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This paper presents a review of the phenomena regarding light-tissue interactions, especially absorption and scattering. The
most important mathematical approaches for modeling the light transport in tissues and their domain of application: “first-order
scattering,” “Kubelka-Munk theory,” “diffusion approximation,” “Monte Carlo simulation,” “inverse adding-doubling” and “finite
element method” are briefly described.

1. Introduction

When tissues are exposed to light reflection, refraction,
absorption, or scattering can occur, which lead to energy
losses in the incident beam.

Refraction is not significant in biomedical applications,
except for laser irradiation of transparent media, such as
cornea tissue; in opaque media the most important phenom-
ena are scattering and absorption, depending on the material
type of the tissue and the incident wavelength. Knowledge of
absorbing and scattering properties of the tissues is needed
for predicting success of laser surgery treatment.

Directmeasurementmethods simply use the Beer attenu-
ation law, but they need corrections when surface reflections
occur due to the mismatched refractive indexes.

Indirect techniques use theoretical models for the scat-
tering phenomena; the indirect noniterative methods need
simple equations to connect optical properties to the mea-
sured quantities, while the indirect iterative methods can
develop sophisticated models in which the optical properties
are iterated until the computed reflection and transmission
match the measured values.

2. Basic Phenomena Regarding
Light and Tissues

Reflection means the electromagnetic waves return from
surfaces upon they are incident, generally being boundary

surfaces between twomaterials of different refractive indexes,
such as air and tissue. The simple law of reflection states
that the reflection angle equals the incidence angle, while the
surface is supposed to be smooth, having small irregularities
compared to the radiation wavelength.The real tissues do not
act like opticalmirrors; the roughness of the reflecting surface
leads to multiple beam reflections (diffuse reflection).

Refractionmeans a displacement of the transmitted beam
through the surface that separates two media with different
refractive indexes, and it originates from the change of the
speed of light passing through the surface.

Refraction usually occurs together with reflection; the
reflectivity of a surface is ameasure of the amount of reflected
radiation, and it is the ratio of the reflected and incident
electric field amplitudes.

The reflectance is the ratio of the reflected and incident
intensities; thus, it is equal to the square of the reflectivity. At
normal incidence the reflectance of a surface separating air
andwater is about 2% [1, 2], but in several cases the reflectance
can be important, with values that cannot be neglected; in
these cases proper eye protectionwhen using lasers is needed.

Even one might expect that the intensities of the reflected
and of the refracted beams would be complementary such as
their sum would be equal to the incident intensity, which is
not exact; the intensity is the ratio between the power and the
area unit, while the cross-sections of the incident, reflected
and refracted beams do not have the same value, except for
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the normal incidence. But the total energy in these beams is
conserved.

Absorption means that the incident beam intensity
decreases when passing through the tissue, because the beam
energy is partly converted into heat motion or into vibration
of the absorbent medium molecules.

The laws of absorption describe the effect of the tissue
thickness (Lambert law):

𝐼 (𝑧) = 𝐼
0
𝑒
−𝛼𝑧
, (1)

or the effect of the concentration (Beer law):

𝐼 (𝑧) = 𝐼
0
𝑒
−𝑘
󸀠
𝑐𝑧
, (2)

where 𝐼(𝑧) is the beam intensity at the distance 𝑧, 𝐼
0
is

the intensity of the incident beam, 𝛼 is the absorption
coefficient of the medium, 𝑐 is the concentration of the
absorbing medium, and 𝑘󸀠 depends on other parameters of
the substance than concentration. The inverse of 𝛼 : 𝐿 =

1/𝛼 is named the length of absorption, and it measures the
distance at which the incident intensity drops by 1/𝑒.

Absorption in biological tissues is mainly determined
by the water molecules, especially in the IR region of the
spectrum, and by protein and pigments in the UV and
visible range; melanin is the basic pigment of the skin
and hemoglobin is component of vascularized tissues. Most
biomolecules have complex absorption band structures in the
400–600 nm range, but the spectral range of 600–1200 nm
(the therapeutic window) is free of absorption phenomena;
neither water normacromolecules absorb near IR, so that the
light penetrates biological tissues with little loss and enables
treatments of profound structures. The skin is the highest
absorber in the visible domain, while the cornea is totally
transparent.

