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We use sets of de Broglie-Bohm trajectories to describe the quantum correlation effects which take place between the electrons
in helium atom due to exchange and Coulomb interactions. A short-range screening of the Coulomb potential is used to modify
the repulsion between the same spin electrons in physical space in order to comply with Pauli’s exclusion principle. By calculating
the electron-pair density for orthohelium, we found that the shape of the exchange hole can be controlled uniquely by a simple
screening parameter. For parahelium the interelectronic distance, hence the Coulomb hole, results from the combined action of
the Coulomb repulsion and the nonlocal quantum correlations. In this way, a robust and self-interaction-free approach is presented
to find both the ground state and the time evolution of nonrelativistic quantum systems.

1. Introduction

The electronic many-body problem is of key importance
for the theoretical treatments of physics and chemistry. A
typical manifestation of the quantum many-body effects is
the electron correlation which results from the Coulomb
and exchange interactions between the electrons combined
with the underlying quantum nonlocality. Since in general
the electron correlation reshapes the probability density in
configuration space, it is difficult to elucidate this effect for
higher dimensions.Therefore, to better understand the effects
of electron correlation in atoms and molecules, one needs,
besides one-particle quantities such as the electron density
function, to consider also extensions which explicitly incor-
porate many-body effects. Such an appropriate quantity is
the electronic pair-density function which represents the
probability density of finding two electrons at distanceu from
each other [1, 2]:
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where r
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body wave function Ψ(R, 𝑡) resides in configuration space
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The importance of the electron-pair density, also known
as electron position intracule, comes from the fact that it
can be associated with experimental data obtained from
X-ray scattering, and it can also be used to visualize the
notion of exchange and correlation holes which surround
the quantum particles. However, the calculation of the many-
body wave function in (1) is hampered by the computational
cost which scales exponentially with system dimensionality.
Therefore, different approximations have been employed in
order to calculate the electronic pair densities. These include
Hartree-Fock (HF) approximation as well as Hylleraas type
explicitly correlated wave functions represented as product
of HF function and pair-correlation factors [3–6]. Other
(e.g., quantum Monte Carlo [7]) approaches use appropriate
Slater-Jastrow-typemany-bodywave functionswhich involve
number of parameters, which after optimization can be used
to calculate the average in (1).

Here we calculate the electron-pair densities for helium
atom in 2 1S and 2 3S states using the recently proposed time-
dependent quantum Monte Carlo (TDQMC) method which
employs sets of particles and quantum waves to describe the
ground state and the time evolution ofmany-electron systems
[8–13]. In TDQMC each electron is described statistically
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as an ensemble of walkers which represent different replicas
of that electron in position space, where each walker is
guided by a separate time-dependent de Broglie-Bohm pilot
wave. The correlated guiding waves obey a set of coupled
time-dependent Schrödinger equations (TDSE), where the
electron-electron interactions are accounted for using explicit
nonlocal Coulomb potentials. In the TDQMC algorithm
the preparation of the ground state of the quantum system
involves a few steps which include initialization of the Monte
Carlo (MC) ensembles of walkers and guide waves, followed
by their concurrent propagation in complex time toward
steady state in the presence of random component in walker’s
motion to account for the processes of quantum drift and
diffusion. Once the ground state is established, the real-
time quantum dynamics can be studied, for example, the
interaction of atoms andmolecules with external electromag-
netic fields. The large speedup of the calculations when using
TDQMCcomes from the fact thatwalker’s distribution repro-
duces the amplitude (or modulus square) of the many-body
wave function, while its phase is being disregarded as it is not
needed for most applications. Also, the TDQMCmethod can
be implemented very efficiently on parallel computers where
tens of thousands of coupled Schrödinger equations can be
solved concurrently for affordable time.

2. General Theory

The TDQMC is an ab initio method with respect to the
electron correlation in that it does not involve explicit pair-
correlation factors which may become too complex when
used for larger systems. For a system of 𝑁 electrons, the
many-body wave function obeys the Schrödinger equation:
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For Hamiltonians with no explicit spin variables the
exchange effects can be accounted for efficiently using
screened Coulomb potentials as described in [10].The simple
idea behind this approach is that the short-range screened
Coulomb potential ensures full-scale Coulomb interaction
between only electron replicas (MC walkers) which are not
too close to each other, in accordance with Pauli’s exclusion
principle. The use of screened Coulomb potentials is benefi-
cial in that it eliminates the need of using antisymmetrized
products of guiding waves in the Broglie-Bohm guiding

equation for the velocity of the walkers. Instead, the many-
body wave function is replaced by a simple product:
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where 𝜑𝑘
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, 𝑡) denote the individual time-dependent guide

waves with indexes 𝑖 and 𝑘 for the electrons and the walkers,
respectively.Then, the guiding equations for theMonte Carlo
walkers read
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On the other side, the guide waves obey a set of coupled
TDSE:
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where the effective electron-electron potential𝑉eff
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is expressed as a Monte Carlo sum over the smoothed walker
distribution [9]:
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where𝐾 is a smoothing kernel and𝑍𝑘
𝑗
is the weighting factor.

