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Quadrotor unmanned aerial vehicles (UAVs) have attracted considerable interest for various applications including search and
rescue, environmentalmonitoring, and surveillance because of their agilities and small sizes.This paper proposes trajectory tracking
control of UAVs utilizing online iterative learning control (ILC) methods that are known to be powerful for tasks performed
repeatedly. PD online ILC and switching gain PD online ILC are used to perform a variety of manoeuvring such as take-off,
smooth translation, and various circular trajectory motions in two and three dimensions. Simulation results prove the ability and
effectiveness of the online ILCs to perform successfully certain missions in the presence of disturbances and uncertainties. It also
demonstrates that the switching gain PD ILC ismuch effective than the PD online ILC in terms of fast convergence rates and smaller
tracking errors.

1. Introduction

Unmanned aerial vehicles (UAVs) have become very popular
among researchers anddevelopers in the last decade, owing to
their capabilities of various applications such as meteorolog-
ical surveillance, disaster monitoring, and military purposes.
Depending on their applications, UAVs vary in sizes, shapes,
and operating ranges. UAVs are complicated for control con-
sidering the nonlinearity of the system, no supervision of
pilots, and external disturbances that need sophisticated con-
trol system to deal with.

A quadrotor UAV is a special UAV that has four rotors
with a symmetric shape to generate thrust. A quadrotor UAV
can vertically take-off, hover, swiftly manoeuvre in any direc-
tion and carry a large payload comparing to its own weight
. In addition, a quadrotor UAV is normally small compared
with other types of UAVs, which makes it simple and cheap,
and accessible indoors or in urban constrained areas.

In order to achieve autonomous control, many studies
and experiments have been performed for UAVs. However,
due to their nonlinearity, multi-input and coupling charac-
teristics, traditional controlmethods such as PID controlmay
perform poorly under uncertainty and wind disturbances for

UAVs, as shown in [1–3]. As an optimization technique with
feedback control, Linear Quadratic Regulator (LQR) and its
variation of State Dependent Riccati Equation (SDRE) con-
trol were proved to perform well for UAVs without distur-
bances [4, 5]. Comparisons and implementation of Sliding
Mode Control (SMC) and Backstepping control were pre-
sented in [6–8]. The SMC methods were found to be robust
against uncertainties, but they are still relatively complicated
and itmight cause chattering problems. AnH-infinity control
[9] was proposed to deal with the problem of stabilization
of a rotorcraft with small external disturbances. An adaptive-
fuzzy control was developed in [10] with robustness but lim-
ited to stabilization applications only. Neural Network con-
trol methods were implemented in [11, 12] that proved to per-
form well, but intensive computations are required for train-
ing NN that may limit their real applications. A testbed for
the development and demonstration of control systems and
trajectory planning optimization of UAVs was set up and
discussed in MIT [13, 14].

On the other hand, iterative learning control (ILC) [16]
is based on simple PD/PID control and adopts the idea of
human learning process, and it is mainly used in robotic
manipulators where their tasks are performed repeatedly. ILC
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Figure 1: An example of a quadrotor UAV [15].

can improve tracking performances when a specific task is
done again and again, and it is robust against uncertainties
and disturbances. ILC was originally proposed by Arimoto
[16], where only derivative part (D-type) and information
from previous iteration(s) were used to determine the control
input for current iteration (offline ILC). Some variations of
ILC such as P-type [17], PD-type [18, 19], PI-type [20, 21],
and PID-type [22, 23] were studied, but most of them cannot
assure monotonic convergence for nonlinear systems. Faster
convergence rates can be achieved by using current iteration
errors (online ILC) in [24–27] or a combination of both
online and offline ILCs in [28–31]. An even faster monotonic
convergence rate and less tracking error can be achieved
by using switching gain learning control developed in [32,
33]. Performance comparison of various types of ILCs was
conducted in [34].

Many control methods have been developed to deal with
the control problems of UAVs. The majority of those con-
trollers focused heavily on the stabilization problem which
is the first step toward successfully autonomous flights. Some
of them also handled position maintaining or velocity hold-
ing in order to fulfill certain manoeuvrings and thus full
autonomous control. Some researches focused on the trajec-
tory tracking control of UAVs through developing different
control methods [35–37]. Based on gain-scheduling control
theory, the nonlinear problem of UAV dynamics was repre-
sented as piece-wise error dynamics over a predefined set of
operating regions in [35], and the design and performance
evaluation of a trajectory tracking controller were discussed.
LQR control was applied as a trajectory follower to minimize
errors between the real trajectory and the reference trajectory
in [36]. A switching control method was introduced for
trajectory tracking of fixed-wing UAVs in [37].