There is an almost perfect match between the absorption
peaks of skin melanin and hemoglobin (Figure 1) and the
green and yellow wavelengths at 531 nm and 568 nm of
krypton ion lasers, meaning these lasers can be used for
coagulating blood vessels. Sometimes the original absorption
of the tissue is increased using special dyes and inks before
laser treatments, so that the treatment efficiency would be
higher and the neighborhood tissues are less affected.

Scattering can be elastic (when the incident photon
energy has the same value as the scattered photon energy)
or inelastic (when a fraction of the incident photon energy
is converted into forced vibrations of the medium particles).
Rayleigh scattering is of elastic type, where the scattering
coefficient decreases with the fourth power of thewavelength.

Brillouin scattering is inelastic and is caused by the
acoustic waves that induce inhomogeneities of the refractive
index; it can be seen like a kind of optical Doppler Effect, as
the scattered photon frequency is shifted up or down when
the scattering particles move towards or away from the light
source.

The decrease of the intensity during scattering is given by
a similar law as absorption:

𝐼 (𝑧) = 𝐼0𝑒
−𝛼
𝑠
𝑧
. (3)
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Figure 1: Absorption spectra of melanin in skin and hemoglobin
(HbO2) in blood. Relative absorption peaks of hemoglobin are at
280 nm, 420 nm, 540 nm, and 580 nm. Data according to Niemz [1].

Inmost tissues (turbidmedia) both absorption and scattering
occur simultaneously; their entire attenuation coefficient is

𝛼
𝑡
= 𝛼 + 𝛼

𝑆
. (4)

2.1. Unscattered (Coherent) Transmission. Considering an
unscattered beam, with no surface reflections, incident on
a slab of tissue having the thickness d, the transmission
is exponentially attenuated (Beer’s law); the unscattered
(collimated) transmission 𝑇

𝐶
is given by

𝑇
𝐶
= 𝑒
−𝛼
𝑡
𝑑
. (5)

Thus, the total attenuation coefficient can be determined:

𝛼
𝑡
= −

1

𝑑
ln𝑇
𝐶
. (6)

In the presence of the mismatched surface reflections, cor-
rections are required; for instance, when a tissue sample is
placed between glass slides, the collimated beam is reflected
at the air-slide, slide-tissue, tissue-slide, and slide-air surfaces.
If the sample is only a few optical depths (8) thick, one must
consider multiple internal reflections. Thus, a net reflection
coefficient is given [3] by

𝑟 =

𝑟
𝑔
+ 𝑟
𝑡
− 2𝑟
𝑔
𝑟
𝑡

1 − 𝑟
𝑔
𝑟
𝑡

, (7)

where 𝑟
𝑔

and 𝑟
𝑡
are the Fresnel reflections at the air-

glass, respectively, glass-tissue interfaces; then the measured
transmission 𝑇

𝑇 =
(1 − 𝑟)

2

1 − 𝑟2𝑇
2

𝐶

𝑇
𝐶
, (8)

is solved to obtain 𝑇
𝐶
, in order to calculate 𝛼

𝑡
.
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The optical depth is defined by

𝑑 = ∫

𝑠

0

𝛼
𝑡
𝑑𝑠
󸀠
, (9)

where 𝑑𝑠󸀠 is the element of the optical path and 𝑠 is the total
length of the optical path. If the attenuation coefficient 𝛼

𝑡
is

constant, wemeet the case of homogeneous attenuation; thus,
𝑑 = 𝛼

𝑡
𝑠.

In the literature [1, 3], we also find reduced scattering and
attenuation coefficients:

𝛼
󸀠

𝑆
= 𝛼
𝑆
(1 − 𝑔) ,

𝛼
󸀠

𝑡
= 𝛼 + 𝛼

󸀠

𝑆
,

(10)

which include the particular situation when 𝑔 = 1 (just
forward scattering) when the intensity is not attenuated. The
linear transport coefficient 𝛼󸀠

𝑡
describes the inverse of the

mean free path between two interaction events in a strong
scattering medium.

