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Two new subclasses of harmonic univalent functions defined by using convolution and integral convolution are introduced. These
subclasses generate several known and new subclasses of harmonic univalent functions as special cases and provide a unified
treatment in the study of these classes. Coefficient bounds, extreme points, distortion bounds, convolution conditions, and convex
combination are also determined.

1. Introduction

A continuous function 𝑓 is said to be a complex-valued
harmonic function in a simply connected domain 𝐷 in
complex plane C if both real part of 𝑓 and imaginary part of
𝑓 are real harmonic in𝐷. Such functions can be expressed as

𝑓 = ℎ + 𝑔, (1)

where ℎ and 𝑔 are analytic in 𝐷. We call ℎ the analytic part
and 𝑔 the coanalytic part of 𝑓. A necessary and sufficient
condition for 𝑓 to be locally univalent and sense-preserving
in𝐷 is that |ℎ󸀠(𝑧)| > |𝑔󸀠(𝑧)| for all 𝑧 in𝐷, see [1].

Every harmonic function 𝑓 = ℎ + 𝑔 is uniquely deter-
mined by the coefficients of power series expansions in the
unit disk 𝑈 = {𝑧 : |𝑧| < 1} given by

ℎ (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎
𝑛
𝑧𝑛, 𝑔 (𝑧) =

∞

∑
𝑛=1

𝑏
𝑛
𝑧𝑛, 𝑧 ∈ 𝑈,

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 < 1,

(2)

where 𝑎
𝑛
∈ C for 𝑛 = 2, 3, 4, . . . and 𝑏

𝑛
∈ C for 𝑛 = 1, 2, 3, . . ..

For further information about these mappings, one may refer
to [1–5].

In 1984, Clunie and Sheil-Small [1] studied the family 𝑆
𝐻

of all univalent sense-preserving harmonic functions 𝑓 of
the form (1) in 𝑈, such that ℎ and 𝑔 are represented by (2).
Note that 𝑆

𝐻
reduces to the well-known family 𝑆, the class

of all normalized analytic univalent functions ℎ given in (2),
whenever the coanalytic part 𝑔 of 𝑓 is zero. Let 𝐾 and 𝐾

𝐻

denote the respective subclasses of 𝑆 and 𝑆
𝐻
where the images

of𝑓(𝑈) are convex. Denote by 𝑆0
𝐻
the subclass of 𝑆

𝐻
for which

𝑔󸀠(0) = 0.
The convolution of two functions of the form

Φ (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝜇
𝑛
𝑧𝑛, Ψ (𝑧) = 𝑧 +

∞

∑
𝑛=2

]
𝑛
𝑧𝑛 (3)

is given by

(Φ ∗ Ψ) (𝑧) = Φ (𝑧) ∗ Ψ (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝜇
𝑛
]
𝑛
𝑧𝑛, (4)

and the integral convolution is defined by

(Φ ⬦ Ψ) (𝑧) = Φ (𝑧) ⬦ Ψ (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝜇
𝑛
]
𝑛

𝑛
𝑧𝑛. (5)

Towards the end of the last century, Jahangiri [3], Silverman
[4], and Silverman and Silvia [5] were amongst those who
focused on the harmonic starlike functions. Later Öztürk et.
al. [6] defined the class 𝑆∗

𝐻
(𝜆, 𝛼) consisting of functions 𝑓 =

ℎ + 𝑔 such that ℎ and 𝑔 are of the forms

ℎ (𝑧) = 𝑧 −
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛, 𝑔 (𝑧) =

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛, (6)
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which satisfy the condition

Re
{
{
{

𝑧ℎ󸀠 (𝑧) − 𝑧𝑔󸀠 (𝑧)

𝜆 (𝑧ℎ󸀠 (𝑧) − 𝑧𝑔󸀠 (𝑧)) + (1 − 𝜆) (ℎ (𝑧) + 𝑔 (𝑧))

}
}
}

> 𝛼,

(7)

for some 0 ≤ 𝛼 < 1, 0 ≤ 𝜆 ≤ 1 and for all 𝑧 ∈ 𝑈.
Several authors [3–16] have investigated various sub-

classes of harmonic functions. In this work, we introduce a
new subclass of harmonic functions defined by convolution.

