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e effects of surface roughness and poroelasticity on the micropolar squeeze �lm behavior between rectangular plates in general
and that of synovial joints in particular are presented in this paper. e modi�ed Reynolds equation, which incorporates the
randomized surface roughness structure as well as elastic nature of articular cartilage with micropolar �uid as lubricant, is derived.
e load-carrying capacity and time of approach as functions of �lm thickness during normal articulation of joints are obtained
by using Christensen stochastic theory for rough surfaces with the assumption that the roughness asperity heights are to be small
compared to the �lm thickness. It is observed that the effect of surface roughness has considerable effects on lubricationmechanism
of synovial joints.

1. Introduction

e study of mechanism of synovial joints has recently
become an active area of scienti�c research. e human joint
is a dynamically loaded bearing which employs articular
cartilage as the bearing and synovial �uid as the lubricant.
�nce a �uid �lm is generated, squeeze �lm action is capable
of providing considerable protection to the cartilage surface.
e loaded bearing synovial joints of the human body are
the shoulder, hip, knee, and ankle joints; such joints have a
lower friction coe�cient and negligible wear. Synovial �uid
is a clear viscous �uid, a dialysate of plasma containing
mucopolysaccharides. Synovial �uid usually exhibits a non-
Newtonian shear thinning behavior. However, under high
shear rates, the viscosity of synovial �uid approaches a
constant value not much higher than that of water [1].
erefore a Newtonian lubricant model has oen been used
for synovial �uid in lubrication modeling [2]. In this study
the synovial �uid is modeled as non-Newtonian micropolar
�uid.

Articular cartilage is poroelastic or biphasic consisting of
both �uid and solid phases. e importance of the unique

biphasic load-carrying characteristics of articular cartilage
and �uid �ow inside has been recognized in the lubrication
of synovial joints such as weeping and boosted lubrication
theories. A more general biphasic lubrication theory was
subsequently proposed by Mow and Lai [3]. However, it was
not until in the 1990s that the relation between friction and
interstitial �uid pressurization was comprehensively studied
[4–7]. A number of friction studies have been carried out
under a wide range of tribological conditions to investigate
the biphasic lubrication of articular cartilage. Under both
start-up and reciprocating motions of a cartilage plug against
a metallic counterface friction was found to increase with
loading time [4]. e transient friction behavior observed
was a direct result of the interstitial �uid pressurization and
�uid load support, directly measured experimentally [6, 8].
However, for a similar con�guration but under cyclic loading,
friction was found to be similar or even at a higher level
[9]. e importance of the biphasic lubrication has also been
studied by enzymatic treatment of articular cartilage altering
the biphasic properties and �uid pressurization such as chon-
droitinase [10–13]. However, the results obtained have been
contradictory. Pickard et al. [10] found no major differences
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in friction levels following chondroitinase treatment, while
Kumar et al. [11] and Basalo et al. [12] showed a signi�cant
reduction.

�ll these studies were con�ned to the smooth cartilage
surfaces of human knee. But Sayles et al. [14] revealed exper-
imentally that cartilage surfaces are rough, and roughness
height distribution is Gaussian in nature. is has motivated
us to investigate the in�uence of roughness of cartilage
surfaces in lubrication aspects of synovial joint. Christensen
[15] developed the stochastic theory to understand the
in�uence of surface roughness in hydrodynamic lubrication
of bearings. Many researchers have used this theory to
analyze the effect of surface roughness of various types of
bearings. Naduvinamani et al. [16] have studied the problem
of squeeze �lm lubrication between rough rectangular plates
with couple stress �uid as lubricant. ese investigations
have not incorporated the poroelasticity of the bearing
surface.

e squeeze �lm lubrication characteristics ofmicropolar
�uid have been extensively studied in the literature. �grawal
et al. [17] studied the squeeze �lm and externally pressurized
bearings lubricated with micropolar �uids and found that
the time of approach is more for the micropolar �uids
as compared to the corresponding Newtonian �uids. e
analytical solution of the problem of squeeze �lm lubrica-
tion of micropolar �uid between two parallel plates (one-
dimensional) has been given by Bujurke et al. [18].

In the present paper, a theoretical study of combined
effects of surface roughness and micropolar �uid in squeeze
�lm lubrication between poroelastic rectangular plates is
presented. For mathematical simplicity, the average of three
layers of the cartilage is modeled as a single poroelastic
layer.

2. Mathematical Formulation of the Problem

egeometry and coordinates of the problem are as shown in
Figure 1.e squeezing �ow of micropolar �uid between two
rectangular surfaces is considered.e upper rough articular
surface is approaching the lower smooth poroelastic matrix
normally with a constant velocity 𝑉𝑉𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. e lubricant
in the joint cavity is taken to be Eringen’s [19] micropolar
�uid. �s the load-bearing area of the synovial knee joint
is small, the two surfaces may be considered to be parallel
under high loading conditions. e moving boundary is
characterized by

ℎ=ℎ   (𝑡𝑡) + ℎ𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) , (1)

where ℎ(𝑡𝑡𝑡 represents the nominal smooth part of the �lm
geometry and ℎ𝑠𝑠 is part due to the surface asperitiesmeasured
from the nominal level and is a randomly varying quantity of
zeromean and 𝜉𝜉 is an index parameter determining a de�nite
roughness parameter.