No theory completely explains why the photons are
preferably scattered in the forward direction, nor the wave-
length dependencies of the phenomena. A more convenient
approach is to work with the photon probability function (or
phase function) 𝑝(𝜃) to be scattered by an angle 𝜃, which
can be fitted to experimental measurements. According to
this dependence, the scattering can be isotropic, which means
𝑝(𝜃) does not depend on 𝜃, or else anisotropic. One can
evaluate the anisotropy of the scattering using the coefficient
of anisotropy 𝑔 defined as the average cosine of the scattering
angle 𝜃:

𝑔 =

∫
4𝜋
𝑝 (𝜃) cos 𝜃𝑑𝜔
∫
4𝜋
𝑝 (𝜃) 𝑑𝜔

, (11)

where 𝑑𝜔 = sin 𝜃𝑑𝜃 𝑑𝜑 is the solid angle element. Isotropic
scattering will use 𝑔 = 0, while 𝑔 = 1 means totally forward
scattering and 𝑔 = −1means totally backward scattering. For
most biological tissues we can assume that 𝑔 values are in
the range of 0.7–0.99 [1] because the most frequent scattering
angles range between 8∘ and 45∘.

The probability (phase) function is normalized:

1

4𝜋
∫
4𝜋

𝑝 (𝜃) 𝑑𝜔 = 1. (12)

The best fit to the experiments (Figure 2) was given by the
Henyey-Greenstein phase function :

𝑝 (𝜃) =
1 − 𝑔
2

(1 + 𝑔2 − 2𝑔 cos 𝜃)3/2
. (13)

This is equivalent with the series:

𝑝 (𝜃) =

∞

∑

𝑖=0

(2𝑖 + 1) 𝑔
𝑖
𝑃
𝑖
(cos 𝜃) , (14)

where 𝑃
𝑖
are Legendre polynomials.
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Figure 2:Themainly straightforward scattering process is described
by the Henyey-Greenstein phase function for different values of 𝑔
Data according to Niemz [1].

The absorption coefficients are generally obtained sub-
tracting transmitted, reflected, and scattered intensities from
the incident intensity; experimental methods determine
either the total attenuation coefficient or both absorption and
scattering coefficients. Rotating the detector, one can obtain
the angular dependence of the scattered intensity, thus having
the anisotropy coefficient 𝑔.

3. General Physical Model for
Light Propagation in Tissue

Mathematical description of absorption and scattering can
be made in two ways. The most fundamental approach is
the analytical theory based on Maxwell’s equations, but their
complexity and the inhomogeneities of biological tissues
limit the possibility to obtain the exact analytical solutions,
thus limiting the applicability of the theory.

The second approach is the photon transport theory,
which deals with photon beams passing through absorbing
and scattering media, without considering Maxwell’s equa-
tions; it was extensively used for laser-tissue interactions
where its predictions were satisfactory in many cases, though
it is a less strict theory compared to analytical theories.

Radiance J is the power flux density in a given direction
𝑠 within the solid angle unit 𝑑𝜔 (W⋅cm−2⋅sr−1); it decreases
due to scattering and absorption but increases by the light
scattered from 𝑠

󸀠 directions into direction 𝑠:

𝑑𝐽 (𝑟, 𝑠)

𝑑𝑠
= −𝛼
𝑡
𝐽 (𝑟, 𝑠) +

𝛼
𝑠

4𝜋
∫
4𝜋

𝑝 (𝑠, 𝑠
󸀠
) 𝐽 (𝑟, 𝑠

󸀠
) 𝑑𝜔
󸀠
, (15)

where𝑝(𝑠, 𝑠󸀠) is the phase function of a scattered photon from
𝑠
󸀠 to 𝑠 direction, 𝛼

𝑡
= 𝛼
𝑠
+ 𝛼
𝑎
is the attenuation coefficient

which includes scattering and absorption coefficients, and
𝑑𝑠 denotes the infinitesimal path length. The differential
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equation (15) for radiance is called the radiative transport
equation. For symmetric scattering about the optical axis,
𝑝(𝑠, 𝑠
󸀠
) = 𝑝(𝜃), where 𝜃 is the scattering angle.