To the best of our knowledge, there is rare application of
ILC on the control of UAVs. The contribution of this work to
the UAV field consists in the exploration of different online
ILCs on trajectory tracking control of quadrotor UAVs for
the first time, focusing on performance improvements under
conditions of uncertainty and disturbances. The capability
of online ILCs to reject random disturbances and noise is
examined and demonstrated. The research can be viewed
as a new application of online ILCs. In this research, two
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Figure 2: Coordinate system of UAV.

competitive types of ILCs, namely, PD online ILC and
switching gain PD (SPDonline ILC), are employed in order to
control a quadrotorUAV to follow various desired trajectories
in the presence of disturbances and uncertainties. Nonlinear
dynamic model of the quadrotor UAV is established where
major aerodynamic and gyroscopic effects are included. Sim-
ulations are conducted to verify the capability of performing
various missions repeatedly with some constraints.

2. Quadrotor UAV: Dynamic Model
and Parameters

As named, a quadrotorUAV consists of four rotors producing
thrust upward against its own weight and payloads. Usually,
payloads are placed at the center of the UAV, and rotors
propelled by DC motors with or without gearbox. Figure 1
shows an example of a quadrotorUAV and Figure 2 illustrates
the coordinate system and positions of rotors used in this
paper.The rotors are divided into twopairs; one pair rotates in
the opposite direction of the other pair. Increasing the thrust
on one side and decreasing the thrust on the other side of the
same pair will result in rotation in the pitch or roll direction
and the quadrotor will tend to translate toward the direction
that it inclines to. Simply increasing thrust equally in one
pair and decreasing thrust in the other pair will result in the
rotation of the yaw angle while maintaining the position and
altitude.

According to the coordinate system shown in Figure 2, a
nonlinear translational and rotational dynamic model for the
quadrotor UAV can be expressed as [12]

𝜏=J�̇�+𝜔 (J𝜔+J
𝑟
Ω
𝑟
e
3
) +d
𝜏
,

𝑚v̇ = RT − 𝑚𝑔e
3
− d
𝑇
,

(1)

where 𝜏 is a torque vector of the three axes; J is the inertia
tensor of a quadrotor;𝜔 is an angular velocity vector; J

𝑟
is the

moment of inertia of rotor; Ω
𝑟
= Ω
1
− Ω
2
+ Ω
3
− Ω
4
is the

total rotor speed; e
3
= [0 0 1]

𝑇 is a unit vector in the inertial
frame; R is the rotation matrix; T is a force vector; d

𝜏
and

d
𝑇
are the disturbance vectors for rotations and translations,

respectively.
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Table 1: Parameters of a quadrotor UAV.

Parameters Description Value
𝑙 Quadrotor arm length 0.232m
𝑏 Rotor thrust coefficient 3.13 × 10

−5N ⋅ s2

𝑑 Rotor drag coefficient 7.5 × 10

−7m ⋅ s2

𝑚 Total quadrotor mass 0.52 kg
𝐼
𝑥

Moment of inertia about𝑋 axis 6.228 × 10

−3 kg ⋅m2

𝐼
𝑦

Moment of inertia about 𝑌 axis 6.225 × 10

−3 kg ⋅m2

𝐼
𝑧

Moment of inertia about 𝑍 axis 1.121 × 10

−2 kg ⋅m2

𝐽
𝑟

Moment of inertia of the rotors 6 × 10

−5 kg ⋅m2

Ωmax Maximum rotor speed 279 rad/s

The equations of motion, along with control inputs, can
be described in each axis based on (1) as [12]
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where 𝑙 is the span of the quadrotor; 𝑏 is the thrust coefficient;
𝑑 is the drag coefficient, which relates to torque in the yaw
angle.

The control inputs related to each rotor speed are defined
as follows:
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Note that (2)–(4) are derived using the rotation matrix of
𝑅
𝑍𝑋𝑌

instead of 𝑅
𝑍𝑌𝑋

as used by most robotic applications.
Design parameters and some limitations of a quadrotor UAV
are referred froma real application in [15] and listed inTable 1.

To design a control system for the quadrotor UAV, it is
more convenient to establish a state-space model. First, we
define a state variable vector as follows:

x = [𝑋 𝑌 𝑍 𝜙 𝜃 𝜓
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Then the state space system for the UAV dynamic model
described in (2)–(7) can be expressed as
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In this paper, the disturbances given in (10) have wind
disturbance components along the 𝑋 and 𝑌 directions that
are modeled by a correlated Gauss-Markov process [9]. In all
other directions, some random noises are added to simulate
the disturbances and the uncertainties of the dynamics.

3. Different ILCS: Basics and
Convergence Conditions

ILC can improve tracking performance of a nonlinear system
through iterative operationswhen a specific task is performed
repeatedly. Consider a nonlinear time varying system with
the following form:

�̇�
𝑘
(𝑡) = 𝑓 (𝑥

𝑘
(𝑡) , 𝑡) + 𝐵 (𝑡) 𝑈

𝑘
(𝑡) + 𝑑

𝑘
,

𝑦
𝑘
(𝑡) = 𝐶 (𝑡) 𝑥

𝑘
(𝑡) ,

(12)

where subscription 𝑘 denotes the iteration number.
A general form of the control update law for ILCs in-

volving online and offline learning technique can be written
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Figure 3: Control scheme for PD online ILC and SPD ILC.
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as

