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Economic production quantity (EPQ) inventory model for trended demand has been analyzed with rework facility and stochastic
preventive machine time. Due to the complexity of the model, search method is proposed to determine the best optimal solution.
A numerical example and sensitivity analysis are carried out to validate the proposed model. From the sensitivity analysis, it is
observed that the rate of change of demand has significant impact on the optimal inventory cost. The model is very sensitive to the
production and demand rate.

1. Introduction

An item that does not satisfy quality standards but can be
attained after reprocess is termed as a recoverable item and
the process is known as rework. It is observed that in an
industrial sector, the rework reduced production cost and
maintained quality standard of the item. Schrady [1] debated
rework process. Khouja [2] formulated an economic lot-size
and shipment policy by incorporating a fraction of defective
items and direct rework. Koh et al. [3] andDobos and Richter
[4] discussed two production policies with options to order
new products externally or recover old products. Chiu et al.
[5] analyzed an imperfect rework process for EPQ model
with repairable and scrapped items. Jamal et al. [6] advocated
the policy for rework of defective items in the same cycle
which was extended by Cárdenas-Barrón [7]. Widyadana
and Wee [8] gave an analysis of these problems using an
algebraic approach. Chiu [9] and Chiu et al. [10] discussed
EPQ model by allowing shortages and considering service
level constraint. Yoo et al. [11] discussed an EPQ model
with imperfect production quality, imperfect inspection, and
rework.

Meller and Kim [12], Sheu and Chen [13] and Tsou and
Chen [14] studied Variants of EPQ model with preventive

maintenance. Abboud et al. [15] analyzed an economic
order quantity model by considering machine unavailability
owing to preventive maintenance and shortage. Chung et al.
[16] extended the previous model to compute an economic
production quantity for deteriorating inventory model with
stochastic machine unavailable time and shortage. Wee and
Widyadana [17] revisited the previous model incorporating
rework.

In this paper, we analyze an economic production quan-
tity (EPQ) model with rework and random preventive main-
tenance time together when demand is increasing function of
time. The consideration of random preventive maintenance
time, rework, and trended demand in the model increases
its applicability in the electronic and automobile industries.
In this production system, produced items are inspected
immediately. Defective items are stocked and reworked at the
end of the production uptime. We will call these items as
recoverable items. Out of these recoverable items, the fraction
of the items will be labeled as “new” and rest will be scrapped.
Preventivemaintenance is performed at the end of the rework
process, and the maintenance time is assumed to be random.
When demand is increasing, shortages may occur which will
be treated as lost sales in this study. It is observed that the rate
of change of demand has significant impact on the optimal
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Table 1: Sensitivity analysis of 𝑇
1𝑎
and total cost when preventive maintenance time is uniformly and exponentially distributed.

Parameter Percentage change Uniform distribution Exponential distribution 𝜆 = 20
𝑇
1𝑎

𝑇𝐶𝑇 𝑇
1𝑎

𝑇𝐶𝑇

𝐴

−40% 0.1118836 2217.023407 0.165363168 3105.82179
−20% 0.1127598 2396.444313 0.168010377 3225.883231
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1145095 2751.208003 0.173362159 3460.599558
40% 0.1153831 2926.585673 0.176064945 3575.33395

𝑃

−40% 0.119 0.224 0.873011973 3769.650118
−20% 0.116 0.220356527 0.280588937 3224.896639
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.0784111 2671.944386 0.123903512 3421.121046
40% 0.0598742 2748.060997 0.09758743 3473.297234

𝑃
1

−40% 0.1252239 2840.779326 0.179184671 3667.154126
−20% 0.117738 2670.650277 0.17374104 3462.440106
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1110459 2512.591082 0.168712009 3266.965218
40% 0.1093473 2469.539689 0.167344624 3212.637461

a

−40% 0.0468611 2285.690117 0.081365729 2483.982152
−20% 0.0736194 2419.311543 0.118822843 2928.274545
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1801641 2784.239588 0.248801609 3743.389279
40% 0.313401 3147.605249 0.385620567 4166.830717

b

−40% 0.1133496 2572.975288 0.170020919 3336.335153
−20% 0.113492 2573.73768 0.170347969 3340.233353
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1137789 2575.262185 0.171008033 3348.022553
40% 0.1139235 2576.024314 0.1713411 3351.913594

𝑥

−40% 0.1075459 2440.729188 0.165578265 3180.040146
−20% 0.1105098 2506.778232 0.168074836 3261.520565
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1169347 2644.037111 0.173391457 3427.954424
40% 0.1204229 2715.549502 0.176225505 3513.094599

𝑥
1

−40% 0.1131507 2451.633648 0.170247776 3220.242525
−20% 0.1133924 2513.000758 0.170462207 3282.119979
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1138787 2636.131758 0.17089215 3406.270464
40% 0.1141232 2697.89656 0.171107662 3468.544359

ℎ

−40% 0.1163864 2035.802579 0.196138784 2497.162768
−20% 0.114993 2306.766649 0.18157314 2935.554059
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1123112 2839.068303 0.162020977 3729.597492
40% 0.11102 3100.535386 0.15486872 4096.262909

ℎ
1

−40% 0.113733 2555.165605 0.171388527 3315.223296
−20% 0.113684 2564.8349 0.171031253 3329.691775
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1135862 2584.160837 0.170325715 3358.53567
40% 0.1135373 2593.817484 0.169977356 3372.911591
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Table 1: Continued.