Intensity is the measurable optical property; it is obtained
by integrating radiance over the solid angle:

𝐼 (𝑟) = ∫
4𝜋

𝐽 (𝑟, 𝑠) 𝑑𝜔. (16)

Its value can be measured within the experiments, so one can
express radiance by

𝐽 (𝑟, 𝑠) = 𝐼 (𝑟) 𝛿 (𝜔 − 𝜔
𝑆
) , (17)

where 𝛿(𝜔 − 𝜔
𝑆
)means a solid angle delta function oriented

in the 𝑠 direction.
When laser propagates inside a turbid medium, the

radiance can be separated in two terms depicting a coherent
(unscattered) component and a diffuse (scattering) compo-
nent:

𝐽 = 𝐽
𝐶
+ 𝐽
𝑑
. (18)

The coherent radiance can be calculated from
𝑑𝐽
𝐶

𝑑𝑠
= −𝛼
𝑡
𝐽
𝐶
, (19)

which has the solution

𝐽
𝐶
= 𝐼
0
𝛿 (𝜔 − 𝜔

𝑆
) 𝑒
−𝑑
, (20)

where 𝐼
0
is the incident intensity and the dimensionless

parameter 𝑑 is given by (5). The unscattered term contains
all the light that did not interact with the tissue and is
characterized by exponential decaying.

Evaluation of the second term, the diffuse radiance, is
an important problem as it contains all light that has been
scattered at least once; one cannot exactly determine the path
of all the scattered photons so adequate approximations or
statistical approach have to be made depending on whether
absorption or scattering is dominant. Complexity of the
approach is related to its accuracy and to the computing time
it needs.

4. Mathematical Methods

Mathematical methods are based upon assumptions regard-
ing the incident light sources and boundary conditions.They
are referred to as “first-order scattering,” “Kubelka-Munk
theory,” “diffusion approximation,” “Monte Carlo simulation,”
and “inverse adding-doubling.”

4.1. First-Order Scattering. Scatering means that multiple
scattering is not considered; in some cases the diffuse radi-
ance is much smaller than the coherent radiance, and one can
assume it can be neglected:

𝐽 = 𝐽
𝐶
+ 𝐽
𝑑
≅ 𝐽
𝐶
, (21)

and the intensity is given by Lambert law:

𝐼 (𝑧) = 𝐼0𝑒
−(𝛼+𝛼

𝑆
)𝑧
. (22)

Although it is a simple solution, it is often inapplicable for the
therapeutic window (600–1200 nm).
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Figure 3: Geometry in Kubelka-Munk theory [1].

4.2. Kubelka-MunkTheory. Unlike the previous assumption,
Kubelka andMunk supposed the radiance to be diffuse (𝐽

𝐶
=

0) and defined two coefficients 𝐴KM for the absorption and
𝑆KM for scattering of diffuse radiation, different from 𝛼 and
𝛼
𝑠
that referred only to coherent radiation.
Considering diffuse radiance through a one-dimensional

isotropic slab with no reflection at the boundaries, this
approach is equivalent to the diffusionmodel with two-phase
functions, peaked forward and backward [3].

A flux 𝐽
1
in the incident direction and a backscattered

flux 𝐽
2
are shown in Figure 3; two differential equations can

be written, each states that in both directions the radiance
encounters two losses (scattering and absorption) and a gain
from opposite direction scattered photons:

𝑑𝐽
1

𝑑𝑧
= −𝑆KM𝐽1 − 𝐴KM𝐽1 + 𝑆KM𝐽2,

𝑑𝐽
2

𝑑𝑧
= −𝑆KM𝐽2 − 𝐴KM𝐽2 + 𝑆KM𝐽1,

(23)

where 𝑧 is the mean direction of the incident radiation.Their
general solutions are

𝐽
1 (𝑧) = 𝐶11𝑒

−𝛾𝑧
+ 𝐶
12
𝑒
+𝛾𝑧

𝐽
2
(𝑧) = 𝐶

21
𝑒
−𝛾𝑧

+ 𝐶
22
𝑒
+𝛾𝑧
,

(24)

with

𝛾 = √𝐴
2

KM + 2𝐴KM𝑆KM. (25)

