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Radiative radial fin with temperature-dependent thermal conductivity is analyzed. The calculations are carried out by using
differential transformation method (DTM), which is a seminumerical-analytical solution technique that can be applied to various
types of differential equations, as well as the Boubaker polynomials expansion scheme (BPES). By using DTM, the nonlinear
constrained governing equations are reduced to recurrence relations and related boundary conditions are transformed into a set
of algebraic equations. The principle of differential transformation is briefly introduced and then applied to the aforementioned
equations. Solutions are subsequently obtained by a process of inverse transformation. The current results are then compared with
previously obtained results using variational iteration method (VIM), Adomian decomposition method (ADM), homotopy analysis
method (HAM), and numerical solution (NS) in order to verify the accuracy of the proposed method. The findings reveal that both
BPES and DTM can achieve suitable results in predicting the solution of such problems. After these verifications, we analyze fin
efficiency and the effects of some physically applicable parameters in this problem such as radiation-conduction fin parameter,

radiation sink temperature, heat generation, and thermal conductivity parameters.

1. Introduction

Extended surfaces are extensively used in various industrial
applications. An extensive review on this topic is presented
by Kraus et al. [1]. Fins are very frequently encountered
in many engineering applications to enhance heat transfer.
Numerous contributions have been made in the heat transfer
analysis of the fins. Constant thermophysical properties
and uniform heat transfer coefficient are often assumed in
the determination of the temperature distribution along an
extended surface. The mathematical complexity of the con-
servation energy equation is reduced by this assumption and
therefore well-established closed form analytical solutions
can be obtained for a number of cases. If a large temperature

difference exists within a fin, the thermal conductivity may
not be constant. Furthermore, in general, the heat transfer
coefficient may vary along a fin. The heat transfer coefficient
may be a function of the spatial coordinate only along
a fin or may depend on the local temperature difference
between the fin surface and the surrounding fluid. Kundu
[2] analytically carried out the thermal analysis and opti-
mization of longitudinal and pin fins of uniform thickness
subject to fully wet, partially wet, and fully dry surface
conditions. Moreover, Kundu [3] analytically analyzed the
performance and optimization of longitudinal and pin fins
of step reduction in local cross-section (SRC) profile subject
to combined heat and mass transfer. Coskun and Atay [4,
5] used variational iteration method to analyze convective



straight and radial fins with temperature-dependent thermal
conductivity. Sharqawy and Zubair [6] carried out an analysis
to study the efficiency of straight fins with different con-
figurations when subjected to simultaneous heat and mass
transfer mechanisms. Domairry and Fazeli [7] solved nonlin-
ear straight fin differential equations by homotopy analysis
method (HAM) to evaluate the temperature distribution
within the fin. Arslanturk [8] obtained correlation equa-
tions for optimum design of annular fins with temperature-
dependent thermal conductivity. Kulkarni and Joglekar [9]
proposed and implemented a numerical technique based
on residue minimization to solve the nonlinear differen-
tial equation, which governs the temperature distribution
in straight convective fins having temperature-dependent
thermal conductivity. Khani et al. [10] used HAM to evaluate
the analytical approximate solutions and efficiency of the
nonlinear fin problem with temperature-dependent ther-
mal conductivity and heat transfer coefficient. Kundu [11]
described an analytical method for temperature and heat
transfer characteristics of an annular step fin (ASF) with the
simultaneous heat and mass transfer mechanisms. Bouaziz
and Aziz [12] introduced a new concept called the double
optimal linearization method (DOLM) to derive simple and
accurate expressions for predicting the thermal performance
of a convective-radiative fin with temperature-dependent
thermal conductivity. Khani and Aziz [13] used HAM to
develop analytical solutions for the thermal performance
of a straight fin of trapezoidal profile when both thermal
conductivity and heat transfer coefficient are temperature-
dependent.

The differential transformation method (DTM) is a
seminumerical-analytical method. DTM, which is based on
the Taylor series expansion, was first proposed by Zhou
[14] in 1986 for the solution of linear and nonlinear initial
value problems that appear in electrical circuits. This method
obtains a solution in the form of a polynomial. Indeed, this
fact can be seen in Section 4, where the concept of differential
transforms is briefly described. It may be pointed out that,
later, this method has been successfully used in a series of
literature [15-21] dealing with many engineering problems.