Longitudinal

Poroelastic

Rigid backing

Longitudinal

F 1: � geometry of simpli�ed model for knee joint.

2.1. Basic Equations for Micropolar Fluids (Region-I). e
basic equations for the �ow of micropolar �uid in the �lm
region in vectorial form are [19]

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ⋅ 󶀡󶀡𝜌𝜌𝜌𝜌󶀱󶀱 = 0,

󶀡󶀡𝜆𝜆 𝜆 𝜆𝜆𝜆 𝜆 𝜆𝜆󶀱󶀱 ∇ (∇ ⋅ 𝑉𝑉) − 󶀡󶀡𝜇𝜇𝜇𝜇𝜇  󶀱󶀱 ∇ × (∇ × 𝑉𝑉) + 𝑘𝑘𝑘𝑘  𝑘𝑘

− ∇𝜋𝜋 𝜋𝜋𝜋 𝜋𝜋 𝜋𝜋𝜋  󶁥󶁥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑉𝑉 𝑉 (∇ × 𝑉𝑉) +
1
2
∇ 󶀢󶀢𝑉𝑉2󶀲󶀲󶀲󶀲

󶀡󶀡𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼𝛼󶀱󶀱 ∇ (∇ ⋅ 𝑉𝑉) − 𝛾𝛾𝛾𝛾  (∇ × 𝑉𝑉)

+ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘    𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘 ̇𝑣𝑣𝑣
(2)

For the three-dimensional steady motion of an incom-
pressible micropolar �uid under the usual assumption of
hydrodynamic lubrication with negligible body forces and
body couples, the �eld equations (2) reduce to the following

2.1.1. Conservation of Mass. Consider

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. (3)

2.1.2. Conservation of Linear Momentum. Consider

󶀤󶀤𝜇𝜇𝜇
𝜒𝜒
2
󶀴󶀴
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2 + 𝜒𝜒

𝜕𝜕𝜕𝜕2
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,

󶀤󶀤𝜇𝜇𝜇
𝜒𝜒
2
󶀴󶀴
𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2 + 𝜒𝜒

𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0.

(4)
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2.1.3. Conservation of Angular Momentum. Consider

𝛾𝛾
𝜕𝜕2𝑣𝑣1
𝜕𝜕𝜕𝜕2

− 2𝜒𝜒𝜒𝜒1 − 𝜒𝜒
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,

𝛾𝛾
𝜕𝜕2𝑣𝑣2
𝜕𝜕𝜕𝜕2

− 2𝜒𝜒𝜒𝜒2 − 𝜒𝜒
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,

(5)

where 𝑢𝑢, 𝑣𝑣, and 𝑤𝑤 are velocity components along 𝑥𝑥, 𝑦𝑦, and
𝑧𝑧 axes, respectively 𝑣𝑣1 and 𝑣𝑣2 are the micropolar velocity
components in the 𝑥𝑥 and 𝑧𝑧 directions, respectively, and 𝑝𝑝 is
the pressure in the �lm region.

2.2. Basic Equations for Poroelastic Region (Region-II). Fol-
lowing Torzilli and Mow [20] and Collins [21] the coupled
equations of motion for deformable cartilage matrix and the
mobile portion of the �uid contained in it can be written in
the following form:
Matrix:

𝜌𝜌𝑚𝑚
𝜕𝜕2󵱂󵱂𝑈𝑈
𝜕𝜕𝜕𝜕2

= div 𝜏𝜏𝑚𝑚 −
1
𝑘𝑘∗

󶀦󶀦
𝜕𝜕󵱂󵱂𝑈𝑈
𝜕𝜕𝜕𝜕

− 󵱂󵱂𝑉𝑉󶀶󶀶 , (6)

Fluid:

𝜌𝜌𝑓𝑓
𝐷𝐷󵱁󵱁𝑣𝑣
𝐷𝐷𝐷𝐷

= div 𝜏𝜏𝑓𝑓 +
1
𝑘𝑘∗

󶀦󶀦
𝜕𝜕󵱂󵱂𝑈𝑈
𝜕𝜕𝜕𝜕

− 󵱂󵱂𝑉𝑉󶀶󶀶 , (7)

where 𝜌𝜌𝑚𝑚 and 𝜌𝜌𝑓𝑓 denote the densities of solid matrix and
�uid, respectively, 󵱂󵱂𝑈𝑈 is the corresponding displacement
vector, 󵱂󵱂𝑉𝑉 is the �uid velocity vector, 𝑘𝑘∗ is the permeability
of the cartilage, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷 denotes the material derivative.
Equations (6) and (7) represent the force balance for the
linear elastic solid and viscous �uid components, of the carti-
lage, respectively. In these equations, le hand terms denote
the local forces (mass × acceleration) which are counter-
balanced by right porous media driving force, respectively.