Considering average values of scattered and coherent path
lengths [1] and since diffuse scattering implies that 𝐽 does not
depend on the scattering angle, one can find the connection
between the absorption and scattering coefficients:

𝐴KM = 2𝛼,

𝑆KM = 𝛼𝑆.
(26)

The Kubelka-Munk expressions for reflection and trans-
mission of diffuse radiance on a slab of thickness 𝑑 are [3]

𝑅 =
sinh (𝑆KM𝑦𝑑)

𝑥 cosh (𝑆KM𝑦𝑑) + 𝑦 sinh (𝑆KM𝑦𝑑)

𝑇 =
𝑦

𝑥 cosh (𝑆KM𝑦𝑑) + 𝑦 sinh (𝑆KM𝑦𝑑)
,

(27)
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so that the scattering and absorption coefficients can be
expressed in terms of the measured values of 𝑅 and 𝑇:

𝑆KM =
1

𝑦𝑑
ln[

1 − 𝑅 (𝑥 − 𝑦)

𝑇
] ,

𝐴KM = (𝑥 − 1) 𝑆KM,

(28)

where the parameters 𝑥 and 𝑦 can be found using

𝑥 =
1 + 𝑅
2
− 𝑇
2

2𝑅

𝑦 = √𝑥2 − 1.

(29)

This theory is a simple model to measure the optical proper-
ties of the tissues, but it is restricted by the assumption that
the incident light is already diffuse, the isotropic scattering
and matched boundary refractive indexes, which are atypical
for laser-tissue interaction. It can be extended considering
more fluxes, but an important disadvantage is the extended
computing time.

4.3. Diffusion Approximation. When the scattering phenom-
ena dominate absorption, the diffuse term in (18) can be
expanded in a series:

𝐽
𝑑
=
1

4𝜋
(𝐼
𝑑
+ 3𝐹
𝑑
𝑠 + ⋅ ⋅ ⋅ ) , (30)

where 𝐼
𝑑
is the diffuse intensity and the vector flux 𝐹

𝑑
is given

by

𝐹
𝑑
= ∫
4𝜋

𝐽
𝑑 (𝑟, 𝑠) 𝑠𝑑𝜔. (31)

The diffuse intensity 𝐼
𝑑
satisfies

(∇
2
− 𝑘
2
) 𝐼
𝑑
(𝑟) = −𝑄 (𝑟) , (32)

where 𝑘 denotes the diffusion parameter (𝑘2 = 3𝛼 ⋅ 𝛼󸀠
𝑡
) that

is an approximation of the measured effective attenuation
coefficient 𝛼eff of diffuse light:

𝛼eff =
1

𝐿eff
= √3𝛼𝛼

󸀠

𝑡
, (33)

where 𝐿eff denotes the effective diffusion length and 𝑄 is the
term for the source of the scattered photons. It was shown [1]
that

𝑘
2
= 3𝛼 [𝛼 + 𝛼

𝑆
(1 − 𝑔)] ,

𝑄 = 3𝛼
𝑆
(𝛼
𝑡
+ 𝑔𝛼) 𝐹

0
𝑒
−𝑑
,

(34)

where 𝐹
0
is the incident flux and 𝑑 is the optical depth given

by (9).
Finally, the diffusion approximation states that

𝐼 = 𝐼
𝐶
+ 𝐼
𝑑
= 𝐴𝑒
−𝛼
𝑡
𝑧
+ 𝐵𝑒
−𝛼eff𝑧, (35)

with 𝐴 + 𝐵 = 𝐼
0
. Different sets of values for 𝛼

𝑡
, 𝛼
𝑠
,

and 𝑔 provide similar radiances in diffusion approximation
calculus.

0

500

1000

1500

2000

−1500 −1000 −500 0 500 1000 1500

Position x (𝜇m)

D
ep

th
z

(𝜇
m

)

∗

Figure 4: Monte Carlo simulated movement of a photon through a.
homogeneous medium. Data according to Wang and Jacques [4].

4.4. Monte Carlo Simulations. The Monte Carlo method
essentially runs a computer simulation based upon a numer-
ical approach to the transport equation (15). The statistical
approach implies the simulation of a number of 𝑁 photons
random walk; the statistical accuracy of the results is propor-
tional to √𝑁, so that a valuable approximation has to take
into account a large number of photons. This method has
become a powerful tool for many disciplines and it requires
large computers or networks.