𝑈
𝑘+1
= 𝑈
𝑘
+ 𝐾
𝑝 on𝑒𝑘+1 (𝑡) + 𝐾𝑖 on ∫

𝑡

0

𝑒
𝑘+1
(𝑡) 𝑑𝑡

+ 𝐾
𝑑 on ̇𝑒𝑘+1 (𝑡) + 𝐾𝑝 off𝑒𝑘 (𝑡)

+ 𝐾
𝑖 off ∫
𝑡

0
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𝑘
(𝑡) 𝑑𝑡 + 𝐾

𝑑 off ̇𝑒𝑘 (𝑡) ,

(13)

where 𝑒(𝑡) = 𝑦
𝑑
(𝑡)−𝑦(𝑡) and ̇𝑒(𝑡) = ̇𝑦

𝑑
(𝑡)− ̇𝑦(𝑡).𝐾

𝑝
,𝐾
𝑖
, and𝐾

𝑑

are PID control gains, and subscriptions on and off represent
online (feedback, using errors from the current iteration)
and offline (feed-forward, using errors from the previous
iteration), respectively. Based on the selection of the control
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Figure 5: Effect of changing thewhole set of control gains by a factor
of 0.5 and 1.5.

gains, ILCs can be mainly classified as three types, namely,
offline, online, and online-offline. In the following sections,
the convergence conditions and the convergence rate are dis-
cussed.

3.1. Offline ILCs. Traditional ILCs belong to offline learning
control, where only the errors from previous iterations have
been included in the control law:

𝑈
𝑘+1
= 𝑈
𝑘
+ 𝐾
𝑝 off𝑒𝑘 (𝑡) + 𝐾𝑖 off ∫

𝑡

0

𝑒
𝑘
(𝑡) 𝑑𝑡

+ 𝐾
𝑑 off ̇𝑒𝑘 (𝑡) .

(14)
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Figure 6: Tracking performance comparison between PD online ILC and SPD ILC for take-off.

In the case that only a proportional part is utilized (P-
ILCs), the control law can be expressed as

𝑈
𝑘+1
= 𝑈
𝑘
+ 𝐾
𝑝 off𝑒𝑘 (𝑡) . (15)

For a P-type ILC, the convergence condition for the
controlled system (12) is [17]

𝜌
𝑝 off =







𝐼 − 𝐾
𝑝 off𝐶𝐵







< 1. (16)

Whenever a derivative part is involved in an ILC, including
D-ILC, PD-ILC, and PID-ILC, the convergence condition is
[16, 18, 19]

𝜌
𝑑 off =






𝐼 − 𝐾
𝑑 off𝐶𝐵






< 1. (17)

The two aforementioned convergence conditions imply
that offline learning gains are upper bounded, which means
that only a certain range of control gains can be chosen.
Therefore, offline ILCs have a relatively slow convergence rate.

3.2. Online ILCs. On the other hand, online ILCs only rely on
current iteration errors:

𝑈
𝑘+1
= 𝑈
𝑘
+ 𝐾
𝑝 on𝑒𝑘+1 (𝑡) + 𝐾𝑖 on ∫

𝑡

0

𝑒
𝑘+1
(𝑡) 𝑑𝑡

+ 𝐾
𝑑 on ̇𝑒𝑘+1 (𝑡)

(18)

and their convergence conditions are [27–29]

𝜌
𝑝 on =








(𝐼 + 𝐾
𝑝 on𝐶𝐵)

−1






< 1 (P-type only) ,

𝜌
𝑑 on =







(𝐼 + 𝐾
𝑑 on𝐶𝐵)

−1





< 1 (D-type involved) .
(19)

It is noticed that the learning gains are unbounded for
online ILCs from (19), which makes it very flexible to choose
control gains. Furthermore, it is demonstrated that the larger
the online control gains, the faster the system convergence
rate.

In addition to ordinary online ILCs, one might utilize
switching gain learning control to increase the convergence
rate by increasing online learning gains for each iteration.The
convergence conditions then become [32]

𝜌
𝑝 on =








(𝐼 + 𝐾
𝑝 on (0) 𝐶𝐵)

−1






< 1 (P-type only) ,

𝜌
𝑑 on =







(𝐼 + 𝐾
𝑑 on (0) 𝐶𝐵)

−1





< 1 (D-type involved) .
(20)

3.3. Online-Offline ILCs. When online and offline ILCs are
combined and used simultaneously, it simply turns into
online-offline ILCs. Convergence conditions are then a com-
bination of both types and can be expressed as [31]

𝜌
𝑝 off < 1

𝜌
𝑝 on < 1

(P-type only) or

𝜌
𝑑 off < 1
𝜌
𝑑 on < 1

(D-type involved) .

(21)

4. Controller Design for Quadrotor UAV

In this paper, the integral part of PID control in (13) will
be neglected as ILC itself has the feature of integration, by
adding control actions from previous iterations to the current
one. Furthermore, offline and online-offline ILCs are not
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Figure 7: Tracking performance of PD online ILC in iteration 1, 3, 6, and 9 for take-off.

considered asmany researchers have demonstrated a superior
performance of online ILCs over offline ILCs. Figure 3 shows
a scheme of a control diagram for online ILCs. Only ordinary
PD online ILCs and SPD online ILCs will be tested and
compared in this research.