There are recent studies on the application of DTM to the
heat transfer problems in the literature. Chu and Chen [22]
applied a hybrid method of differential transformation and
finite difference method to solve a transient heat conduction
problem which had complex nonlinear terms. Chu and Lo
[23] applied the differential transformation technique for
transforming and discretizing the governing equations as
well as the boundary conditions and provided two numerical
examples. Lo and Chen [24] proposed an alternative numeri-
cal method to investigate hyperbolic heat conduction prob-
lems using the hybrid differential transfer/control-volume
method. Joneidi et al. [25] provided analytical solution to
fin efficiency of convective straight fins with temperature-
dependent thermal conductivity by DTM. Jang et al. [26]
investigated and characterized a two-dimensional thermal
conductive boundary value problem with discontinuous
boundary and initial conditions. Rashidi et al. [27] applied
DTM to find the analytic solution for the problem of mixed
convection about an inclined flat plate embedded in a porous
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FIGURE 1: A heat pipe/fin radiating element.
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medium. Yaghoobi and Torabi [28] applied DTM to solve the
problems of convective and convective-radiative cooling of a
lumped system with temperature-dependent specific heat.

More recently, Ganji et al. [29] applied DTM to the prob-
lem of convective-radiative straight fins with temperature-
dependent thermal conductivity. But they considered zero
dimensionless convective and radiative sink temperatures
and without heat generation.

This paper is an analytical study of the thermal per-
formance of a radiative fin with variation of thermal con-
ductivity with temperature. The problem considers nonzero
dimensionless radiation sink temperature, 6, and dimen-
sionless heat generation, Q, which is the novelty of the present
work. The resulting nonlinear differential equation is solved
by DTM to evaluate the temperature distribution within
the fin. Accordingly, the appropriate convergence study and
comparison with previously published related articles, the
results obtained using variational iteration method (VIM) [4,
30], Adomian decomposition method (ADM) [31], homotopy
analysis method (HAM) [32], and numerical solution (NS),
were employed in order to verify the accuracy of the proposed
method. Using the temperature distribution, we express
the efficiency of the fin in terms of radiation-conduction
fin parameter, ¥, and thermal conductivity parameter, 3.
Because a broad range of governing parameters are investi-
gated, the results should be useful in a number of engineering
applications.

2. Description of the Problem

A typical heat pipe/fin space radiator is shown in Figure 1.
Both surfaces of the fin are radiating to the outer space
at a very low temperature, which is assumed equal to zero
absolute. The fin has temperature-dependent thermal con-
ductivity, k, which depends on temperature linearly, and fin is
diffuse-grey with emissivity e. The tube surfaces’ temperature
and the base temperature T, of the fin are constant, and
the convective exchange between the fin and the heat pipe
is neglected. The temperature distribution within the fin is
assumed to be one-dimensional, because the fin is assumed
to be thin. Hence, only fin tip length b is considered as the
computational domain.

The energy balance equation for a differential element of
the fin [2-5] is given by

d dT by
dex[k(T)dx] 200 (T'-T/)+q=0, ()
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where k(T) and o are thermal conductivity and the Stefan-
Boltzmann constant, respectively.

The thermal conductivity of the fin material is assumed to
be a linear function of temperature [4-7] according to

k(T)=ky[1+A(T-T,)], (2)

where k, is the thermal conductivity at the T, temperature
of the fin and A is the measure of variation of the thermal
conductivity with temperature.

We introduce the following dimensionless parameters:

o-L  g-la 9.1
Tb Tb Tb
X eab®T; b'q
= 7 = AT 5 = s = —
$= 5% p=AT, kow Q T, k,
3)

The formulation of the fin problem [8-11] reduces to the
following equation:

d a0 ] 4 o
— |[(1+p(0-06,)—=|-v(0 -6,)+Q=0,
Slavpe-en%|-v(e-e) "
0<é<l,
with the following boundary conditions:
o (5a)
df o > a
Olezy = 1. (5b)