In fact these two equations may be viewed simply as
a generalized form of �arcy�s law for unsteady �ow in a
deformable porous medium in terms of the relative velocity
((𝑑𝑑󵱂󵱂𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈 󵱂󵱂𝑉𝑉𝑉 between the moving cartilage and the �uid
contained in its pores.

e classical stress tensor 𝜏𝜏 for a continuous homoge-
neous medium may be expressed for the matrix and �uid,
respectively, as

𝜏𝜏𝑚𝑚 = 𝑝𝑝1𝐼𝐼 𝐼 𝐼𝐼1𝑒𝑒 𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝜏𝜏𝑓𝑓 = −𝑝𝑝1𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼
(8)

where𝑁𝑁1,𝐴𝐴, and𝐸𝐸 are the elastic parameters of the cartilage.
Aer neglecting the inertia terms, addition of (6) and (7)
eliminates the pressure and �uid velocity, and, thereaer,
taking the divergence of the results yields the following
Laplace equation:

∇2𝑒𝑒 𝑒𝑒𝑒  (9)

where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒  󵱂󵱂𝑈𝑈𝑈 is known as the cartilage dilatation. Fol-
lowing Hori and Mockros [22] we characterize the cartilage

dilatation by a sample similar linear equation in terms of
corresponding average bulk modulus 𝐾𝐾, in the following
form:

𝑒𝑒 𝑒 𝑒𝑒0 +
𝑝𝑝1
𝑘𝑘∗

. (10)

From (9) and (10) we get

∇2𝑝𝑝1 = 0. (11)

e relevant boundary conditions for the velocity �eld are

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢       𝑛𝑛, 𝑣𝑣1 = 𝑣𝑣2 = 0, at 𝑦𝑦𝑦𝑦𝑦 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢      
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
, 𝑣𝑣1 = 𝑣𝑣2 = 0, at 𝑦𝑦𝑦𝑦𝑦 

(12)

3. Solution of the Problem

Solving (4) and (5) for the velocity components 𝑢𝑢, 𝑣𝑣, and 𝑤𝑤
and microrotation velocity components 𝑣𝑣1 and 𝑣𝑣2 with the
respective boundary conditions given in (12) we get

𝑢𝑢𝑢
1
𝜇𝜇
󶁦󶁦
𝑦𝑦2

2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐶𝐶11𝑦𝑦󶁶󶁶

−
2𝑁𝑁2

𝑚𝑚
󶁡󶁡𝐶𝐶21 sinh 󶀡󶀡𝑚𝑚𝑚𝑚󶀱󶀱 + 𝐶𝐶31 cosh 󶀡󶀡𝑚𝑚𝑚𝑚󶀱󶀱󶁱󶁱 + 𝐶𝐶41,

(13)

𝑣𝑣2 =−
1
2𝜇𝜇

󶁥󶁥𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐶𝐶11󶁵󶁵+󶁡󶁡𝐶𝐶21 cosh 󶀡󶀡𝑚𝑚𝑚𝑚󶀱󶀱+𝐶𝐶31 sinh 󶀡󶀡𝑚𝑚𝑚𝑚󶀱󶀱󶁱󶁱 ,

(14)

𝑣𝑣1 =−
1
2𝜇𝜇

󶁥󶁥𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐶𝐶12󶁵󶁵+󶁡󶁡𝐶𝐶22 cosh 󶀡󶀡𝑚𝑚𝑚𝑚󶀱󶀱+𝐶𝐶32 sinh 󶀡󶀡𝑚𝑚𝑚𝑚󶀱󶀱󶁱󶁱 ,

(15)

𝑤𝑤𝑤
1
𝜇𝜇
󶁦󶁦
𝑦𝑦2

2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐶𝐶12𝑦𝑦󶁶󶁶

−
2𝑁𝑁2

𝑚𝑚
󶁡󶁡𝐶𝐶22 sinh 󶀡󶀡𝑚𝑚𝑚𝑚󶀱󶀱 + 𝐶𝐶32 cosh 󶀡󶀡𝑚𝑚𝑚𝑚󶀱󶀱󶀱󶀱 + 𝐶𝐶42,

(16)

where for 𝑖𝑖 𝑖𝑖𝑖𝑖  ,
𝐶𝐶1𝑖𝑖 = 2𝜇𝜇𝜇𝜇2𝑖𝑖,

𝐶𝐶2𝑖𝑖 =
𝐶𝐶3𝑖𝑖 sinh (𝑚𝑚𝑚) − 󶀡󶀡ℎ/2𝜇𝜇󶀱󶀱 󶀱󶀱𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖󶀱󶀱

