in which it is noted that for slow
quench rates, there can continue to be evolution as the system
passes through the critical region, contrary to the assump-
tions in the usual Kibble-Zurek mechanism.

Certainly, there appears to be much room for exploration
and hopefully surprises in this field in the years ahead.
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[132] U. R. Fischer and R. Schützhold, “Quantum simulation of cos-
mic inflation in two-component Bose-Einstein condensates,”
Physical Review A, vol. 70, no. 6, Article ID 063615, 8 pages,
2004.

[133] D. S. Rokhsar and B. G. Kotliar, “Gutzwiller projection for
bosons,” Physical Review B, vol. 44, no. 18, pp. 10328–10332, 1991.

[134] W. Krauth, M. Caffarel, and J. P. Bouchaud, “Gutzwiller wave
function for a model of strongly interacting bosons,” Physical
Review B, vol. 45, no. 6, pp. 3137–3140, 1992.

[135] L. Amico and V. Penna, “Time-dependent mean-field theory
of the superfluid-insulator phase transition,” Physical Review B,
vol. 62, no. 2, pp. 1224–1237, 2000.

[136] C. Schroll, F. Marquardt, and C. Bruder, “Perturbative cor-
rections to the Gutzwiller mean-field solution of the Mott-
Hubbard model,” Physical Review A, vol. 70, no. 5, Article ID
053609, 2004.

[137] E. H. Lieb and D. W. Robinson, “The finite group velocity
of quantum spin systems,” Communications in Mathematical
Physics, vol. 28, pp. 251–257, 1972.

[138] D. Chen, M. White, C. Borries, and B. De Marco, “Quantum
quench of an atomic Mott insulator,” Physical Review Letters,
vol. 106, no. 23, Article ID 235304, 4 pages, 2011.

[139] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M.
A. Kasevich, “Squeezed states in a Bose-Einstein condensate,”
Science, vol. 291, no. 5512, pp. 2386–2389, 2001.

[140] S. R. White, “Density matrix formulation for quantum renor-
malization groups,” Physical Review Letters, vol. 69, no. 19, pp.
2863–2866, 1992.

[141] S. R. White and A. E. Feiguin, “Real-time evolution using the
density matrix renormalization group,” Physical Review Letters,
vol. 93, no. 7, Article ID 076401, 4 pages, 2004.



ISRN Condensed Matter Physics 37

[142] G. Vidal, “Efficient simulation of one-dimensional quantum
many-body systems,” Physical Review Letters, vol. 93, no. 4,
Article ID 040502, 4 pages, 2004.
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