Parameter Percentage change Uniform distribution Exponential distribution 𝜆 = 20
𝑇
1𝑎

𝑇𝐶𝑇 𝑇
1𝑎

𝑇𝐶𝑇

𝑆

−40% 0.1119752 2570.475444 0.15263831 3147.25954
−20% 0.1129966 2572.958931 0.162618107 3255.743808
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1140719 2575.549497 0.1774544 3418.940914
40% 0.1143897 2576.310317 0.183312722 3483.929611

𝑆
𝑐

−40% 0.113643 2453.561123 0.170776446 3223.952673
−20% 0.113639 2514.030563 0.170726744 3284.041215
0 0.1136351 2574.499976 0.170676999 3344.12915

20% 0.1136311 2634.969362 0.17062721 3404.216467
40% 0.1136271 2695.438718 0.170577378 3464.303169

Time

T1a T2aT4rT3r

T1 T2

T3

T

Inventory level

Im

Figure 1: Inventory status of serviceable items with lost sales.

inventory cost. It is suggested that when demand is trended,
preventivemaintenance time should be controlled by recruit-
ing well-qualified technicians. The uniform distribution and
exponential distribution for preventive maintenance time are
explored.The paper is organized as follows: Section 2 is about
the mathematical development of the proposed problem. In
Section 3, example and sensitivity are given. Conclusions are
highlighted in Section 4.

2. Mathematical Model

Assumptions. (1) The inventory system under consideration
deals with single item. (2) Standard quality items must be
greater than the demand. (3) The production and rework
rates are constant. (4) The demand rate, 𝑅(𝑡) = 𝑎(1 + 𝑏𝑡), is
increasing function of time, where 𝑎 > 0 is scale demand and
0 < 𝑏 < 1 denotes the rate of change of demand. (5) Setup cost
for rework process is zero or negligible. (6) Recoverable items
are spawned during the production uptime, and scrapped
items are produced during the rework uptime.

The status of the serviceable inventory is depicted in
Figure 1. Production occurs during [0, 𝑇

1𝑎
]. In phase 𝑥

defective items per unit time are to be reworked. The rework
process starts at the end of the predetermined production
uptime. The rework time ends at 𝑇

3𝑟
time period. The

different production processes of the material and defective
items result in different product rates. During the rework,
some rejected and scrapped items will occur. LIFO policy
is assumed for the production system. So, serviceable items
during the rework uptime are utilized before the fresh items
from the production in uptime. The new production run is
started when the inventory level reaches zero at the end of
𝑇
2𝑎
time period. It may happen that the production may not

start at 𝑇
2𝑎
time period because unavailability of the machine

is randomly distributed with a probability density function
𝑓(𝑡). The nonavailability of machine may result in shortage
during 𝑇

3
time period. The production will resume after the

𝑇
3
time period.
From the above description, the inventory level in a

production uptime period is governed by the differential
equation

𝑑𝐼
1𝑎
(𝑡
1𝑎
)

𝑑𝑡
1𝑎

= 𝑃 − 𝑅 (𝑡
1𝑎
) − 𝑥, 0 ≤ 𝑡

1𝑎
≤ 𝑇
1𝑎
. (1)

The inventory level in a rework uptime is

𝑑𝐼
3𝑟
(𝑡
3𝑟
)

𝑑𝑡
3𝑟

= 𝑃
1
− 𝑅 (𝑡

3𝑟
) − 𝑥
1
, 0 ≤ 𝑡

3𝑟
≤ 𝑇
3𝑟
. (2)

The inventory level in a production downtime is

𝑑𝐼
2𝑎
(𝑡
2𝑎
)

𝑑𝑡
2𝑎

= −𝑅 (𝑡
1𝑎
) , 0 ≤ 𝑡

2𝑎
≤ 𝑇
2𝑎
. (3)

The inventory level in a rework downtime is

𝑑𝐼
4𝑟
(𝑡
4𝑟
)

𝑑𝑡
4𝑟

= −𝑅 (𝑡
4𝑟
) , 0 ≤ 𝑡

4𝑟
≤ 𝑇
4𝑟
. (4)
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Under the assumption of LIFO production system, the
inventory level of good items depletes at a constant rate
during rework uptime and downtime. The inventory level is
governed by

𝑑𝐼
3𝑎
(𝑡
3𝑎
)

𝑑𝑡
3𝑎

= 0, 0 ≤ 𝑡
3𝑎
≤ 𝑇
3𝑟
+ 𝑇
4𝑟
. (5)

Using 𝐼
1𝑎
(0) = 0, the solution of (1) is

𝐼
1𝑎
(𝑡
1𝑎
) = (𝑃 − 𝑎 − 𝑥) 𝑡

1𝑎
−
𝑎𝑏

2
𝑡
2

1𝑎
, 0 ≤ 𝑡

1𝑎
≤ 𝑇
1𝑎

(6)

which is the inventory level during [0, 𝑇
1𝑎
]. Hence, the total

inventory in a production uptime is

𝑇𝐼
1𝑎
= ∫

𝑇
1𝑎

0

𝐼
1𝑎
(𝑡
1𝑎
) 𝑑𝑡
1𝑎

= (𝑃 − 𝑎 − 𝑥)
𝑇
2

1𝑎

2
−
𝑎𝑏

6
𝑇
3

1𝑎
.