Let 𝜎 be a real constant with |𝜎| = 1, then we denote
𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), the subclass of 𝑆0

𝐻
of functions of the form

𝑓 = ℎ + 𝑔 ∈ 𝑆0
𝐻
that satisfy the condition

Re{
𝐻(𝑓,Φ,Ψ)

𝜆𝐻 (𝑓,Φ,Ψ) + (1 − 𝜆)𝐺 (𝑓,Φ,Ψ)
} > 𝛼, (8)

where𝐻(𝑓,Φ,Ψ) = ℎ(𝑧)∗Φ(𝑧)−𝜎𝑔(𝑧) ∗ Ψ(𝑧),𝐺(𝑓,Φ,Ψ) =
ℎ(𝑧) ⬦ Φ(𝑧) + 𝜎𝑔(𝑧) ⬦ Ψ(𝑧), 0 ≤ 𝛼 < 1, 0 ≤ 𝜆 ≤ 1, and Φ,Ψ
are as given in (3).

We also denote 𝑆𝑃0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), the subclass of 𝑆0

𝐻
of

functions of the form𝑓 = ℎ+𝑔 ∈ 𝑆0
𝐻
that satisfy the condition

Re{(1 + 𝑒𝑖𝛾)
𝐻 (𝑓,Φ,Ψ)

𝜆𝐻 (𝑓,Φ,Ψ) + (1 − 𝜆)𝐺 (𝑓,Φ,Ψ)

−𝑒𝑖𝛾} > 𝛼,

(9)

where 𝛾 is real.
We note that the families 𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) and 𝑆𝑃0

𝐻
(Φ,Ψ,

𝜎, 𝜆, 𝛼) are of special interest, because they contain various
classes of well-known harmonic univalent functions as well
as many new ones. For different choice of Φ,Ψ, 𝜆, and 𝛼
we obtain the following various classes introduced by other
authors:

(1) 𝑆0
𝐻
((𝑧/(1 − 𝑧)2), (𝑧/(1 − 𝑧)2), 1, 𝜆, 𝛼) = 𝑆0

𝐻
(𝜆, 𝛼) (see

Öztürk et. al [6]).

(2) 𝑆0
𝐻
((𝑧/(1 − 𝑧)2), (𝑧/(1 − 𝑧)2), 1, 0, 𝛼) = 𝑆0

𝐻
(𝛼) (see

Jahangiri [3]).

(3) 𝑆0
𝐻
((𝑧/(1 − 𝑧)2), (𝑧/(1 − 𝑧)2), 1, 0, 0) = 𝑆0

𝐻
(see

Silverman and Silvia [5]).

(4) 𝑆0
𝐻
((𝑧/(1−𝑧)2), (𝑧/(1−𝑧)2), 1, 0, 0) = 𝑆∗0

𝐻
, with 𝑏

1
= 0

(see Avcı and Złotkiewicz [17] and Silverman [4]).

(5) 𝑆0
𝐻
(((𝑧 + 𝑧2)/(1 − 𝑧)3), ((𝑧 + 𝑧2)/(1 − 𝑧)3), 1, 0, 𝛼) =

𝐾0
𝐻
(𝛼) (see Jahangiri [3]).

(6) 𝑆0
𝐻
(((𝑧+𝑧2)/(1−𝑧)3), ((𝑧+𝑧2)/(1−𝑧)3), 1, 0, 0) = 𝐾∗0

𝐻

(see Silverman [4]).

(7) 𝑆0
𝐻
(Φ,Ψ, 1, 0, 𝛼) = 𝑆0

𝐻
(Φ,Ψ, 𝛼) (see Dixit et al. [11]).

(8) 𝑆0
𝐻
(Φ,Φ, 𝜎, 0, 𝛼) = 𝑆0

𝐻
(Φ,Φ, 𝛼) (see Ali et al. [7]).

(9) 𝑆0
𝐻
(Φ,Ψ, 1, 𝜆, 𝛼) = 𝑆0

𝐻
(Φ,Ψ, 𝜆, 𝛼) (see Joshi et al. [14]).