1 − cosh (𝑚𝑚𝑚)
,

𝐶𝐶3𝑖𝑖 =
ℎ
2𝜇𝜇

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

󶁦󶁦
ℎ
2
(cosh𝑚𝑚𝑚𝑚𝑚  ) + ℎ −

𝑁𝑁2

𝑚𝑚
sinh𝑚𝑚𝑚󶁶󶁶

1
𝐶𝐶5

,

𝐶𝐶4𝑖𝑖 =
2𝑁𝑁2

𝑚𝑚
𝐶𝐶3𝑖𝑖,

𝐶𝐶5 = ℎ 󶁦󶁦sinh (𝑚𝑚𝑚) −
2𝑁𝑁2

𝑚𝑚𝑚
(cosh𝑚𝑚𝑚𝑚𝑚  )󶁶󶁶 ,

𝑚𝑚 𝑚
𝑁𝑁
𝑙𝑙
, 𝑁𝑁𝑁  󶀥󶀥

𝜒𝜒
2𝜇𝜇 𝜇𝜇𝜇

󶀵󶀵
1/2
, 𝑙𝑙 𝑙 󶀥󶀥

𝛾𝛾
4𝜇𝜇

󶀵󶀵
1/2
.

(17)
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By neglecting inertia terms, (7) may be arranged in terms of
relative velocity in the form

󶀦󶀦𝑉𝑉 𝑉
𝑑𝑑󵱂󵱂𝑈𝑈1
𝑑𝑑𝑑𝑑

󶀶󶀶 = −𝑘𝑘∗ 󶀡󶀡∇𝑝𝑝1 − 𝐸𝐸𝐸𝐸𝐸󶀱󶀱 (18)

and elimination of 𝑒𝑒 through (10) and (18) gives

󶀦󶀦󵱂󵱂𝑉𝑉 𝑉
𝑑𝑑󵱄󵱄𝑈𝑈1
𝑑𝑑𝑑𝑑

󶀶󶀶 = −𝑘𝑘∗∇𝑝𝑝1 󶀤󶀤1 −
𝐸𝐸
𝐾𝐾
󶀴󶀴 . (19)

e normal component of the relative �uid velocity at the
cartilage surface is

𝑣𝑣𝑛𝑛 = 󶁥󶁥−𝑘𝑘∗ 󶀤󶀤
𝐸𝐸
𝐾𝐾

− 1󶀴󶀴
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

󶁵󶁵
𝑦𝑦𝑦𝑦

. (20)

Integrating (3) across the �uid �lm region and using the
boundary conditions for 𝑣𝑣 given in (12) and also using the
expressions (13) and (16) for 𝑢𝑢 and𝑤𝑤, the modi�ed Reynolds
equation is obtained in the form

𝜕𝜕
𝜕𝜕𝜕𝜕

󶁥󶁥𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

󶁵󶁵 +
𝜕𝜕
𝜕𝜕𝜕𝜕

󶁥󶁥𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

󶁵󶁵

= 󶁥󶁥−12𝜇𝜇
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 12𝜇𝜇𝜇𝜇∗ 󶀤󶀤1 −
𝐸𝐸
𝐾𝐾
󶀴󶀴
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

󶁵󶁵
𝑦𝑦𝑦𝑦

,
(21)

where 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓    3 + 12𝑙𝑙2ℎ−  6𝑁𝑁𝑁𝑁𝑁2cot(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.

3.1. Stochastic Reynolds Equation. In the context of rough
surfaces, there are two types of roughness patterns which
are of special interest. e one-dimensional longitudinal
structure where the roughness has the form of long narrow
ridges and valleys running in the 𝑥𝑥-direction and the one-
dimensional transverse structure where roughness striations
are running in the 𝑧𝑧-direction in the form of long narrow
ridges and valleys. However, the present study is restricted
to one-dimensional longitudinal roughness since the one
roughness structure can be obtained from others by just rota-
tion of coordinate axes. For the one-dimensional longitudinal
roughness pattern, the �lm thickness assumes the form

ℎ = ℎ (𝑡𝑡) + ℎ𝑠𝑠 (𝑥𝑥𝑥 𝑥𝑥) . (22)

Taking the expectation on both sides of (21) and simpli-
fying them, the stochastic modi�ed Reynolds type equation
is obtained in the form

𝜕𝜕2𝐸𝐸 󶀡󶀡𝑝𝑝󶀱󶀱
𝜕𝜕𝜕𝜕2

+ 𝑅𝑅
𝜕𝜕2𝐸𝐸 󶀡󶀡𝑝𝑝󶀱󶀱
𝜕𝜕𝜕𝜕2

=
1

𝐸𝐸 󶁡󶁡𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁)󶁱󶁱
󶁥󶁥−12𝜇𝜇

𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 12𝜇𝜇𝜇𝜇 󶀤󶀤1 −
𝐸𝐸
𝐾𝐾
󶀴󶀴
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