3. Fin Efficiency

The heat transfer rate from the surfaces of a fin is found by
applying the Stefan-Boltzmann law, namely [31],

b
Qs = J 2WeoTdx. (6)
0

Fin efficiency is defined as the ratio of energy radiated away
by the fin to the energy that would be radiated if the entire fin
was at the base temperature [33]:

Qf,ideal = 2‘/Vbt‘50"1—';1 (7)

Employing the dimensionless parameters in (3), fin effi-
ciency is expressed as

Qf 1 Jb T4 1
I —dx=J64d. 8
1 Qf,ideal bJo Tg 0 : ®

4. Fundamentals of Differential
Transformation Method

Let x(t) be analytic in a domain D, and let t = ¢; represent any
point in D. The function x(t) is then represented by a power

series whose center is located at ¢;. A Taylor series expansion
function of x(t) about ¢; takes the form

00 _f j j
x(t)=) (-t j,t’) [—d];tf.t)] , VteD. (9
j=0 ’ t=t

i

The particular case of (9) when ¢; = 0 is the Maclaurin series
of x(t) and is expressed as

@ [dx@
xm_%fﬂ o L; o

As explained in [34] the differential transformation of the
function x(t) is defined as follows:

(Y [dix ()
X(j) = i [ 5 ]to, 11)

where x(t) is the original function and X(j) is the trans-
formed function (commonly referred to as the T-function).
The differential spectrum of X(j) is confined within the
interval t € [0, H], where H is a constant. The differential
inverse transform of X(j) is defined as follows:

(o)

x=Y (ﬁ)jx (). (12)

j=0

It is clear that the concept of differential transformation
is based upon the Taylor series expansion. Values of the
function X(j) are referred to as discretes; that is, X(0) is
known as the zero discrete, X(1) is the first discrete, and
X(j) is the jth discrete. The more discretes are available, the
more precise it is possible to restore the unknown function.
The function x(t) consists of T-function X(j), and its value
is given by the sum of the T-function with (t/H ) as its
coefficient. In real applications, with the right choice of
constant H, the larger the values of argument j are, the more
rapid the discretes of spectrum are reduced. The function x(t)
is expressed by a finite series and (12) can be written as

0= (£)x(), 13)

Jj=0

where n + 1 is total number of polynomial terms used in
the DTM. Mathematical operations performed by differential
transform method are listed in Table 1.

5. Solution Protocols

5.1. Solution Using the Differential Transformation Method
DTM. Now we apply differential transformation method to



TaBLE 1: The fundamental operations of differential transform
method.

Transformed function

X (j) = «F (j) £ BG (j)

Original function

x(t) = af (t) £ Bg(t)

s = L0 X(j)=(j+1)F(j+1)
2
x( = L1 X() =G+ )+ F(+2)
x(t) = ¢ X(j)=6(j—m)={1 Jem
0 j+m
AJ’
x(t) = exp(At) X(j) = W
x(t) = f(t)g(t) X(j) =Y, FOG(i-1)

(4). Taking the differential transform of (4) with respect to &,
and considering H = 1 according to Table 1, we gives

(1-80)(j+2)(j+1)O(j+2)

<i® HG+2-D(j+1-1)® (]+2—l)>

(3

($o0m

m=0

x(i@(m—v)(i@(v—u)@(u))))

(v + Q)5 () =0.

M~

(l+1)®(l+1)(j+1—l)®(j+1—l))

I]
(=]

(14)

From boundary condition in (5a), and employing the
second formulation from Table 1, we obtain

@ (1) =0. (15)
Supposing that

@0)=A (16)
and using (14)-(16) one can obtain @(j + 2) as follows:

1 Q yA* +y0!

0Q2)=-- Y pA—pa, (17a)
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®(3) =0, (17b)
0@ = ((Q-ya' +ye?)
X (41//A4 — 4yA’ B0, + yA*B
+3Q+3By0?)) (1+BA-p6,)"
(17¢)
®(5)=0
(17d)

where A is constant, and we will calculate it with considering
another boundary condition in (5b) in point £ = 1.