According to (8), there are four control inputs for theUAV
system. Based on the state variables defined in (9), the control
variables are defined as 𝑥

3
to 𝑥
6
, corresponding to 𝑍 axis and

three rotation angles; their corresponding derivatives are 𝑥
9

to 𝑥
12
. The control inputs of the UAV are calculated using the
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Figure 8: Tracking performance improvement comparison for take-off.

0 1 2 3 4 5
160

170

180

190

200

210

220

230

240

250

260

Time (s)

Ro
to

r s
pe

ed
 (r

ad
/s

)

Rotor1
Rotor2

Rotor3
Rotor4

Figure 9: Rotor speed at the 9th iteration controlled by PD online
ILC for take-off.

following ILC update law:

𝑢
𝑖,𝑘+1

= 𝑢
𝑖,𝑘
+ (𝐾
𝑝 on)
𝑖+2

(𝑥
𝑖+2,𝑑

− 𝑥
𝑖+2
)

𝑘+1

+ (𝐾
𝑑 on)𝑖+2(𝑥𝑖+8,𝑑 − 𝑥𝑖+8)𝑘+1

for 𝑖 = 1, 2, 3, 4,
(22)

where (𝐾
𝑝 on)
𝑗

and (𝐾
𝑑 on)𝑗 are the corresponding online

learning proportional and derivative gains.

If the𝑍directionneeds to be controlled, from (22), we can
see that 𝑥

3,𝑑
and 𝑥

9,𝑑
are the only desired states determined

by the desired trajectories. In order to find properly desired
states as a function of time for the rest of state variables, two
dummy control inputs for the𝑋 and 𝑌 direction motions are
defined as

𝑢
𝑥,𝑘+1

= 𝑢
𝑥,𝑘
+ (𝐾
𝑝 on)
1

(𝑥
1,𝑑
− 𝑥
1
)

𝑘+1

+ (𝐾
𝑑 on)1(𝑥7,𝑑 − 𝑥7)𝑘+1,

𝑢
𝑦,𝑘+1

= 𝑢
𝑦,𝑘
+ (𝐾
𝑝 on)
2

(𝑥
2,𝑑
− 𝑥
2
)

𝑘+1

+ (𝐾
𝑑 on)2(𝑥8,𝑑 − 𝑥8)𝑘+1,

(23)

where 𝑥
1,𝑑
, 𝑥
2,𝑑
, 𝑥
7,𝑑
, and 𝑥

8,𝑑
are the desired trajectories in

the 𝑋 and 𝑌 directions and their derivatives, respectively;
(𝐾
𝑝 on)
𝑗

and (𝐾
𝑑 on)𝑗 are the online learning gains. Based

on the defined rotation matrix R, the desired angles can be
calculated from

𝜙
𝑑
= 𝑥
4,𝑑
= 𝑎 sin (𝑢

𝑦
) ,

̇
𝜙
𝑑
= 𝑥
10,𝑑
=

1

√1 − 𝑢

2

𝑦

�̇�
𝑦
,

𝜃
𝑑
= 𝑥
5,𝑑
= −𝑎 sin(

𝑢
𝑥

cos (𝑥
4
)

) ,

̇
𝜃
𝑑
= 𝑥
11,𝑑
= −

�̇�
𝑥
+ tan (𝑥

4
) 𝑥
10
𝑢
𝑥

cos (𝑥
4
)
√
1 − (𝑢

𝑥
/ cos (𝑥

4
))

2

.

(24)
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Figure 10: Tracking errors from iteration to iteration for𝑋-𝑌 translation (𝑆 = 10m, 𝑇 = 5 sec.).

Since a quadrotor UAV is very agile and is able to
maneuver in any direction, the yaw angle in this paper is
defined as

𝜓
𝑑
= 𝑥
6,𝑑
= �̇�
𝑑
= 𝑥
12,𝑑
= 0. (25)

According to (19), the convergence conditions for online
ILCs are only related to matrices B (input matrix) and C
(output matrix) and are not related to function 𝑓(𝑥, 𝑡) in
(12). This feature provides the robustness of the control law
to deal with the mismatch in modeling the system. Also,
the choices of control gains in (22)-(23) are flexible because
they are unbounded as long as (19) is satisfied. It should
be noticed that, in the developed control law (22)-(23), the
angular positions and angular speeds should be measured by
sensors. A fibre optic gyroscope sensor can be used for this
purpose because of its high accuracy, fast response, and low
weight.

Note that in the SPD ILC, the online learning gains are
defined as functions of iteration number and are chosen as

𝐾
𝑝 on (𝑘) = 𝑠 (𝑘) ∗ 𝐾𝑝 on (0)

𝐾
𝑑 on (𝑘) = 𝑠 (𝑘) ∗ 𝐾𝑑 on (0)

𝑠 (𝑘) = 𝑘, for 𝑘 ≥ 1.