The width 𝜎𝑘
𝑗
(r𝑘
𝑗
, 𝑡) of the kernel in (7) is a measure for the

characteristic length of nonlocal quantum correlationswithin
the ensemble of walkers which represent the 𝑗th electron.
In practice, the parameter 𝜎𝑘

𝑗
(r𝑘
𝑗
, 𝑡) is determined by varia-

tionally minimizing the ground state energy of the quantum
system [13].

In our calculation a Coulomb potential screened by an
error function is used [10]:
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where the Kronecker symbol 𝛿
𝑠𝑖,𝑠𝑗

restricts the screening
effect to the repulsion between only the same-spin walkers,
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while the value of screening parameter 𝑟𝑠
𝑖
is estimated from

the Hartree-Fock approximation.
In the approach outlined previously, a self-interaction-

free dynamics in physical space is achieved, where the sep-
arate walkers do not share guiding waves which represent
different distributions. In order to calculate the many-body
probability distribution in configuration space, a separate
auxiliary set of walkers with primed coordinates r󸀠𝑘

𝑖
is intro-

duced which is guided by an antisymmetric wave function:
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From (10) and (11) one can see that each walker with
primed coordinates samples the many-body wave function,
and thus it belongs to all guide waves (i.e., it represents an
indistinguishable electron). The distribution of these walkers
can be used to directly estimate the average in (1) by reducing
it to (for states with spherical symmetry)
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function can be simplified to a smoothed histogram (or a
kernel density estimation with kernel 𝐾

𝑖
and bandwidth 𝜎𝑖

12

[14]) over the ensemble of the distances between the primed
walkers.

3. Exchange and Coulomb
Correlations in Helium

The two major sources of electron-electron correlation are
due to the symmetry of the quantum state and due to the
Coulomb repulsion. Here we consider first the effect of the
exchange correlation on the pair-density function of helium
atom. Although the electron-pair densities for helium have
been analyzed by different techniques, they have never, to
the author’s knowledge, been studied using time-dependent
methods.

In order to examine the electron correlation which is
due to the exchange interaction, we consider the spin-triplet
ground state of helium (orthohelium).The preparation of the
ground state is described elsewhere [11, 12]. In the calculation
here we use up to 100 000 Monte Carlo walkers and the same
number of guiding waves, which are propagated over 2000
complex time steps (see (5) through (10)) in the presence
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Figure 1: Radial electron density for the ground state of orthohe-
lium, forMCwalkers guided in physical space (blue and green lines),
and for MC walkers guided in configuration space (red line). The
inset shows the projection of the coordinates of the MC walkers in
the x-y plane.

of random component in walker’s motion such that each
walker samples the distribution given by its own guiding
wave. In order to determine the screening parameter 𝑟𝑠

𝑖
of

(9), we invoke the Hartree-Fock approximation, where for
𝜎
𝑘

𝑗
(r𝑘
𝑗
, 𝑡) → ∞ the Coulomb potential in (7) reduces to a

simple (unweighted) sum of the Coulomb potentials due to
all walkers. Because of the spherical symmetry of the 2 3S
state 𝑟𝑠

𝑖
is being varied until minimizing the mean integrated

squared error of the walker’s distribution against the prob-
ability distribution obtained from an independent Hartree-
Fock solution (e.g., in [15]). Figure 1 shows the probability
distributions obtained from TDQMC for the optimizing
value of 𝑟𝑠

𝑖
= 𝑟
𝑠
= 1.13 a.u. in (9). The blue and the green

lines show the densities of the walkers guided in physical
space (see (5) through (9)), respectively, while the red line
represents the radial distribution of the walkers guided in
configuration space (see (10)). In these calculations a new
accurate algorithm for kernel density estimation was used
[16]. Notice that all probability distributions throughout this
paper are normalized to unity.