(10) 𝑆0
𝐻
(Φ,Ψ, (1)𝑙, 0, 𝛼) = 𝐻(𝑙, 𝛼), where 𝜇

𝑛
= ]
𝑛
= 𝑛𝑙 (see

Jahangiri et al. [13]).

(11) 𝑆0
𝐻
((𝑧/(1 − 𝑧)𝛾+1), (𝑧/(1 − 𝑧)𝛾+1), 1, 0, 𝛼) = 𝑅

𝐻
(𝛾, 𝛼),

where 𝛾 > −1 (see Murugusundaramoorthy [15]).

(12) 𝑆0
𝐻
(Φ,Ψ, (−1)𝑙, 0, 𝛼) = 𝑀

𝐻
(𝑙, 𝛾, 𝛼), where 𝜇

𝑛
= ]
𝑛
=

𝑛𝑙 (((𝛾 + 1)
𝑛−1

)/(𝑛 − 1)!) and (𝛾 + 1)
𝑛−1

= (𝛾 + 1)(𝛾 +
2) ⋅ ⋅ ⋅ (𝛾 + 𝑛 − 1) (see Al-Shaqsi and Darus [10]).

(13) 𝑆0
𝐻
(Φ,Ψ, 1, 𝜆, 𝛼) = 𝑅

𝑝,𝑞

𝐻
(Φ,Ψ, 𝜆, 𝛼), where 𝜇

𝑛
= ]
𝑛
=

(((𝛾
1
)
𝑛−1

. . . (𝛾
𝑝
)
𝑛−1

)/((𝛽
1
)
𝑛−1

. . . (𝛽
𝑝
)
𝑛−1

))(1/(𝑛 − 1)!)
(see Murugusundaramoorthy et al. [16]).

It is clear that the class 𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) generates a num-

ber of known subclasses and provides a unified treatment of
these subclasses of harmonic mappings. Motivated by work
of Ali et al. [7], we obtain convolution characterization for
functions in the class 𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) and 𝑆𝑃0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼).

We also obtain sufficient coefficient condition for these two
classes, and the last section is devoted to determine growth
estimates and extreme points for the class 𝑇𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼)

and 𝑇𝑆𝑃0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼).

2. Main Results

We now derive a convolution characterization for functions
in the class 𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼).

Theorem 1. Let 𝑓 = ℎ + 𝑔 ∈ 𝑆0
𝐻
. Then 𝑓 ∈ 𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) if

and only if

(ℎ ∗ Φ) ⬦ [
𝑧 + (((𝑥 + 2𝛼 − 1) (1 − 𝜆)) / (2 − 2𝛼)) 𝑧2

(1 − 𝑧)2
]

− 𝜎(𝑔 ∗ Ψ)

⬦ [(
𝑥 + 𝛼 − 𝜆 (𝑥 + 2𝛼 − 1)

1 − 𝛼
𝑧

−
(𝑥 + 2𝛼 − 1) (1 − 𝜆)

2 − 2𝛼
𝑧2) ((1 − 𝑧)

2)
−1

] ̸= 0,

|𝑥| = 1, |𝑧| ̸= 0.

(10)

Proof. A necessary and sufficient condition for 𝑓 = ℎ + 𝑔 to
be in the class 𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), with ℎ and 𝑔 of the form (1)

is given by (8). The condition (8) holds if and only if

1

(1 − 𝛼)
{

𝐻 (𝑓,Φ,Ψ)

𝜆 𝐻 (𝑓,Φ,Ψ) + (1 − 𝜆) 𝐺 (𝑓,Φ,Ψ)
− 𝛼}

̸=
𝑥 − 1

𝑥 + 1
; |𝑥| = 1, 𝑥 ̸= − 1, 0 < |𝑧| < 1.

(11)



Journal of Complex Analysis 3

By simple algebraic manipulation, (11) gives

0 ̸= (𝑥 + 1) [ℎ (𝑧) ∗ Φ (𝑧) − 𝜎𝑔 (𝑧) ∗ Ψ (𝑧)]

− (𝑥 + 2𝛼 − 1) [𝜆 (ℎ (𝑧) ∗ Φ (𝑧) − 𝜎𝑔 (𝑧) ∗ Ψ (𝑧))

+ (1 − 𝜆) (ℎ (𝑧) ⬦ Φ (𝑧)

+𝜎𝑔 (𝑧) ⬦ Ψ (𝑧))]

= (ℎ ∗ Φ) ⬦ [
2 (1 − 𝛼) 𝑧 + (𝑥 − 1 + 2𝛼) (1 − 𝜆) 𝑧2

(1 − 𝑧)2
]

− 𝜎(𝑔 ∗ Ψ)

⬦[
2 (𝑥+𝛼 −𝜆 (𝑥+2𝛼−1)) 𝑧−(𝑥+2𝛼 −1) (1 − 𝜆) 𝑧2

(1 − 𝑧)2
].