(26)

The switching action here occurs in iteration domain
rather than in time domain. For traditional switching control,
the switching action may cause problems in transient process
of the switched system, while this phenomenon does not
occur in iteration domain.

5. Simulation Results

In order to obtain a smooth trajectory, that is, continuous in
position, velocity, and acceleration, a 5th order polynomial
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Figure 11: Trajectory tracking performance of PD online ILC in iteration 1, 3, 6, and 9 for𝑋-𝑌 translation (𝑆 = 10m, 𝑇 = 5 sec.).

function of time is used for each desired trajectory in our
simulation studies. With the boundary conditions of 𝑓(0) =
0, 𝑓(𝑇) = 1, 𝑓(0) = 𝑓(𝑇) = 𝑓(0) = 𝑓(𝑇) = 0, the
following polynomial function [38] is used to generate the

desired trajectory:

𝑓 (𝑡) = 10(

𝑡

𝑇

)

3

− 15(

𝑡

𝑇

)

4

+ 6(

𝑡

𝑇

)

5

, 𝑡 ∈ [0, 1] .
(27)
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Figure 12: Trajectory tracking performance of SPD ILC in iteration 1, 3, and 6 for𝑋-𝑌 translation (𝑆 = 10m, 𝑇 = 5 sec.).

In the simulation studies, two different types of distur-
bances are introduced to deal with different environmental
effects on different direction motions of the quadrotor UAV.

For the𝑋 and 𝑌 direction motions, external disturbances
caused by wind gusts are described by stochastic functions
where aGauss-Markov process is chosen to simulate thewind

effect to the UAV system

𝑑
𝑥
(𝑡
𝑗
) = 𝑑
𝑥
(𝑡
𝑗−1
) + 𝐴 ∗ rand () ,

𝑑
𝑦
(𝑡
𝑗
) = 𝑑
𝑦
(𝑡
𝑗−1
) + 𝐴 ∗ rand () .

(28)
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Figure 13: Trajectory tracking performance comparison between PD online ILC and SPD ILC for𝑋-𝑌 translation (𝑆 = 10m, 𝑇 = 5 sec.).
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Figure 14: Trajectory tracking performance comparison between PD online ILC and SPD ILC for𝑋-𝑌 translation (𝑆 = 100m, 𝑇 = 15 sec.).

Throughout all the simulations, disturbances in the 𝑍
direction and all three angles are presented in (29). Note that
the disturbances with random noise are very large compared
to the components of the dynamic model

𝐷 = 10 + 20 sin (2𝜋𝑡) + rand () ,

𝑑
𝑧
= 0.1𝐷,

𝑑
𝜙
= 𝐷,

𝑑
𝜃
= 𝐷,

𝑑
𝜓
= 0.001𝐷.

(29)

To demonstrate tracking performance and robustness
of online ILCs, the following simulation will cover main
missions of a quadrotor UAV, that is, take-off, hovering, and
moving in various trajectories.
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Figure 15: Tracking errors from iteration to iteration for𝑋-𝑌 translation (𝑆 = 100m, 𝑇 = 15 sec.).

5.1. Take-Off Control. In a take-off mission, the quadrotor
UAV is commanded to smoothly take-off and ultimately
hover at a desired height ℎ

𝑑
= 10m within a time duration

of 𝑇 = 5 sec. The desired trajectory is defined as

𝑍
𝑑
(𝑡) = ℎ

𝑑
[10(

𝑡

𝑇

)

3

− 15(

𝑡

𝑇

)

4

+ 6(

𝑡

𝑇

)

5

] ,

𝑋
𝑑
= 𝑌
𝑑
= 0, 𝑡 ∈ [0, 𝑇]

(30)

and a set of online learning gains is chosen as

𝐾
𝑝 on = 𝐾on [0.1 0.1 50 5 5 500] ,

𝐾
𝑑 on = 1.5𝐾𝑝 on,

(31)

where 𝐾on = 0.5, 1, 1.5 for different control gains. For most
simulations conducted in this research, we set 𝐾on = 1

unless otherwise stated.The choice of control gains abovewas
based on trial and error, with regard to stability and trajectory
tracking performance.

The constant 𝐾on is used to demonstrate the effect of
increasing-decreasing the whole gain set by a factor. A varia-
tion of learning gains and its trajectory tracking performance
for take-off are listed in Table 2. It should be mentioned that,
in order to get fair comparison results, the disturbances and
uncertainties for each simulation in the same iteration are
assumed to be the same.

As shown in Table 2, reducing (𝐾
𝑝 on)
1

and (𝐾
𝑝 on)
2

by
a factor of 10 significantly reduces the convergence rate and
yieldsmuch larger errors in the first three iterations. Likewise,
decreasing (𝐾

𝑝 on)
4

and (𝐾
𝑝 on)
5

by a factor of 10 yields similar
results. This is due to a slower reaction in attitude control,
making the quadrotor UAV away from the desired position
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Figure 16: Trajectory tracking performance comparison between PD online ILC and SPD ILC for𝑋-𝑌-𝑍 translation.