The above process is continuous. Substituting (17a), (17b),
(17¢), and (17d) into the main equation based on DTM, it can
be obtained that the closed form of the solutions is

A_lQ yA* + y0!
+ BA - 0,

- 55 (Q-ya"+ye))

6(8) = 23

X (41//A4 — 4yA’BO, + yA*B

+3pQ+3py0?)) (1 + PA-p6,) ")

XE o
(18)

To obtain the value of A, we substitute the boundary condi-
tion from (5b) into (18) in point & = 1. So, we have

01y A LQZVA + VO,
T 2 1+BA-p0,

1
- 55 ((Q-vyaA"+y6))
X (41//A4 — 4yA’BO, + yA*B

+38Q +3py0%)) (1+ PA-pO,) ) +

(19)

Solving (19) gives the value of A. The resultant equation
can be solved by using Newton-Raphson iterative tech-
nique for determination of unknown tip temperature A. We
employed the Maple’s built-in Roots command which numer-
ically approximates the roots of an algebraic function using
the specified method, such as Newton-Raphson, bisection,
secant, and fixed-point iteration methods, and returns the
specified outputs. This command uses the Newton-Raphson
method by default. Also, the estimated initial value was
picked as a starting number near the solution using the graph
to locate sufficiently close number to the root.
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Asan example, let us assume that § = 0.4,y = 1,0, = 0.2,
0, = 0.2, and Q = 0.1. Therefore, the value of A, applying
n = 30 which will be used in this paper, will be obtained as
follows:

A = 0.8294001254. (20)

Substituting this obtained A parameter in (18), the tempera-
ture profile of fin for this special case will be as follows:

6 (&) = 0.8294001254 + 0.1484360740&>
(21)
+0.019031859&* + 0.002675563¢ + - - -

The VIM solution of (4), with 6, = 6, = Q = 0, is obtained in

the following form [4]:
1 4 2

Ovim ’:~A+§A yE -

lsp o 1 7, 2.4
SAPYE - AT (4 +34B) 8

I 103,66 1 13 4,8 I 16 5.10
+ —A +—A +——A .
20 Vv E 112 v 5 1440 v E
(22)

And the ADM solution of (4), with 8, = 6, = Q = 0, is
obtained in the following form [31]:
1,5 =2

SPAYE +

1 1 1
BADMEA+EA4V/£2_ 8A71//ZE4+E[;2A61//£2

Il , 8 2,4 13 AlyE
- —pA + —
S PAVE + o5
25
24

ﬁAW

zﬁAHIIﬁfG*'

I 13 4.8
—A .
45 §

209 244
A -
ulave 2520

(23)

5.2. Solution Using the Boubaker Polynomials Expansion
Scheme (BPES). The Boubaker polynomials expansion
scheme (BPES) [34-52] is a resolution protocol which has
been successfully applied to several applied-physics and
mathematics problems. The BPES protocol ensures the
validity of the related boundary conditions regardless of main
equation features. The Boubaker polynomials expansion
scheme (BPES) is based on the Boubaker polynomials first
derivatives properties:

N
Y By, (x)) =-2N#0,
9=1 x=0
N
YB,(x)| =0,
q=1 x=r,
(24)
idBélq (X)
9=1 dx x=0 ’
dB,, (x N
4q( ) _ ZHq,
gq=1 d'x x=r q=1

with H, = Bfm(rn) = ((4r, [2—1’3] ngzl
4r,31).

Several solutions have been proposed through the BPES
in many fields such as numerical analysis [34-37], theoretical
physics [38-41], mathematical algorithms [42], heat transfer
[43], homodynamic [44, 45], material characterization [46],
fuzzy systems modeling [47-50], and biology [51, 52].

In reference to (4), the BPES is applied to the system

Bézlq(rn)/B4(n+1) (T’n)) +

sarpe®-0n %]
~y (09 -6)+Q=0, Ec[01],
(25)
A Ly
0y =1
through setting the expression
05 = Z—NO 3, x 88 P 08) (26)

where By, are the 4k-order Boubaker polynomials, ;. are B,
minimal positive roots, N is a prefixed integer, and Ay |_;...x;
are unknown pondering real. The BPES solution is obtained
through the following steps.