(12)

The latter condition, along with (8) for 𝑥 = −1, establishes the
result for all |𝑥| = 1.

An application of the convolution condition inTheorem 1
gives sufficient condition for harmonic functions to belong to
the class 𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼).

Theorem 2. Let 𝑓 = ℎ + 𝑔 ∈ 𝑆0
𝐻
. Then 𝑓 ∈ 𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) if

∞

∑
𝑛=2

(
𝑛 − 𝛼 − 𝜆𝛼 (𝑛 − 1)

1 − 𝛼
)

󵄨󵄨󵄨󵄨𝜇𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨
𝑛

+
∞

∑
𝑛=2

(
𝑛 + 𝛼 − 𝜆𝛼 (𝑛 + 1)

1 − 𝛼
)

󵄨󵄨󵄨󵄨]𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

𝑛
≤ 1.

(13)

Proof. For ℎ and 𝑔 given by (2), Theorem 1 gives
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(ℎ ∗ Φ) ⬦ [(𝑧 +

(𝑥 + 2𝛼 − 1) (1 − 𝜆)

2 − 2𝛼
𝑧2)

× ((1 − 𝑧)
2)
−1

]

− 𝜎(𝑔 ∗ Ψ) ⬦ [
𝑥 + 𝛼 − 𝜆 (𝑥 + 2𝛼 − 1)

1 − 𝛼
𝑧

−
(𝑥 + 2𝛼 − 1) (1 − 𝜆)

2 − 2𝛼
𝑧2

× ((1 − 𝑧)
2)
−1

]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧 +
∞

∑
𝑛=2

𝜇
𝑛

𝑛
[𝑛 + (𝑛 − 1)

(𝑥 + 2𝛼 − 1) (1 − 𝜆)

2 − 2𝛼
] 𝑎
𝑛
𝑧𝑛

− 𝜎
∞

∑
𝑛=2

]
𝑛

𝑛
[𝑛

𝑥 + 𝛼 − 𝜆 (𝑥 + 2𝛼 − 1)

1 − 𝛼

− (𝑛 − 1)
(𝑥 + 2𝛼 − 1) (1 − 𝜆)

2 − 2𝛼
] 𝑏
𝑛
𝑧𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> |𝑧| [1 −
∞

∑
𝑛=2

(
𝑛 − 𝛼 − 𝜆𝛼 (𝑛 − 1)

1 − 𝛼
)

󵄨󵄨󵄨󵄨𝜇𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨
𝑛

−
∞

∑
𝑛=2

(
𝑛 + 𝛼 − 𝜆𝛼 (𝑛 + 1)

1 − 𝛼
)

󵄨󵄨󵄨󵄨]𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

𝑛
] .

(14)

The last expression is nonnegative by hypothesis, and hence
byTheorem 1, it follows that 𝑓 ∈ 𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼).

Theorem 3. Let 𝑓 = ℎ + 𝑔 ∈ 𝑆0
𝐻
. Then 𝑓 ∈ 𝑆𝑃0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼)

if and only if

(ℎ ∗ Φ) ⬦ [𝑧 +
[(𝑥 + 1) 𝑒𝑖𝛾 + 𝑥 + 2𝛼 − 1] (1 − 𝜆)

2 − 2𝛼
𝑧2

× ((1 − 𝑧)
2)
−1

]

− 𝜎 (𝑔 ∗ Ψ)

⬦ [ (
(𝑥 + 1) 𝑒𝑖𝛾 + 𝑥 + 𝛼 − 𝜆 ((𝑥 + 1) 𝑒𝑖𝛾 + 𝑥 + 2𝛼 − 1)

1 − 𝛼
𝑧

−
[(𝑥 + 1) 𝑒𝑖𝛾 + 𝑥 + 2𝛼 − 1] (1 − 𝜆)

2 − 2𝛼
𝑧2) ((1 − 𝑧)

2)
−1

] ̸= 0,

|𝑥| = 1, |𝑧| ̸= 0.