󶁵󶁵
𝑦𝑦𝑦𝑦

,

(23)

where

𝑅𝑅 𝑅 󶁅󶁅𝐸𝐸 󶁡󶁡𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁)󶁱󶁱 ∗ 𝐸𝐸 󶁥󶁥
1

𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁)
󶁵󶁵󶁵󶁵

−1
,

𝐸𝐸 󶁡󶁡𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁)󶁱󶁱 =
35
32𝑐𝑐7

󵐐󵐐
𝑐𝑐

−𝑐𝑐
𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁) 󶀢󶀢𝑐𝑐2 −ℎ 2𝑠𝑠 󶀲󶀲 𝑑𝑑𝑑𝑠𝑠,

𝐸𝐸 󶁥󶁥
1

𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁)
󶁵󶁵 =

35
32𝑐𝑐7

󵐐󵐐
𝑐𝑐

−𝑐𝑐

󶀢󶀢𝑐𝑐2 −ℎ 2𝑠𝑠 󶀲󶀲
𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁)

𝑑𝑑𝑑𝑠𝑠.

(24)

𝐸𝐸𝐸𝐸𝐸 denotes the expectancy operator de�ned by

𝐸𝐸 (⋅) = 󵐐󵐐
∞

−∞
(⋅) 𝑓𝑓 󶀡󶀡ℎ𝑠𝑠󶀱󶀱 𝑑𝑑𝑑𝑠𝑠. (25)

𝑓𝑓𝑓𝑓𝑠𝑠) is the probability density function of the stochastic
�lm thickness variable ℎ𝑠𝑠. According to the Sayles et al.
[14], the cartilage surfaces are rough and roughness height
distribution is Gaussian in nature. erefore, polynomial
formwhich approximates the Gaussian distribution is chosen
in the present study. Such a probability density function is

𝑓𝑓 󶀡󶀡ℎ𝑠𝑠󶀱󶀱 =
󶀂󶀂
󶀊󶀊
󶀚󶀚

35
32𝑐𝑐 7 󶀢󶀢𝑐𝑐

2 −ℎ 2𝑠𝑠 󶀲󶀲
3
,− 𝑐𝑐 𝑐 𝑐𝑠𝑠 ≤ 𝑐𝑐

0, elsewhere,
(26)

where 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐 and 𝜎𝜎 is the standard deviation.
e relevant boundary conditions for 𝐸𝐸𝐸𝐸𝐸𝐸 and 𝑝𝑝1 are

(i) for the �uid �lm region

𝐸𝐸 󶁡󶁡𝑝𝑝 (𝑥𝑥𝑥𝑥𝑥 )󶁱󶁱 = 0 at 𝑥𝑥𝑥𝑥𝑥   𝑥𝑥𝑥𝑥𝑥𝑥𝑥  
𝑏𝑏
2
, (27)

(ii) for the poroelastic region

𝑝𝑝1 󶀡󶀡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  󶀱󶀱 = 0 at 𝑥𝑥𝑥𝑥𝑥   𝑥𝑥𝑥𝑥𝑥𝑥𝑥  
𝑏𝑏
2

(28)

𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

= 0 at 𝑦𝑦𝑦𝑦  𝑦𝑦𝑦 (29)

(iii) at the interface

𝑝𝑝1 󶀡󶀡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  󶀱󶀱 = 𝐸𝐸 󶁡󶁡𝑝𝑝 (𝑥𝑥𝑥𝑥𝑥 )󶁱󶁱 at 𝑦𝑦𝑦  𝑦𝑦 (30)

where 𝛿𝛿 is the cartilage layer thickness.
e solution of Laplace equation (11) with boundary

conditions (28) and (29) is

𝑝𝑝1 󶀡󶀡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  󶀱󶀱

=
∞
󵠈󵠈
𝑚𝑚𝑚𝑚

∞
󵠈󵠈
𝑛𝑛𝑛𝑛

𝐶𝐶𝑚𝑚𝑚𝑚 cosh 󶁡󶁡𝛾𝛾𝑚𝑚𝑚𝑚 󶀡󶀡𝑦𝑦𝑦  𝑦𝑦󶀱󶀱󶁱󶁱 sin 󶀡󶀡𝛼𝛼𝑚𝑚𝑥𝑥󶀱󶀱 cos 󶀡󶀡𝛽𝛽𝑛𝑛𝑧𝑧󶀱󶀱 ,

(31)

where

𝛼𝛼𝑚𝑚 =
𝑚𝑚𝑚𝑚
𝑎𝑎
, 𝛽𝛽𝑛𝑛 =

𝑛𝑛𝑛𝑛
𝑏𝑏
, 𝛾𝛾𝑚𝑚𝑚𝑚 = 󶀢󶀢𝛼𝛼2𝑚𝑚 + 𝛽𝛽2𝑛𝑛󶀲󶀲

1/2
, (32)
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and the constants 𝐶𝐶𝑚𝑚𝑚𝑚 are the Fourier coefficients to be
determined.