Table 2: Effect of each control gain on tracking errors.

Control gain 𝑘 ‖𝑒
𝑥
‖ (m) ‖𝑒

𝑦
‖ (m) ‖𝑒

𝑧
‖ (m) ‖𝜙‖ (deg) ‖𝜃‖ (deg) ‖𝜓‖ (deg)

[0.1 0.1 50 5 5 500]

𝐾on = 1

1 5.423𝑒 − 1 5.423𝑒 − 1 2.228𝑒 − 2 1.244𝑒0 1.244𝑒0 6.8584𝑒0

3 5.857𝑒 − 2 5.856𝑒 − 2 1.157𝑒 − 5 4.632𝑒 − 1 4.636𝑒 − 1 4.7586𝑒0

5 1.532𝑒 − 2 1.529𝑒 − 2 1.151𝑒 − 5 3.287𝑒 − 1 3.286𝑒 − 1 3.0638𝑒0

9 5.261𝑒 − 3 5.258𝑒 − 3 1.141𝑒 − 5 2.415𝑒 − 1 2.415𝑒 − 1 1.3656𝑒0

[0.01 0.01 50 5 5 500]

𝐾on = 1

1 7.472𝑒0 7.471𝑒0 2.229𝑒 − 2 2.331𝑒0 2.330𝑒0 6.8584𝑒0

3 2.627𝑒0 2.627𝑒0 2.099𝑒 − 5 2.101𝑒0 2.104𝑒0 4.7586𝑒0

5 1.204𝑒0 1.204𝑒0 1.693𝑒 − 5 1.298𝑒0 1.298𝑒0 3.0638𝑒0

9 5.748𝑒 − 1 5.750𝑒 − 1 1.244𝑒 − 5 1.727𝑒0 1.727𝑒0 1.3656𝑒0

[0.1 0.15 5 5 500]

𝐾on = 1

1 5.429𝑒 − 1 5.429𝑒 − 1 2.214𝑒 − 1 1.243𝑒0 1.243𝑒0 6.8584𝑒0

3 5.951𝑒 − 2 5.950𝑒 − 2 2.414𝑒 − 4 4.638𝑒 − 1 4.642𝑒 − 1 4.7586𝑒0

5 1.569𝑒 − 2 1.566𝑒 − 2 3.032𝑒 − 5 3.307𝑒 − 1 3.307𝑒 − 1 3.0638𝑒0

9 5.281𝑒 − 3 5.278𝑒 − 3 1.784𝑒 − 5 2.442𝑒 − 1 2.442𝑒 − 1 1.3656𝑒0

[0.1 0.1 50 0.5 0.5 500]

𝐾on = 1

1 5.132𝑒0 5.152𝑒0 2.231𝑒 − 2 1.296𝑒1 1.288𝑒1 6.8584𝑒0

3 5.954𝑒 − 1 5.955𝑒 − 1 1.224𝑒 − 4 5.599𝑒0 5.687𝑒0 4.7586𝑒0

5 1.487𝑒 − 1 1.453𝑒 − 1 2.560𝑒 − 5 3.962𝑒0 3.879𝑒0 3.0638𝑒0

9 5.173𝑒 − 2 5.130𝑒 − 2 1.298𝑒 − 5 2.955𝑒0 2.891𝑒0 1.3656𝑒0

[0.1 0.1 50 5 5 50]

𝐾on = 1

1 5.421𝑒 − 1 5.422𝑒 − 1 2.213𝑒 − 2 1.247𝑒0 1.247𝑒0 7.9413𝑒0

3 5.940𝑒 − 2 5.938𝑒 − 2 1.085𝑒 − 5 4.627𝑒 − 1 4.632𝑒 − 1 7.6792𝑒0

5 1.577𝑒 − 2 1.568𝑒 − 2 1.062𝑒 − 5 3.272𝑒 − 1 3.273𝑒 − 1 7.4223𝑒0

9 5.360𝑒 − 3 5.315𝑒 − 3 1.062𝑒 − 5 2.421𝑒 − 1 2.424𝑒 − 1 6.9237𝑒0

in the presence of disturbances. Lastly, reducing (𝐾
𝑝 on)
6

by
a factor of 10 shows a considerable decrease in yaw angle
stability and a slower convergence rate. The effect of changes
in 𝐾
𝑑 on on the performance is illustrated in Figure 4. For

the 𝑋 and 𝑌 axes tracking, when 𝐾
𝑑 on = 𝐾𝑝 on the system

yields larger errors and tends to produce steady errors. For
𝐾
𝑑 on = 1.5𝐾𝑝 on and 𝐾

𝑑 on = 3𝐾𝑝 on, the results are much
better in terms of maximum errors and final steady errors.
These results strongly show the importance of the derivative
gains. For the 𝑍 direction, the results are merely identical.
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Figure 17: Trajectory tracking performance comparison between PD online ILS and SPD ILC for𝑋-𝑌-𝑍 translation.