(15)

Proof. A necessary and sufficient condition for 𝑓 = ℎ + 𝑔 to
be in the class 𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), with ℎ and 𝑔 of the form (1)

is given by (9). The condition (9) holds if and only if

1

(1 − 𝛼)
{(1 + 𝑒𝑖𝛾)

𝐻 (𝑓,Φ,Ψ)

𝜆𝐻 (𝑓,Φ,Ψ) + (1 − 𝜆)𝐺 (𝑓,Φ,Ψ)

−𝑒𝑖𝛾 − 𝛼} ̸=
𝑥 − 1

𝑥 + 1
;

|𝑥| = 1, 𝑥 ̸= − 1, 0 < |𝑧| < 1.

(16)

By simple algebraic manipulation, we get the desired
result.

Now sufficient coefficient condition for the class 𝑆𝑃0
𝐻
(Φ,

Ψ, 𝜎, 𝜆, 𝛼) is easily obtained.

Theorem 4. Let 𝑓 = ℎ + 𝑔 ∈ 𝑆0
𝐻
. Then 𝑓 ∈ 𝑆𝑃0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼)

if
∞

∑
𝑛=2

(
2𝑛 − 1 − 𝛼 − 𝜆 (1 + 𝛼) (𝑛 − 1)

1 − 𝛼
)

󵄨󵄨󵄨󵄨𝜇𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨
𝑛

+
∞

∑
𝑛=2

(
2𝑛 + 1 + 𝛼 − 𝜆 (1 + 𝛼) (𝑛 + 1)

1 − 𝛼
)

󵄨󵄨󵄨󵄨]𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

𝑛
≤ 1.

(17)
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We further let 𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) and 𝑇𝑆𝑃0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼)

denote the subclasses of 𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) and 𝑆𝑃0

𝐻
(Φ,Ψ,

𝜎, 𝜆, 𝛼), respectively, consisting of functions 𝑓 = ℎ + 𝑔 ∈ 𝑆0
𝐻

such that ℎ and 𝑔 are of the form

ℎ (𝑧) = 𝑧 −
∞

∑
𝑛=2

𝑎
𝑛
𝑧𝑛,

𝑔 (𝑧) = 𝜎
∞

∑
𝑛=2

𝑏
𝑛
𝑧𝑛, 𝑎

𝑛
≥ 0, 𝑏

𝑛
≥ 0.

(18)

Let

Φ (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝜇
𝑛
𝑧𝑛, Ψ (𝑧) = 𝑧 +

∞

∑
𝑛=2

]
𝑛
𝑧𝑛, (19)

with 𝜇
𝑛
≥ 0, ]

𝑛
≥ 0.

Theorem5. Let𝑓 = ℎ+𝑔 of the form (18).Then𝑓 ∈ 𝑇𝑆0
𝐻
(Φ,Ψ,

𝜎, 𝜆, 𝛼) if and only if

∞

∑
𝑛=2

𝜇
𝑛

𝑛
(
𝑛 − 𝛼 − 𝜆𝛼 (𝑛 − 1)

1 − 𝛼
) 𝑎
𝑛

+
∞

∑
𝑛=2

]
𝑛

𝑛
(
𝑛 + 𝛼 − 𝜆𝛼 (𝑛 + 1)

1 − 𝛼
) 𝑏
𝑛
≤ 1.