The main idea of Monte Carlo method for the absorp-
tion and scattering phenomena is to follow the optical
path of a photon through a turbid medium. The dis-
tance between two collisions is chosen from a logarith-
mic distribution using a random computer generated num-
ber.

Absorption is depicted as a decrease of a weight attributed
to the photon during propagation; scattering is provided
by choosing a new direction of propagation, according to
a given phase function and another random number. The
whole procedure continues until the photon weight reaches
a minimum cut-off value, or the photon escapes from the
considered region.

Monte Carlo simulation (Figure 4) needs five steps [1].

(1) Photons are generated at a surface of the considered
region, so that their distribution can be fitted to a
given light source (i.e., Gaussian beam).

(2) Pathway generation: the distance to the first collision
is computed supposing that absorbing and scattering
particles are randomly distributed: a random number
0 < 𝜉
1
< 1 is generated, so the distance

𝐿 (𝜉
1
) = −

ln 𝜉
1

𝜌𝜎
𝑆

, (36)

where 𝜌 is the particle density and 𝜎
𝑆
is their scatter-

ing cross-section [1]; thus, 1/𝜌𝜎
𝑆
represents the mean
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free path and a scattering point is obtained. Then a
second random number 𝜉

2
is generated to determine

the scattering angle according to the phase function;
then the third random number is generated to get the
azimuth angle:

𝜑 = 2𝜋𝜉
3
. (37)

(3) Absorption makes the photon weight decrease by
𝑒
−𝛼𝐿(𝜉

1
), 𝛼 being the absorption coefficient.

(4) Elimination of the photon when its attributed weight
reaches a certain value, then a new photon is launched
and proceeds with step 1.

(5) Detection: after repeating steps 1–4 for a sufficient
number of photons, the computer has stored a map
of pathways, so one can make statistical predictions
upon the fraction of the incident photons being
absorbed by the medium and the spatial and angular
distribution of the transmitted photons.

As the simulation accuracy increases with the larger
numbers of photons, the necessity of extending calculations
makes them time consuming. If earlier results are stored in
the computermemory andused again if neededwith the same
phase function, computing time will be saved.

4.5. Inverse Adding-Doubling Method. The name of the
method comes from reversing the usual process when calcu-
lating reflectance and transmittance from the optical prop-
erties; this method assumes that reflection and transmission
of incident light at a certain angle are known. If we need the
same properties for a layer twice as thick, we divide it into
two equal slabs, and then add the reflection and transmission
contributions of either slab.These properties can be obtained
for an arbitrary slab of tissue starting with a thin, known slab,
and doubling it until the necessary thickness is achieved.

The adding method can be extended to simulate layered
tissues with different optical properties.

4.6. The Finite Element Method: Boundary and Source Con-
ditions. The model to calculate light transport in strongly
scattering materials was needed as a component in image
reconstruction schemes that localize the optical properties
of the tissues from boundary measurements by solving the
inverse problem. Diffusion approximation to the radiative
transfer equation (15) is an adequate model for scatter-
dominant materials for it assumes that scattering dominates
absorption (generally true for biological tissues) and the
anisotropic propagation is weak, that is not the case near
sources and boundaries.

When the only sources of light aremonochromatic lasers,
a frequency-independent model of light transport is suitable;
multi-wavelength systems will be applied sequentially, so that
the change of frequency is expressed by the change in the
optical properties.

The finite element method for the propagation of light
in scattering media aims [5, 6] to find the photon density Φ
and the radiance in a strong scattering domain Ω, together

with the outward current (existence) Γ through the boundary
𝜕Ω, using the diffusion approximation model to the radiative
transport equation (15). The existence Γ through boundary
𝜕Ω at the point 𝜉 ∈ 𝜕Ω is defined as

Γ (𝜉, 𝑡) = −𝑐 ⋅ 𝑘 (𝜉) ⋅ ⃗𝑛 ⋅ ∇Φ (𝜉, 𝑡) , (38)

where ⃗𝑛 is the normal to 𝜕Ω at 𝜉.
The diffusion equation (32) can be written as

1

𝑐

𝜕Φ (𝑟, 𝑡)