Table 3: Maximum tracking errors in the 𝑍 direction for take-off
under LQR control.

Low 𝑄 (106I) Middle 𝑄 (107I) Large 𝑄 (108I)
0.0802 0.0327 0.0105

Figure 5 shows how changing the whole set of gains by a
factor affects trajectory tracking performances. With 𝐾on =
0.5, for the 𝑋 and 𝑌 directions, it is obvious that the control
gains are not high enough to ensure monotonic convergence
and yield large errors. On the other hand, when 𝐾on = 1 and

𝐾on = 1.5, the system is monotonically convergent and even
faster for the latter case. Again, the effect is hardly detected
in the 𝑍 direction. This is because control in the 𝑍 direction
depends solely on 𝑢

1
, while the𝑋 and𝑌motions also depend

on the attitude of the quadrotor UAV.
To compare the performances of ILCs with traditional

control such as LQR control, take-off simulations were
fulfilled. Table 3 lists the maximum tracking errors under
different LQRperformance indices where an approach for the
design of LQR controller discussed in [4] is used. Comparing
the maximum errors in 𝑍 direction shown in Table 3 with
those listed in Table 2, it is clearly shown that the ILC
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Figure 18: Trajectory tracking performance comparisons for𝑋-𝑌 plane circular motion.

performedmuch better than the LQR. Such a result would be
expected as the ILCs is a kind of nonlinear learning control
while the LQR is a linearized control for a nonlinear system.

After finishing the initial comparison study on the per-
formance improvements by changing online control gains,
some take-off simulation studies with wind disturbances and
uncertainties are conducted. Figure 6 shows the maximum
tracking errors from iteration to iteration controlled by
both PD online ILCs and SPD ILCs. In the presence of
disturbances, there are small errors for the𝑋 and 𝑌 direction
motions controlled by the PD online ILC because of the
existence of wind disturbance. But SPD ILCs outperform
PD online ILCs with their incredibly fast convergence rates,
and achieve very good performances in all three translation
motions after 3 iterations. It demonstrates the capability of
dealing with disturbances in SPD ILC.

Trajectory tracking performance in translations and ori-
entations controlled by PD online ILCs is shown in Figure 7
for different iterations. It can be seen that the quadrotor UAV
can smoothly take-off, with some errors in the 𝑋 and 𝑌
directions that were caused by the wind disturbances. It is
also noticed that the PD online ILCs and SPD ILCs can reject
disturbances in orientations. Figure 8 shows the tracking
performance improvements in 𝑍 direction from iteration to
iteration for both online ILCs. It clearly shows the significant
differences between the PD online ILC and the SPD ILC after
the first iteration. Rotor speed in the 9th iteration is depicted
in Figure 9 for the PD online ILC, which shows that all four
rotors operate in the specified ranges.

5.2. Smooth Translation Tracking. To demonstrate a good
trajectory tracking performance for an𝑋-𝑌 plane translation

motion, desired trajectories are chosen as follows:

𝑋
𝑑
(𝑡) = 𝑌

𝑑
(𝑡) = 𝑆 [10(

𝑡

𝑇

)

3

− 15(

𝑡

𝑇

)

4

+ 6(

𝑡

𝑇

)

5

] ,

𝑍
𝑑
(𝑡) = 0, 𝑡 ∈ [0, 𝑇] .

(32)

Two sets of simulations are performed here. The first
simulation is set for a short range linear translation motion
with 𝑆 = 10m and 𝑇 = 5 sec., and the second one is for a long
range translation motion at a higher speed with 𝑆 = 100m
and 𝑇 = 15 sec.

For the first set motion, it shows that the PD online
ILCs tend to take more iterations, as many as 9, to converge
to approximate zero errors in 𝑋 and 𝑌 directions while
SPD ILCs take 6 iterations. Trajectory tracking errors from
iteration to iteration are shown in Figure 10. It clearly shows
that the SPD ILC can ensure less tracking errors and faster
convergence rates.

Figures 11 and 12 show the tracking performance improve-
ments from iteration to iteration for both PD online ILC and
SPD ILC. The effectiveness of the online ILCs in terms of
tracking error reductions and resistance to disturbances is
clearly shown.

Note that shown in Figure 13, there are relatively large
errors in the𝑋 and𝑌 directions for the first iteration and then
they converge to stable error boundaries for the PD ILC, but
the SPD ILCs obtained very good tracking performance with
very small (<10−2m) tracking errors in all three directions
even under the wind gust disturbance conditions.

For the second set test with large motion ranges and
fast speeds, the maximum tracking errors from iteration to
iteration are depicted in Figure 14 for both PD online ILC
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Figure 19: Tracking performance comparison for𝑋-𝑌 circular motion.

and SPD ILC. It is shown that the PD online ILCs obtain
acceptable tracking performance (the tracking errors are
around 1m for both𝑋 and 𝑌 directions), while the SPD ILCs
still perform much better than the PD online ILCs.