(20)

Proof. If 𝑓 ∈ 𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), then (8) is equivalent to

Re{((1 − 𝛼) 𝑧 −
∞

∑
𝑛=2

𝜇
𝑛

[𝑛 − 𝛼 − 𝛼𝜆 (𝑛 − 1)]

𝑛
𝑎
𝑛
𝑧𝑛

−
∞

∑
𝑛=2

]
𝑛

[𝑛 + 𝛼 − 𝛼𝜆 (𝑛 + 1)]

𝑛
𝑏
𝑛
𝑧𝑛)

× (𝑧 −
∞

∑
𝑛=2

𝜇
𝑛
[𝜆 + (

1 − 𝜆

𝑛
)] 𝑎
𝑛
𝑧𝑛

+
∞

∑
𝑛=2

]
𝑛
[(

1 − 𝜆

𝑛
) − 𝜆] 𝑏

𝑛
𝑧𝑛)

−1

} > 0,

(21)

for 𝑧 ∈ 𝑈. Letting 𝑧 → 1− through real values, we get

((1 − 𝛼) −
∞

∑
𝑛=2

𝜇
𝑛
(
[𝑛 − 𝛼 − 𝛼𝜆 (𝑛 − 1)]

𝑛
) 𝑎
𝑛

−
∞

∑
𝑛=2

]
𝑛
(
[𝑛 + 𝛼 − 𝛼𝜆 (𝑛 + 1)]

𝑛
) 𝑏
𝑛
)

× (1 −
∞

∑
𝑛=2

𝜇
𝑛
[𝜆 + (

1 − 𝜆

𝑛
)] 𝑎
𝑛

+
∞

∑
𝑛=2

]
𝑛
[(

1 − 𝜆

𝑛
) − 𝜆] 𝑏

𝑛
)

−1

≥ 0,

(22)

which gives required condition (20).

Conversely, for ℎ and 𝑔 given by (18),

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(ℎ ∗ Φ) ⬦ [(𝑧 +

(𝑥 + 2𝛼 − 1) (1 − 𝜆)

2 − 2𝛼
𝑧2)

×((1 − 𝑧)
2)
−1

]

−𝜎(𝑔 ∗ Ψ) ⬦ [(
𝑥 + 𝛼 − 𝜆 (𝑥 + 2𝛼 − 1)

1 − 𝛼
𝑧

−
(𝑥 + 2𝛼 − 1) (1 − 𝜆)

2 − 2𝛼
𝑧2)

× ((1 − 𝑧)
2)
−1

]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> |𝑧| [1 −
∞

∑
𝑛=2

𝜇
𝑛

𝑛
(
𝑛 − 𝛼 − 𝜆𝛼 (𝑛 − 1)

1 − 𝛼
) 𝑎
𝑛

−
∞

∑
𝑛=2

]
𝑛

𝑛
(
𝑛 + 𝛼 − 𝜆𝛼 (𝑛 + 1)

1 − 𝛼
) 𝑏
𝑛
] ,

(23)

which is nonnegative by hypothesis.

Theorem6. Let𝑓 = ℎ+𝑔 of the form (18).Then𝑓 ∈ 𝑇𝑆𝑃0
𝐻
(Φ,

Ψ, 𝜎, 𝜆, 𝛼) if and only if

∞

∑
𝑛=2

𝜇
𝑛

𝑛
(
2𝑛 − 1 − 𝛼 − 𝜆 (1 + 𝛼) (𝑛 − 1)

1 − 𝛼
) 𝑎
𝑛

+
∞

∑
𝑛=2

]
𝑛

𝑛
(
2𝑛 + 1 + 𝛼 − 𝜆 (1 + 𝛼) (𝑛 + 1)

1 − 𝛼
) 𝑏
𝑛
≤ 1.

(24)

The following theorem gives the distortion bounds for
functions in𝑇𝑆0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), and𝑇𝑆𝑃0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼)which

gives a covering result for the classes 𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) and

𝑇𝑆𝑃0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), respectively.

Theorem 7. Let 𝑓 ∈ 𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) and 𝜇

𝑛
≥ ]
2
, ]
𝑛
≥

]
2
, (𝑛 ≥ 2), then for |𝑧| = 𝑟 < 1, we have

𝑟 −
2 (1 − 𝛼)

(2 − 𝛼 − 𝜆𝛼) ]
2

𝑟2 ≤
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨

≤ 𝑟 +
2 (1 − 𝛼)

(2 − 𝛼 − 𝜆𝛼) ]
2

𝑟2.