𝜕𝑡
− ∇ ⋅ 𝑘 (𝑟) ∇Φ (𝑟, 𝑡) + 𝛼 (𝑟)Φ (𝑟, 𝑡) = 𝑞0 (𝑟, 𝑡) ,

(39)

where Φ(𝑟) is the photon density at 𝑟 ∈ Ω and 𝑘(𝑟) denotes
the diffusion coefficient (34). The solution we seek is a
continuous, linear approximation Φℎ of Φ. The considered
domainΩ is partitioned into𝐷nonoverlapping elements 𝜏, in
each element Φℎ is assumed linear. Nodes 𝑁

𝑗
(𝑗 = 1, . . . , 𝑝)

are attached to the element vertices and Φℎ at each point
𝑟 within the element 𝜏

𝑖
is the linear interpolation of nodal

values Φ
𝑗

Φ
ℎ
(𝑟, 𝑡) = ∑

𝑗/𝑁
𝑗
∈𝜏
𝑖

Φ
𝑗 (𝑡) 𝜓𝑗 (𝑟) , (40)

where 𝜓
𝑗
are linear nodal shape functions [5] with support

over all elements which have the node 𝑁
𝑗
in the position 𝑟

𝑗

as a vertex, and 𝜓
𝑖
(𝑟
𝑖
) = 𝛿
𝑖𝑗
. Equation (39) becomes

∫
Ω

𝜓
𝑗 (𝑟) [

1

𝑐

𝜕

𝜕𝑡
− ∇ ⋅ 𝑘 (𝑟) ∇ + 𝛼 (𝑟)]Φ

ℎ
(𝑟, 𝑡) 𝑑Ω

= ∫
Ω

𝜓
𝑗
(𝑟) 𝑞
0
(𝑟) 𝑑Ω.

(41)

The solution of (32) requires appropriate boundary condi-
tions. The Dirichlet condition (DBC)

Φ (𝜉) = 0, ∀𝜉 ∈ 𝜕Ω, (42)

means that the medium around Ω is a perfect absorber;
photons are absorbed when crossing 𝜕Ω, so that outside the
domain the photon density equals zero. A more realistic
boundary condition would be

Φ (𝜉) + 2𝑘 ⋅ ⃗𝑛 ⋅ ∇Φ (𝜉) = 0, (43)

which is named [5] a Robin boundary condition (RBC) that
constrains a linear combination of the photon densities and
the current at 𝜕Ω. It can be modified to incorporate a
mismatch of the refractive indexes 𝑛 within Ω and 𝑛󸀠 in the
surrounding medium; we assume 𝑛󸀠 = 1 so that (41) becomes

Φ (𝜉) + 2 ⋅ 𝑘 ⋅ ⃗𝑛 ⋅ ∇Φ (𝜉) = 𝑅 [Φ (𝜉) − 2 ⋅ 𝑘 ⋅ ⃗𝑛 ⋅ ∇Φ (𝜉)] ,

(44)

where 𝑅 is the parameter governing internal reflection at the
boundary 𝜕Ω that can be fitted from experimental curves. A
modified Robin condition [5] can be

Φ (𝜉) + 2 ⋅ 𝑘 ⋅ 𝐴 ⋅ ⃗𝑛 ⋅ ∇Φ (𝜉) = 0, (45)
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with𝐴 = (1+𝑅)/(1 −𝑅), or if we use a different approach [6]
to derive 𝐴 from Fresnel’s laws:

𝐴 =
2/(1 − 𝑅

0
) − 1 +

󵄨󵄨󵄨󵄨cos 𝜃𝐶
󵄨󵄨󵄨󵄨

1 −
󵄨󵄨󵄨󵄨cos 𝜃𝐶

󵄨󵄨󵄨󵄨

2

3

, (46)

with the critical angle 𝜃
𝐶
= arcsin (1/𝑛) and 𝑅

0
= (𝑛 − 1)

2/
(𝑛 + 1)

2 (i.e., for 𝑛 = 1.4 we get 𝐴 = 3.25).
While RBC is a more accurate physical situation than the

DBC, the mathematical approach is simple with DBC. To get
a compromise, we can introduce an extrapolated boundary
at a certain distance 𝑑ext from the physical boundary at
which DBC apply. For an arbitrary two-dimensional domain
Ω, the extrapolated boundary condition is obtained simply
by adding a border of thickness 𝑑ext around Ω. Different
expressions [5] of extrapolating 𝑑ext can be applied to arbi-
trary geometries if the radius of the boundary curvature is
small compared to the mean free path, both for matched and
mismatched refractive index.