(i) Integrate, for a given value of N, the whole expres-
sions given in the left side of (4) along the given
domain. By introducing expression (26) in (25),
boundary conditions become redundant since they
already verified by the proposed expansion (26).
Consecutively, and by majoring the quadrature terms,
the problem is transformed in a linear system with
unknown real variables /\klk=1---N0' Consequently, it
comes for (4) and (25)-(26) that

91;1 SI;NO /\1 bl
L By e e A b,
. . = . . (27)
SNU;I e e 9N0§No ANu bNo
with the matrix standard form
(9] x [A] = [B],
90 o O
with (91={ . 2 . . |,
9N0;1 9N0;N0 (28)
A b
A b,
(A] , [B] =
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1.0
1 B=o06
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ff
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FIGURE 2: Convergence test of the dimensionless temperature with DTM, for ¢ = 1 (dash-dot line), y = 10 (dash line), v = 100 (solid line),

and NS (box symbol).

The system (28) is hence reduced to approximately
(64N,)’ arithmetical operations and solved using the
Householder algorithm [53, 54].

(ii) Incremente Nj,.

(iii) Test the convergence of the coefficients /\ECSOI')| LN
—1-N,

until stability of the solution.
The final result is hence (obtained for N, = 233)
N,
1 G soly 9By (1)
Oppes (§) = Z_NO kZlAk X (29)

6. Results and Discussion

In this section, we divide our study into three subsections.
Firstly, the convergence rate of the DTM and BPES is
checked. Secondly, comparison with previously published
related articles is employed in order to verify the accuracy
of the proposed method. Finally, some figures are introduced
regarding the effects of physically applicable parameters such
as thermal conductivity parameter, 3, dimensionless tem-
perature whose k(T') is constant, 0,,, dimensionless radiation
sink temperature, 0,, radiation-conduction parameter, v,
and dimensionless heat generation parameter, Q, on the
temperature distribution within the fin. Moreover, for all
numerical results which are reported here, the following
values of variables are used unless otherwise indicated by

graphs or the table:
B=04, 6, =02

Q=0.1.

y=1
6, =02,

(30)

6.1. Convergence Study. Opposite to the convergence of the
Boubaker Polynomials Expansion Scheme (BPES), which is
intrinsically tested (via the value of N,, Section 5.2), the
proposed differential transformation method DTM adopts
an iterative procedure to obtain the high-order Taylor series.
Since the Taylor series is an infinite series, the differential
transformation should theoretically comprise an infinite
series. However, the present results indicate that in practice a
small n-value (i.e., n = 30) is sufficient to provide an accurate
solution.

Figure 2 depicts the convergence of the dimensionless
temperature for six different cases. From Figure 2 it is clearly
visible that for two cases of B = —0.6 and 3 = 0.6 when
¥ = 1, more than 10 terms are needed to obtain the value
of the 6. Also, it is seen that if § = -0.6 and ¢y = 100
are chosen to plot the temperature within the fin, at least
30 terms are required to obtain an accurate value of the 0.
As more terms are taken, the 6 converges to its exact value.
Therefore, the numerical results from the DTM approach
which are presented in the next sections were obtained by
taking sufficient terms n = 30 to the temperature solution. It
should be noted that the final results from DTM are in good
agreement with the Runge-Kutta-Fehlberg method which isa
well-tested numerical solution. Moreover, since the problem
is a highly nonlinear radiative equation, an exact analytical
solution cannot be found for (4).

6.2. Validation of the Results. To check the accuracy of the
present solution, by considering 6, = 6, = Q = 0 our
problem is converted to a simpler case which was studied
in four pioneering works [4, 30-32] in this field. The results
obtained from DTM analysis are compared with VIM [4, 30]
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FIGURE 3: Comparison for dimensionless temperature variation for various 3 and y between DTM (solid line), VIM (box symbol), and ADM

(solid-circle symbol).

and ADM [31] in Figure 3. As it can be seen, this method leads
to acceptable results compared with those methods.

For the case of different values for thermal conductivity
and radiation-conduction fin parameter, results of the present
analysis are tabulated against the ADM, VIM, and again with
numerical solution (NS), of the fourth-fifth order Runge-
Kutta-Fehlberg method using the Maple package, in Table 2.
A very interesting agreement between the results is observed,
which confirms the validity of the DTM.

In Figure 4, the efficiency of the DTM and BPES solution
technique for = 0 can be illustrated with comparison
respect to HAM [32] and NS. Also by means of these
comparisons, it can be shown that DTM and BPES are a better
alternatives in the solution of such problems.