(25)

The result is sharp with equality for 𝑓(𝑧) = 𝑧 − (2(1 − 𝛼)/(2 −

𝛼 − 𝜆𝛼)]
2
)𝑧2.
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Proof. We have

(2 − 𝛼 − 𝛼𝜆)
]
2

2

∞

∑
𝑛=2

(𝑎
𝑛
+ 𝑏
𝑛
)

≤
∞

∑
𝑛=2

[𝑛 − 𝛼 − 𝜆𝛼 (𝑛 − 1)]
𝜇
𝑛
𝑎
𝑛

𝑛

+
∞

∑
𝑛=2

[𝑛 + 𝛼 − 𝜆𝛼 (𝑛 + 1)]
]
𝑛
𝑏
𝑛

𝑛

≤ 1 − 𝛼.

(26)

Thus,

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧 −
∞

∑
𝑛=2

𝑎
𝑛
𝑧𝑛 + 𝜎

∞

∑
𝑛=2

𝑏
𝑛
𝑧𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑟 + 𝑟2
∞

∑
𝑛=2

(𝑎
𝑛
+ 𝑏
𝑛
)

≤ 𝑟 +
2 (1 − 𝛼)

(2 − 𝛼 − 𝜆𝛼) ]
2

𝑟2.

(27)

The proof of left-hand inequality follows in lines similar to
that of right-hand side inequality.

Theorem 8. Let 𝑓 ∈ 𝑇𝑆𝑃0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) and 𝜇

𝑛
≥ ]
2
, ]
𝑛
≥

]
2
, (𝑛 ≥ 2), then for |𝑧| = 𝑟 < 1, we have

𝑟 −
2 (1 − 𝛼)

(3 − 𝛼 − 𝜆 (1 + 𝛼)) ]
2

𝑟2 ≤
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨

≤ 𝑟 +
2 (1 − 𝛼)

(3 − 𝛼 − 𝜆 (1 + 𝛼)) ]
2

𝑟2.

(28)

The result is sharp with equality for 𝑓(𝑧) = 𝑧 − (2(1 − 𝛼)/(3 −

𝛼 − 𝜆(1 + 𝛼))]
2
)𝑧2.

Corollary 9. Let 𝑓 ∈ 𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), then

{𝑤 : |𝑤| < 1 −
2 (1 − 𝛼)

(2 − 𝛼 − 𝜆𝛼) ]
2

} ⊂ 𝑓 (𝑈) . (29)

Corollary 10. Let 𝑓 ∈ 𝑇𝑆𝑃0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), then

{𝑤 : |𝑤| < 1 −
2 (1 − 𝛼)

(3 − 𝛼 − 𝜆 (1 + 𝛼)) ]
2

} ⊂ 𝑓 (𝑈) . (30)

Finally, we determine the extreme points of the class
𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), and 𝑇𝑆𝑃0

𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼).

Theorem 11. Let

ℎ
1
(𝑧) = 𝑧, ℎ

𝑛
(𝑧) = 𝑧 −

𝑛 (1 − 𝛼)

[𝑛 − 𝛼 − 𝜆𝛼 (𝑛 − 1)] 𝜇
𝑛

𝑧𝑛,

𝑔
𝑛
(𝑧) = 𝑧 −

𝑛 (1 − 𝛼)

𝜎 [𝑛 + 𝛼 − 𝜆𝛼 (𝑛 + 1)] ]
𝑛

𝑧𝑛 (𝑛 = 2, 3, . . .) .

(31)

A function 𝑓 ∈ 𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) if and only if 𝑓 can be

expressed in the form

𝑓 (𝑧) =
∞

∑
𝑛=1

(𝛽
𝑛
ℎ
𝑛
+ 𝛾
𝑛
𝑔
𝑛
) , (32)

where 𝛽
𝑛
≥ 0, 𝛾

𝑛
≥ 0, 𝛽

1
= 1 − ∑

∞

𝑛=2
(𝛽
𝑛
+ 𝛾
𝑛
) and 𝛾

1
= 0.

In particular, the extreme points of 𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) are {ℎ

𝑛
}

and {𝑔
𝑛
}.