There are two possibilities to model the light sources
incident at a point on the boundary: collimated or diffuse
sources.

(1) The diffusion equation cannot describe correctly colli-
mated sources, so we can represent a collimated pencil
beam by an isotropic source at the 1/𝛼󸀠

𝑆
depth that is

accurate at distances larger than the mean free path
from the source but breaks down close to the source.
The implementation of the collimated source needs
a delta-shaped term 𝑞

0
in (39) or other models have

been using the analogy to nuclear engineering with
cylinder sources and exponentially decaying.

(2) Diffuse sources on the surface can be regarded as an
inward directed diffuse photon current, distributed
over the illuminated boundary segment 𝜕Ω

2
⊂ 𝜕Ω.

The Dirichlet condition (40) is written for diffuse
sources

Φ (𝜉, 𝑡) = 0, ∀𝜉 ∈ 𝜕Ω
1
,

𝑘 (𝜉) ⋅ ⃗𝑛 ⋅ ∇Φ (𝜉 ⋅ 𝑡) = −Γ
𝑆
𝑤 (𝜉, 𝑡) , ∀𝜉 ∈ 𝜕Ω

2
,

(47)

where 𝜕Ω
1
∪ 𝜕Ω
2
= 𝜕Ω, Γ

𝑆
is the source current

strength, 𝑤 is a weighting function, and ⃗𝑛 is the
outward normal to 𝜕Ω at 𝜉.

The inclusion of the source as a photon current through
boundaries modifies the Robin condition (43) along 𝜕Ω

2
to

Φ (𝜉, 𝑡) + 2𝑘𝐴 ⃗𝑛 ⋅ ∇Φ (𝜉, 𝑡) = −4Γ
𝑆
𝑤 (𝜉, 𝑡) , ∀𝜉 ∈ 𝜕Ω

2
.

(48)

Experimental data [5, 6] lead to the conclusion that the Robin
model and the extrapolated boundary models are equivalent,
but the Dirichlet model shows significant lack of accuracy
that should prevent its use in most applications.

Figure 5 shows intensity distributions calculated [1] with
either method inside a turbid medium, assuming isotropic
scattering; 𝑎 denotes the ratio of absorption and scattering
coefficients (optical albedo):

𝑎 =
𝛼
𝑆

𝛼
𝑡

=
𝛼
𝑆

𝛼 + 𝛼
𝑆

. (49)
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Figure 5: Intensity distributions inside turbidmedium comparison.
Data according to Niemz [1].

The values 𝑎 = 0.9 and 𝑎 = 0.99 mean that scattering is
predominant.The ordinate shows diffuse intensity in units of
incident intensity.

5. Conclusions

Different methods for solving the transport equation were
discussed; the most important are the Kubelka-Munk theory,
the diffusion approximation, and Monte Carlo simulations.

The Kubelka-Munk theory deals only with diffuse radi-
ation and it is limited to the cases where scattering dom-
inates absorption; an important disadvantage is the one-
dimensional geometry.

The diffusion approximation is not restricted to diffuse
radiation, but it also applies to predominant scattering phe-
nomena, which is a powerful tool.

Monte Carlo simulations provide most accurate solu-
tions, sincemany input parametersmay be taken into account
in specially developed computer programs; the method
allows two-dimensional and three-dimensional evaluations
although they require a long computing time.

The finite element method was compared [5] to Monte
Carlo corresponding methods and it was found to be in good
agreement with Robin boundary conditions; the diffusion
approximation, although not strictly valid near boundaries,
is still able to produce correct data when using appropriate
boundary conditions, whichmatches best a given experimen-
tal situation. It can be used when theMonte Carlo computing
speed is significantly reduced.
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