Using the mean pressure continuity condition (30) in
(31), we get

𝐸𝐸 󶁡󶁡𝑝𝑝 (𝑥𝑥𝑥 𝑥𝑥)󶁱󶁱 =
∞
󵠈󵠈
𝑚𝑚𝑚𝑚

∞
󵠈󵠈
𝑛𝑛𝑛𝑛

𝐶𝐶𝑚𝑚𝑚𝑚 sin 󶀡󶀡𝛼𝛼𝑚𝑚𝑥𝑥󶀱󶀱 cos 󶀡󶀡𝛽𝛽𝑛𝑛𝑧𝑧󶀱󶀱 . (33)

On substituting (31) and (33) into (23) and using the
orthogonality of eigen functions sin(𝛼𝛼𝑚𝑚𝑥𝑥𝑥 and cos(𝛽𝛽𝑛𝑛𝑧𝑧𝑧, the
Fourier coefficients 𝐶𝐶𝑚𝑚𝑚𝑚 are obtained in the form

𝐶𝐶𝑚𝑚𝑚𝑚=− 192𝜇𝜇󶀥󶀥
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
󶀵󶀵

×󶀦󶀦𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝛽𝛽𝑛𝑛𝐸𝐸 󶁡󶁡𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁𝑁 )󶁱󶁱

×󶁆󶁆 󶀢󶀢𝛼𝛼2𝑚𝑚 + 𝑅𝑅𝑅𝑅2𝑛𝑛󶀲󶀲

−
12𝑘𝑘∗𝛿𝛿 (1 − (𝐸𝐸𝐸𝐸𝐸)) 𝛾𝛾𝑚𝑚𝑚𝑚 tanh 󶀡󶀡𝛾𝛾𝑚𝑚𝑚𝑚𝛿𝛿󶀱󶀱

𝐸𝐸 󶁡󶁡𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁𝑁 )󶁱󶁱
󶁖󶁖󶁖󶁖

−1

,

(34)

where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  𝐸 𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸7) ∫𝑐𝑐−𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  2 − ℎ2𝑠𝑠 )𝑑𝑑𝑑𝑠𝑠.
e load-carrying capacity of the s�uee�e �lm is obtained

by integrating the averaged pressure �eld over the surface of
the top plate

𝐸𝐸 (𝑊𝑊) = 󵐐󵐐
𝑎𝑎

0
󵐐󵐐
𝑏𝑏𝑏𝑏

−𝑏𝑏𝑏𝑏
𝐸𝐸 󶁡󶁡𝑝𝑝 (𝑥𝑥𝑥 𝑥𝑥)󶁱󶁱 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑 (35)

e nondimensional mean instantaneous load-carrying
capacity of the s�uee�e �lm is given by

𝑊𝑊 𝑊𝑊
𝐸𝐸 (𝑊𝑊) ℎ30
𝜇𝜇𝜇𝜇2𝑏𝑏2

⋅
ℎ

=
768𝛿𝛿√𝜆𝜆

𝜋𝜋4

×
∞
󵠈󵠈

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∞
󵠈󵠈

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
󶁆󶁆𝑚𝑚2𝑛𝑛2 󶁦󶁦

𝛿𝛿
√𝜆𝜆

󶀢󶀢𝑚𝑚2𝜋𝜋2+𝑅𝑅𝑅𝑅2𝜋𝜋2𝜆𝜆2󶀲󶀲

× 𝐸𝐸 󶁢󶁢𝑓𝑓 󶀢󶀢𝑁𝑁𝑁 𝑙𝑙𝑙 ℎ󶀲󶀲󶀲󶀲−12𝜓𝜓󶀤󶀤1−
𝐸𝐸
𝐾𝐾
󶀴󶀴

×𝛾𝛾𝑚𝑚𝑚𝑚 tanh󶀧󶀧
𝛾𝛾𝑚𝑚𝑚𝑚𝛿𝛿
√𝜆𝜆

󶀷󶀷󶁷󶁷󶁷󶁷
−1

,

(36)

where

𝑙𝑙𝑙
𝑙𝑙
ℎ0
, ℎ =

ℎ
ℎ0
, 𝑐𝑐𝑐

𝑐𝑐
ℎ0
, 𝜆𝜆 𝜆

𝑎𝑎
𝑏𝑏
, 𝛿𝛿 𝛿

𝛿𝛿
√𝑎𝑎𝑎𝑎

,

𝛾𝛾𝑚𝑚𝑚𝑚 = 𝛾𝛾𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 
𝑘𝑘∗𝛿𝛿
ℎ30

, 𝑘𝑘 𝑘
𝑘𝑘∗

ℎ20

𝐸𝐸 󶁢󶁢𝑓𝑓 󶀢󶀢𝑁𝑁𝑁 𝑙𝑙𝑙 ℎ󶀲󶀲󶁲󶁲 =
1
ℎ30
𝐸𝐸 󶁡󶁡𝑓𝑓 (𝑁𝑁𝑁 𝑁𝑁𝑁𝑁 )󶁱󶁱

(37)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

F 2: Variation of non-dimensional load 𝑊𝑊 with log10(𝜆𝜆𝜆 for
different values of𝑁𝑁 with 𝑙𝑙𝑙𝑙𝑙𝑙  , 𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸 𝐸, 𝑐𝑐𝑐𝑐𝑐𝑐  .