Proof. Let

𝑓 (𝑧) =
∞

∑
𝑛=2

(𝛽
𝑛
ℎ
𝑛
+ 𝛾
𝑛
𝑔
𝑛
)

= 𝑧 −
∞

∑
𝑛=2

𝛽
𝑛

𝑛 (1 − 𝛼)

[𝑛 − 𝛼 − 𝜆𝛼 (𝑛 − 1)] 𝜇
𝑛

𝑧𝑛

+ 𝜎
∞

∑
𝑛=2

𝛾
𝑛

𝑛 (1 − 𝛼)

[𝑛 + 𝛼 − 𝜆𝛼 (𝑛 + 1)] ]
𝑛

𝑧𝑛.

(33)

Since

∞

∑
𝑛=2

𝜇
𝑛

𝑛
(
𝑛 − 𝛼 − 𝜆𝛼 (𝑛 − 1)

1 − 𝛼
)𝛽
𝑛

𝑛 (1 − 𝛼)

[𝑛 − 𝛼 − 𝜆𝛼 (𝑛 − 1)] 𝜇
𝑛

+
∞

∑
𝑛=1

]
𝑛

𝑛
(
𝑛 + 𝛼 − 𝜆𝛼 (𝑛 + 1)

1 − 𝛼
) 𝛾
𝑛

𝑛 (1 − 𝛼)

[𝑛 + 𝛼 − 𝜆𝛼 (𝑛 + 1)] ]
𝑛

=
∞

∑
𝑛=2

(𝛽
𝑛
+ 𝛾
𝑛
) = 1 − 𝛽

1
≤ 1,

(34)

fromTheorem 5, 𝑓 ∈ 𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼).

Conversely, if 𝑓 ∈ 𝑇𝑆0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼), then 𝑎

𝑛
≤ 𝑛(1 −

𝛼)/(𝑛−𝛼−𝜆𝛼(𝑛−1))𝜇
𝑛
and 𝑏
𝑛
≤ 𝑛(1−𝛼)/(𝑛+𝛼−𝜆𝛼(𝑛+1)]

𝑛
).

Set 𝛽
𝑛
= (𝜇
𝑛
/𝑛)(𝑛 − 𝛼 − 𝜆𝛼(𝑛 − 1)/(1 − 𝛼))𝑎

𝑛
, 𝛾
𝑛
= (]
𝑛
/𝑛)(𝑛 +

𝛼 − 𝜆𝛼(𝑛 + 1)/(1 − 𝛼))𝑏
𝑛
, 𝛽
1
= 1 − ∑

∞

𝑛=2
(𝛽
𝑛
+ 𝛾
𝑛
), and 𝛾

1
= 0.

Then,

∞

∑
𝑛=2

(𝛽
𝑛
ℎ
𝑛
+ 𝛾
𝑛
𝑔
𝑛
) = 𝑧 −

∞

∑
𝑛=2

𝑎
𝑛
𝑧𝑛 + 𝜎

∞

∑
𝑛=2

𝑏
𝑛
𝑧𝑛 = 𝑓 (𝑧) . (35)

Theorem 12. Let

𝑝
1
(𝑧) = 𝑧,

𝑝
𝑛
(𝑧) = 𝑧 −

𝑛 (1 − 𝛼)

[2𝑛 − 1 − 𝛼 − 𝜆 (1 + 𝛼) (𝑛 − 1)] 𝜇
𝑛

𝑧𝑛,

𝑞
𝑛
(𝑧) = 𝑧 −

𝑛 (1 − 𝛼)

𝜎 [2𝑛 + 1 + 𝛼 − 𝜆 (1 + 𝛼) (𝑛 + 1)] ]
𝑛

𝑧𝑛

(𝑛 = 2, 3, . . .) .

(36)
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A function 𝑓 ∈ 𝑇𝑆𝑃0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) if and only if 𝑓 can be

expressed in the form

𝑓 (𝑧) =
∞

∑
𝑛=1

(𝛽
𝑛
𝑝
𝑛
+ 𝛾
𝑛
𝑞
𝑛
) , (37)

where 𝛽
𝑛
≥ 0, 𝛾

𝑛
≥ 0, 𝛽

1
= 1 − ∑

∞

𝑛=2
(𝛽
𝑛
+ 𝛾
𝑛
), and 𝛾

1
= 0.

In particular, the extreme points of𝑇𝑆𝑃0
𝐻
(Φ,Ψ, 𝜎, 𝜆, 𝛼) are {𝑝

𝑛
}

and {𝑞
𝑛
}.
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