The electron-pair density for the ground state was cal-
culated very efficiently by simply performing kernel density
estimation over the ensemble of distances between the
primed walkers. The result is shown in Figure 2(a) where the
blue and the red lines present the cases with and without
exchange interaction, respectively. The lack of exchange
(𝑟𝑠
𝑖
→ 0 in (9)) leads to a full (unscreened) Coulomb

repulsion, which in the limit of infinite nonlocal correlation
length (𝜎𝑘

𝑗
(r𝑘
𝑗
, 𝑡) → ∞) becomes equivalent to the Hartree

approximation. Figure 2(b) shows the difference between the
two curves in Figure 2(a), which in fact depicts the shape
of the exchange hole for the 2 3S state of helium (see also
e.g., [5]). Note that the exchange hole in our calculation
may differ from other results because the distribution of the
Monte Carlo walkers varies in radial direction as 𝑟2𝑅2(𝑟)
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Figure 2: Electron-pair density as function of the interelectronic distance, for the ground state of orthohelium. (a) Red line—no screening
(no exchange), blue line—short-range screened Coulomb potentials. Exchange hole (b) for screened Coulomb potentials (black) and for
Hartree-Fock exchange (green).
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Figure 3: Radial electron density for the ground state of parahelium,
for MC walkers guided in physical space (red line), and from
the Hartree-Fock approximation (blue line). The inset shows the
projection of the coordinates of the MC walkers in the x-y plane.

instead of as 𝑅2(𝑟), where 𝑅(𝑟) is the radial wave function.
The green line in Figure 2(b) shows the exchange hole
obtained from an independentHartree-Fock calculationwith
no potential screening. It is seen that the two curves are
close where the deviations for larger interelectronic distances
are mainly due to the fast decrease of the walker’s density
away from the core. As the screening parameter 𝑟𝑠

𝑖
tends

to zero both the height and the width of the exchange hole
decrease until the two curves in Figure 2(b) become very
close, with the only remaining difference being a result of
purely Coulomb correlations.

For the ground state of the 2 1S (para)helium, the
quantity of interest is the Coulomb hole which occurs due to
the repulsion of the closely spaced walkers. Figure 3 shows
the probability distribution of the ground state walkers as
compared to the Hartree-Fock calculation, while Figure 4(a)
depicts the corresponding interelectronic distances for the

two cases. The Coulomb hole calculated as the difference
between the two curves is presented in Figure 4(b) which is
close to previous results by othermethods [3]. As the nonlocal
correlation length 𝜎𝑘

𝑗
(r𝑘
𝑗
, 𝑡) tends to infinity, both the height

and the width of the Coulomb hole decrease until the two
curves in Figure 4(b) coincide. Thus, in our approach where
the exchange and the Coulomb correlations are accounted
for by solely modifying the potential of electron-electron
interaction in physical space, the two parameters 𝑟𝑠

𝑖
and

𝜎
𝑘

𝑗
(r𝑘
𝑗
, 𝑡)may ensure a smooth transition between theHartree,

the Hartree-Fock, and the fully correlated approximations to
the electron-electron interaction. It is important to point out
that in the ℎ/𝑚 → 0 limit the quantum drift in (6) vanishes
and so does the width of the quantumwave packet.Therefore,
for an isolated atom the quantum correlation length 𝜎𝑘

𝑗
(r𝑘
𝑗
, 𝑡)

tends to zero in this limit, and if there are no exchange effects
(𝑟𝑠
𝑖
→ 0), the ensemble of quantum particles governed by (5)

and (6) transforms to an ensemble of classical particles with
the only force being due to the standard Coulomb repulsion
between these particles.

4. Conclusions

In this paper, it has been shown that for charged particles, the
quantum correlation effects which occur due to the exchange
and Coulomb correlations can adequately be described by
sets of de Broglie-Bohm walkers within the time-dependent
quantum Monte Carlo framework. A short-range screening
of the Coulomb potential ensures that each replica of a
given electron interacts with only those replicas of the rest
of the same spin electrons which are sufficiently apart to
respect Pauli’s exclusion principle in space. On the other
hand, the electron-electron interaction is modified by the
quantum nonlocality which demands that each replica of
a given electron interacts with the replicas of the other
electrons which are within the range of the nonlocal quantum
correlation length. This concept allows one to build a robust,
self-consistent, and self-interaction-free approach to find
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Figure 4: Electron-pair density as function of the interelectronic distance for the ground state of parahelium. (a) Red line—correlated result,
blue line—Hartree-Fock approximation. The Coulomb hole (b).

both the ground state and the time evolution of quantum
systems. It is demonstrated here that the otherwise awkward
procedure for calculating the pair distribution functions of
para- and orthohelium atom can be simplified to the level
of finding the ground state probability distributions of the
corresponding Monte Carlo walkers.

Besides the relative ease of its implementation, another
advantage of using TDQMC is the affordable time scaling
it offers which is almost linear with the system dimension-
ality. This is especially valid when using multicore parallel
computers where little communication overhead between the
different processes can be achieved, thus utilizing the inher-
ent parallelism of the Monte Carlo methods. This nears the
TDQMC to other efficient procedures for treating many-
body quantum dynamics such as the time-dependent density
functional approximation which, however, suffers systematic
self-interaction problems due to the semiempirical character
of the exchange-correlation potentials.
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