6.3. Results of Present Study. Figure 5 shows the behavior of
fin tip temperature, A, relative to the thermal conductivity
parameters, 3, and the radiation-conduction fin parameter,
y. Figure 5 clearly demonstrates that increasing in the values
of thermal conductivity parameter produces increase in
values of fin tip temperature.

Figure 6 illustrates the dimensionless temperature distri-
butions along the fin surface with f varying from -0.3 to
0.3. The curve marked 8 = 0 represents the case when the
thermal conductivity is a constant and its value is k,. The
curves with 8 > 0 correspond to fin materials whose thermal
conductivity increases as temperature increases. The converse
is true of curves with 8 < 0. As the parameter f3 increases,
the average thermal conductivity of the material increases,
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TABLE 2: The results of DTM, VIM, ADM, and NS for dimensionless temperature.
: B=04, y=1 B=02, y=05
DTM VIM [4] ADM [31] NS DTM VIM [4] ADM [31] NS
0 0.8133693583  0.8145587262  0.8122259487  0.8133695812 0.8679116912  0.8677934850  0.8678227415  0.8679120939
0.05 0.8137822645  0.8149299130 0.8126321774  0.8137824427  0.8682139355 0.8680864947  0.8681245987  0.8682140666
0.10 0.8150223528  0.8160457268  0.8138530912  0.8150225764 0.8691214181 0.8689665327  0.8690309943  0.8691217405
0.15 0.8170937494  0.8179129642  0.8158953383  0.8170939665  0.8706363930 0.8704366340 0.8705444008 0.8706367938
0.20 0.8200033838  0.8205430743  0.8187698837  0.8200036083  0.8727626384  0.8725018855  0.8726689432  0.8727630106
0.25 0.8237610702  0.8239523423  0.8224918404  0.8237612930  0.8755054875  0.8751694686  0.8754104067  0.8755058710
0.30 0.8283796228 0.8281621511  0.8270802450 0.8283798480  0.8788718740  0.8784487205 0.8787762466  0.8788722707
0.35 0.8338750084  0.8331993221 0.8325577851  0.8338752350  0.8828703906  0.8823512130  0.8827756075  0.8828707739
0.40 0.8402665394 0.8390965420 0.8389504951 0.8402667643  0.8875113635 0.8868908496  0.8874193466 0.8875117414
0.45 0.8475771116  0.8458928803 0.8462874349  0.8475773321  0.8928069419  0.8920839837  0.8927200706  0.8928073243
0.50 0.8558334915 0.8536344030 0.8546003708  0.8558337131 0.8987712062  0.8979495558  0.8986921830  0.8987715631
0.55 0.8650666613 0.8623748942 0.8639234800 0.8650668754 0.9054202946  0.9045092538  0.9053519505 0.9054206440
0.60 0.8753122271 0.8721766901  0.8742931088  0.8753124399  0.9127725525 0.9117876937 0.9127175865  0.9127729094
0.65 0.8866109039 0.8831116398  0.8857476040  0.8866111038  0.9208487049  0.9198126293  0.9208093621  0.9208490358
0.70 0.8990090866  0.8952622030  0.8983272589  0.8990092815 0.9296720572  0.9286151827  0.9296497443  0.9296723561
0.75 0.9125595243  0.9087226999  0.9120743995 0.9125597131  0.9392687258  0.9382301051  0.9392635667  0.9392690380
0.80 0.9273221155  0.9236007249  0.9270336526  0.9273222778  0.9496679059 0.9486960683 0.9496782441 0.9496681990
0.85 0.9433648484 0.9400187469  0.9432524344  0.9433650219  0.9609021785  0.9600559865 0.9609240279 0.9609023769
0.90 0.9607649133  0.9581159096  0.9607817046  0.9607650173  0.9730078657  0.9723573730  0.9730343160  0.9730082160
0.95 0.9796100255 0.9780500563 0.9796770290 0.9796103729  0.9860254404  0.9856527331 0.9860460201 0.9860261076
1 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
0

XY N
T

0 0.2

FIGURE 4: Comparison for dimensionless temperature variation for
B =0and y = 0.7 using DTM (solid line), BPES (triangle), NS (box
symbol), and HAM (solid-box symbol).

and as expected, the result is a gradual increase in the local
temperature.