0.5

0.4

0.3

0.2

0.1

0
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

F 3: Variation of non-dimensional load 𝑊𝑊 with log10(𝜆𝜆𝜆 for
different values of 𝑙𝑙 with𝑁𝑁 𝑁𝑁𝑁𝑁 , 𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸 𝐸, 𝑐𝑐𝑐𝑐𝑐𝑐  .

e �lm thic�ness at any time 𝑡𝑡 can be obtained by solving
for the load as a function of time:

𝑡𝑡𝑡𝑡𝑡 
𝑡𝑡

0
𝐸𝐸 (𝑊𝑊 (𝑇𝑇)) 𝑑𝑑𝑑𝑑𝑑

−768𝜇𝜇𝜇𝜇2𝑏𝑏2𝛿𝛿√𝜆𝜆
ℎ20𝜋𝜋4

∞
󵠈󵠈

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∞
󵠈󵠈

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐼𝐼𝑚𝑚𝑚𝑚,

(38)
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F 4: Variation of non-dimensional load 𝑊𝑊 with log10(𝜆𝜆𝜆 for
different values of 𝐸𝐸𝐸𝐸𝐸 with𝑁𝑁 𝑁 𝑁𝑁𝑁, 𝑙𝑙 𝑙𝑙𝑙𝑙 , 𝑐𝑐 𝑐𝑐𝑐𝑐 .
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F 5: Variation of non dimensional load 𝑊𝑊 with log10(𝜆𝜆𝜆 for
different values of 𝑐𝑐 with 𝑙𝑙 𝑙𝑙𝑙𝑙 , 𝑁𝑁 𝑁 𝑁𝑁𝑁, 𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸 𝐸.

where

𝐼𝐼𝑚𝑚𝑚𝑚 =󵐐󵐐
ℎ

1
󶁆󶁆𝑚𝑚2𝑛𝑛2 󶁦󶁦

𝛿𝛿
√𝜆𝜆

󶀢󶀢𝑚𝑚2𝜋𝜋2+𝑅𝑅𝑅𝑅2𝜋𝜋2𝜆𝜆2󶀲󶀲 𝐸𝐸 󶁢󶁢𝑓𝑓 󶀢󶀢𝑁𝑁𝑁 𝑙𝑙𝑙 ℎ󶀲󶀲󶁲󶁲

−12𝜓𝜓󶀤󶀤1−
𝐸𝐸
𝐾𝐾
󶀴󶀴𝛾𝛾𝑚𝑚𝑚𝑚 tanh󶀧󶀧

𝛾𝛾𝑚𝑚𝑚𝑚𝛿𝛿
√𝜆𝜆

󶀷󶀷󶀷󶀷󶀷󶀷
−1

.𝑑𝑑ℎ

(39)

0
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F 6: Variation of non-dimensional s�uee�e �lm time 𝑇𝑇 with
log10(𝜆𝜆𝜆 for different values of𝑁𝑁 with 𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙    , 𝑐𝑐 𝑐𝑐𝑐𝑐 .
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F 7: Variation of non-dimensional s�uee�e �lm time 𝑇𝑇 with
log10(𝜆𝜆𝜆 for different values of 𝑙𝑙 with𝑁𝑁 𝑁 𝑁𝑁𝑁, 𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸 𝐸, 𝑐𝑐 𝑐𝑐𝑐𝑐 .

�e nondimensional s�uee�e �lm time is obtained as

𝑇𝑇 𝑇𝑇
𝐸𝐸 (𝑊𝑊 (𝑡𝑡)) ℎ20

𝜇𝜇𝜇𝜇2𝑏𝑏2
=
768𝛿𝛿√𝜆𝜆

𝜋𝜋4
∞
󵠈󵠈

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∞
󵠈󵠈

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐼𝐼𝑚𝑚𝑚𝑚. (40)

As 𝑘𝑘 𝑘 𝑘 (i.e., 𝜓𝜓 𝜓𝜓 ) and (36) and (40) reduce to the
corresponding solid case studied by Sinha and Singh [23], the
results of Wu [24] can be recovered in the limiting case of
𝑁𝑁𝑁 𝑙𝑙 𝑙𝑙 .
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4. Results and Discussion

� simpli�ed mathematical model has been developed for
understanding combined effects of surface roughness, poroe-
lasticity, and micropolar �uid on lubrication aspects of syn-
ovial joints.e governing equations alongwith the appropri-
ate constitutive relationships and boundary conditions have
been formulated for modeling the roughness structure of
cartilage with viscous �uid in the lubricant region in synovial
joint lubrication. e load capacity 𝑊𝑊 and time height
relation 𝑇𝑇 are functions of non-dimensional parameters 𝑐𝑐𝑐𝑐
(𝑐𝑐𝑐𝑐0)), 𝜓𝜓𝜓𝜓𝜓 𝜓𝜓∗𝛿𝛿𝛿𝛿30)), ℎ=  (ℎ/ℎ0). e values of parameters
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸, 𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘 𝑘 𝑘𝑘−5, 4.3 × 10−5), 𝛿𝛿𝛿𝛿
300,2 00) are taken from Torzilli, which are associated with
healthy human articular cartilage during normal functioning.