Figure 15 shows the tracking errors in the 𝑋 and 𝑌
directions from iteration to iteration for both PD online ILC
and SPD online ILC. Considering the long range motions
and relatively higher speed than the previous short range
motion case, it is clearly shown that, after a few iterations, the
quadrotor can obtain smooth and good motions that follow
the desired trajectories, especially for the SPD ILC.

Furthermore, to examine the tracking performance for a
three dimensional translation motion based on the ILCs, a
simulation of linear motion from point A (0, 0, 0) to point
B (100, 100, 10) in 15 seconds is conducted. Figure 16 shows
the maximum tracking errors from iteration to iteration
controlled by these two different online ILCs. It is clearly
shown that the SPD ILCs performedmuch better than the PD
online ILCs in terms of fast convergent rate, small tracking
errors, and good capability to compensate the disturbances

and uncertainties. It also shows that the tracking performance
in the 𝑍 direction was controlled very well for both online
ILCs. Figure 17 shows the tracking errors from iteration to
iteration for both PD online ILC and SPD online ILC for 3D
translation motions. It demonstrates the effectiveness of the
online ILCs and the better tacking performance obtained by
the SPD online ILC.

5.3. Circular Trajectories Tracking. To prove that the quadro-
tor UAV can freely maneuver a complex trajectory, a circular
trajectory tracking test is performed by using the online ILCs.
In this mission, the quadrotor revolves the 𝑋-𝑌 plane with a
radius 𝑅 = 20m for a time duration 𝑇 = 20 sec., smoothly
starting from and ending at the velocity of 0. The desired
trajectories are

𝑋
𝑑
(𝑡) = 𝑅 cos(2𝜋 [10( 𝑡

𝑇

)

3

− 15(

𝑡

𝑇

)

4

+ 6(

𝑡

𝑇

)

5

] + 𝜋)

+ 𝑅,
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Figure 20: Tracking performance comparisons for 3D circular motion.

𝑌
𝑑
(𝑡) = 𝑅 sin(2𝜋 [10( 𝑡
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)

4
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𝑡

𝑇

)

5

] + 𝜋) ,

𝑍
𝑑
(𝑡) = 25, 𝑋

𝑑
∈ [0, 2𝑅] , 𝑌

𝑑
∈ [−𝑅, 𝑅]

𝑡 ∈ [0, 𝑇] .

(33)

Figure 18 shows the performance improvements from
iteration to iteration for both PD online ILCs and SPD ILCs.
Once again, it demonstrated the effectiveness of the SPD
ILCs. Figure 19 shows the tracking errors controlled by PD
online ILCs and SPD ILCs for the 𝑋-𝑌 plane circular trajec-
tory, respectively. It can be observed that PD online ILCs can
obtain acceptable tracking performances through iterative
learning processes, and SPD ILCs converge to approximate
zero errors at the 3rd iteration while PD online ILCs still have
small bounded tracking errors. Therefore, it can be seen that
SPD ILCs perform much better in yaw angle than the PD
online ILCs.

By adding the 𝑍 direction motion (20m) accordingly
with the 𝑋-𝑌 plane circular motion discussed above, a 3D
circular tracking case was formed and used to examine
the effectiveness of the online ILCs. Figure 20 shows the
maximum tracking errors in three axes for the PD online
ILCs and the SPD ILCs, while Figure 21 shows the tracking
performance improvements from iteration to iteration for
both online ILCs. It demonstrates again that the SPD ILCs
can obtain much better tracking performances than the
PD online ILCs under the existence of disturbances and
uncertainties.

6. Conclusion and Discussion

Iterative learning control is simple to build, easy to imple-
ment, and robust to uncertainties and disturbances. In order
to perform some fundamental missions for a quadrotor UAV,
some trajectory tracking control for a UAV was conducted
based on online ILCs in this paper. Different trajectory track-
ing tasks using PD online ILCs and SPD ILCs were simulated
and compared. It was proven that tracking performances
can be improved by choosing large control gains for the
online ILCs. In addition, the choice of control gains is very
flexible. Despite nonlinearity of the system and the presence
of disturbances, both types of online ILCs demonstrated good
tracking capabilities of smooth take-off, straight-line, and
circular motions in two and three dimensions and provided
good performances after a few iterations. Simulation results
demonstrated that SPD ILCs performed much better than
PD online ILCs in terms of convergence rate and disturbance
rejection.

The online ILCs have been successfully applied to trajec-
tory tracking control of a quadrotor UAV through simula-
tions for different missions. To deal with the real application
of online ILCs, it should be mentioned that a PD feedback
control is applied to control the quadrotor UAV in the
first iteration, as there is no previous experimental learning
process. The PD feedback control was proved to provide the
stability of the UAV system, even with some big tracking
errors. The control input information obtained from the first
iteration will be stored and used as a feedforward control for
the next iterations. In case the state of the system cannot be
measured directly, the online ILCs update law could include
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Figure 21: Tracking performance improvement for 3D circular motion.

a Kalman filter to estimate the states. With all the aspects
shown above, implementation to a real application seems to
be practical, and it is a future work.
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