In Figure7 we illustrate the effect of the radiation-
conduction parameter, ¥, on the temperature distribution

FIGURE 5: Variation of dimensionless fin tip temperature for various
B with DTM (solid line) and NS (box symbol).

in the fin. As the radiative transport becomes stronger, the
radiative cooling becomes more effective, which in turn
causes the lowering of temperatures in the fin.

Figure 8 shows that as the 0, increases, the temperature
within the fin decreases. This is because of the fact that,
as 0, becomes lower, the k(T) becomes more sensitive
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FIGURE 6: Dimensionless temperature in fin for various  with DTM
(solid line) and NS (box symbol).

1.0

v =15,10,5,2.5,1

0.9 4

0.8 4

0.7 4

0.6 1

0.5

3

FIGURE 7: Dimensionless temperature in fin for various y with DTM
(solid line) and NS (box symbol).

to the temperature. Moreover, Figure 9 displays the effect
of the radiation sink temperature, 0, on the temperature
distribution in the fin. As the radiation sink temperature
increases, the radiative heat loss decreases, resulting in higher
temperatures in the material. Figure 10 allows us to assess
the effect of the dimensionless heat generation in (4), which
varies from 0.2 to 0.6. As expected, an increase in the value of
Q causes an increase in the value of 6 within the fin.

Figure 11 shows the behavior of the fin efficiency relative
to v and . Figure 1l clearly demonstrates that increasing

FIGURE 8: Dimensionless temperature in fin for various 6, with
DTM (solid line) and NS (box symbol).

1.00 A

0.98
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090 4 65 =02,03,04,05,06

0.88

0.84

3

FIGURE 9: Dimensionless temperature in fin for various 6, with DTM
(solid line) and NS (box symbol).

in the values of radiation-conduction parameter produces a
decrease in the value of the fin efficiency. In addition, the fin
efficiency increases as the thermal conductivity parameter, f3,
increases. To explain the effect of parameter f3, we note that
while the temperature increases as [ increases (see Figure 6),
the temperature of the fin becomes closer to Ty, and therefore,
from (6), Q ¢ increases resulting in an increase in the value
of 1. For all results reported in Figures 5-11 the DTM results
were checked against NS which were in excellent agreement
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FIGURE 10: Dimensionless temperature in fin for various Q with
DTM (solid line) and NS (box symbol).
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FIGURE 11: Variation of the fin efficiency with v and  with DTM
(solid line) and NS (box symbol).

with each other. It would be useful to mention that DTM
was tested for moving convective-radiative fins [55] against
numerical solution, and results of both methods were in good
agreement with each other.

7. Conclusion

In this study, the DTM and BPES have been utilized to
derive approximate explicit analytical solution for nonlinear
radiative radial fin heat transfer problem with temperature-
dependent thermal conductivity and heat generation. The

Chinese Journal of Engineering

figures and table clearly show that these methods provide
excellent approximations to the solution of this nonlinear
equation with high accuracy. As the radiation-conduction
parameter increases the effect is to lower the fin temperature.
As expected, it was observed that increasing in the value of 8
or Q increases the temperature distribution through the fin.
The collection of temperature graphs should be useful in the
study and design of a variety of engineering systems where
fins are attached to realize heat transfer enhancement.

Nomenclature

b: Fin tip length, m

D:  Domain

H:  Constant

K:  Temperature-dependent thermal
conductivity, Wm™ K™

K,:  Thermal conductivity at the base
temperature, W m ' K!
Volumetric heat generation, W m™—
Dimensionless volumetric heat generation

Qs: Heat transfer rate from the surfaces of a fin

: Temperature, K

T,:  Fin’s base temperature, K

T,:  Radiation sink temperature, K

X(k): Transformed analytical function

x(t): Original analytical function

w:  Semithickness of the fin, m.

Greek Symbols

Thermal conductivity parameter
Emissivity
Fin efficiency
Slope of the thermal
conductivity-temperature curve, K
Stefan-Boltzmann constant, W m > K™*
Dimensionless temperature

: Dimensionless radiation sink temperature
Radiation-conduction fin parameter.
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