4.1. Load Carrying Capacity. e variations of non-
dimensional load carrying capacity 𝑊𝑊 with aspect ratio 𝜆𝜆
are depicted in Figure 2 for different values of the coupling
number 𝑁𝑁 and two values of permeability parameter 𝑘𝑘. e
curves corresponding to 𝑁𝑁 𝑁 𝑁 represent the Newtonian
case. It is observed that the non-dimensional load carrying
capacity increases for the increasing value of a coupling
number 𝑁𝑁. Figure 3 shows the variations of 𝑊𝑊 with log10𝜆𝜆
for different values of 𝑙𝑙 with two values of permeability
parameter 𝑘𝑘. It is observed that 𝑊𝑊 increases for increasing
values of 𝑙𝑙 further; it is also observed that the maximum load
carrying capacity is attained for the square plates (𝜆𝜆 𝜆𝜆 ).

e effect of elastic parameter 𝐸𝐸𝐸𝐸𝐸 on variations of 𝑊𝑊
with log10𝜆𝜆 is shown in Figure 4 for two values of permeability
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parameter 𝑘𝑘. It is observed that𝑊𝑊 increases with log10𝜆𝜆 and
decreases for increasing values of 𝐸𝐸𝐸𝐸𝐸.

e effect of roughness parameter 𝑐𝑐 on the variations
of 𝑊𝑊 with log10𝜆𝜆 is depicted in Figure 5. for two values of
permeability parameter 𝑘𝑘. It is observed that𝑊𝑊 increases for
the increasing values of 𝑐𝑐. Further, it is interesting to note that
the maximum load carrying capacity𝑊𝑊max is a function of 𝜆𝜆
and is obtained for the rectangular plates.

4.2. Squeeze Film Time. e variations of non-dimensional
squeeze �lm time 𝑇𝑇 with the aspect ratio 𝜆𝜆 for different
values of coupling number 𝑁𝑁 are depicted in the Figure
6 for two values of permeability parameter 𝑘𝑘. e curves
corresponding to 𝑁𝑁 𝑁 𝑁 represent the Newtonian case. It is
observed that 𝑇𝑇 increases for increasing value of𝑁𝑁.

Figure 7 shows the variation of squeeze �lm time 𝑇𝑇 with
log10𝜆𝜆 for different values of 𝑙𝑙with two values of permeability
parameter 𝑘𝑘. e curves corresponding to 𝑙𝑙 𝑙𝑙  represent
the Newtonian case. It is observed that 𝑇𝑇 increases for the
increases in values of 𝑙𝑙. �ence the squeeze �lm bearings
lubricated with micropolar �uid carry larger load for a longer
time as compared to the corresponding Newtonian �uids, by
which the performance of the bearings is improved.

e effect of elastic parameter𝐸𝐸𝐸𝐸𝐸 on variations of𝑇𝑇with
log10𝜆𝜆 is shown in Figure 8 for two values of permeability
parameter 𝑘𝑘. It is observed that 𝑇𝑇 increases with log10𝜆𝜆
and decreases for increasing values of 𝐸𝐸𝐸𝐸𝐸. e effect of
roughness parameter 𝑐𝑐 on the variations of 𝑇𝑇 with log10𝜆𝜆 is
depicted in Figure 9. It is observed that 𝑇𝑇 increases for the
increasing value of 𝑐𝑐.
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5. Conclusion

e effect of surface roughness on the squeeze �lm charac-
teristics of rough poroelastic rectangular plates is presented.
On the basis of Eringen�s micropolar �uid theory and the
Christensen stochastic theory for the study of rough surfaces,
the modi�ed form of stochastic Reynolds equation is derived
for one-dimensional longitudinal roughness pattern. As the
micropolar �uid parameter𝑁𝑁 𝑁 𝑁 and 𝑙𝑙 𝑙𝑙 , the squeeze
�lm characteristics reduce to corresponding Newtonian case
and as 𝑘𝑘 𝑘𝑘  these characteristics reduce to the smooth
case. On the basis of the results presented, the following
conclusions are drawn.

(1) e effect of micropolar �uid provides an increased
load carrying capacity and squeeze �lm time as
compared to the corresponding Newtonian case.

(2) e effect of surface roughness on the cartilage sur-
face increases the load carrying capacity and squeeze
�lm time as compared to smooth case.

Hence in a practical situation the required shape of the
bearing may be rectangular, in which case a speci�c choice of
𝑘𝑘,𝑁𝑁, 𝑙𝑙, and 𝐸𝐸𝐸𝐸𝐸 will yield larger load carrying capacity and
longer squeeze �lm time as compared to the corresponding
Newtonian �uids, by which the performance of the bearings
is improved.
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