(7)

Using 𝐼
3𝑟
(0) = 0, 𝐼

4𝑟
(0) = 0, the total inventory of serviceable

items for the rework uptime and rework downtime is

𝑇𝐼
3𝑟
= (𝑃
1
− 𝑎 − 𝑥

1
)
𝑇
2

3𝑟

2
−
𝑎𝑏

6
𝑇
3

3𝑟
,

𝑇𝐼
4𝑟
= 𝑎[

𝑇
2

4𝑟

2
+
𝑏

3
𝑇
3

4𝑟
] ,

(8)

respectively.
Using 𝐼

2𝑎
(𝐼
2𝑎
) = 0, the total inventory level of a

production downtime is

𝑇𝐼
2𝑎
= 𝑎[

𝑇
2

2𝑎

2
+
𝑏

3
𝑇
3

2𝑎
] . (9)

The maximum inventory is

𝐼
𝑚
= 𝐼
1𝑎
(𝑇
1𝑎
) = (𝑃 − 𝑎 − 𝑥) 𝑇

1𝑎
−
𝑎𝑏

2
𝑇
2

1𝑎
(10)

and hence, the total inventory in a rework uptime is

𝑇𝐼
3𝑎
= 𝐼
𝑚
(𝑇
3𝑟
+ 𝑇
4𝑟
) . (11)

Now, let us analyze the inventory level of recoverable
items (Figure 2).

The inventory level of recoverable items in a production
uptime is governed by the differential equation

𝑑𝐼
𝑟1
(𝑡
𝑟1
)

𝑑𝑡
𝑟1

= 𝑥, 0 ≤ 𝑡
𝑟1
≤ 𝑇
1𝑎
. (12)

Since initially there are no recoverable items, that is, 𝐼
𝑟1
(0) =

0, the solution of (12) is

𝐼
𝑟1
(𝑡
𝑟1
) = 𝑥𝑡

𝑟1
, 0 ≤ 𝑡

𝑟1
≤ 𝑇
1𝑎
. (13)

x

Time

IMr

T1a T3r

Figure 2: Inventory status of recoverable items.

Hence, the total inventory of recoverable items in a produc-
tion uptime is

𝑇𝑇𝐼
𝑟1
=
𝑥𝑡
2

1𝑎

2

(14)

and the maximum recoverable inventory is

𝐼
𝑀𝑟
= 𝐼
𝑟1
(𝑇
1𝑎
) = 𝑥𝑇

1𝑎
. (15)

The inventory level of recoverable item in the rework uptime
is modeled as

𝑑𝐼
𝑟3
(𝑡
𝑟3
)

𝑑𝑡
𝑟3

= −𝑃
1
, 0 ≤ 𝑡

𝑟3
≤ 𝑇
3𝑟
. (16)

Using 𝐼
𝑟3
(𝑇
3𝑟
) = 0, the inventory level of recoverable item in

rework uptime is

𝐼
𝑟3
(𝑡
𝑟3
) = 𝑃
1
(𝑇
3𝑟
− 𝑡
𝑟3
) , 0 ≤ 𝑡

𝑟3
≤ 𝑇
3𝑟
. (17)

Hence, the total inventory of recoverable item in the rework
uptime is

𝑇𝑇𝐼
𝑟3
=
𝑃
1
𝑇
2

3𝑟

2
. (18)

The number of recoverable inventories is

𝐼
𝑀𝑟
= 𝐼
𝑟3
(0) = 𝑃

1
𝑇
3𝑟
. (19)

Hence,

𝑇
3𝑟
=
𝐼
𝑀𝑟

𝑃
1

. (20)

Substituting 𝐼
𝑀𝑟

from (15), we get

𝑇
3𝑟
=
𝑥𝑇
1𝑎

𝑃
1

. (21)

Hence, the total recoverable inventory is

𝐼
𝑤
= 𝑇𝑇𝐼

𝑟1
+ 𝑇𝑇𝐼

𝑟3
=
𝑥𝑇
2

1𝑎

2
(1 +

𝑥

𝑃
1

) . (22)
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The inventory level at the beginning of the production
downtime is equal to the inventory level at the end of the
production uptime; that is,

𝐼
1𝑎
(𝑇
1𝑎
) = 𝐼
2𝑎
(0) . (23)

Therefore,

𝑇
2𝑎
≈
1

𝑎
[(𝑃 − 𝑎 − 𝑥) 𝑇

1𝑎
−
𝑎𝑏

2
𝑇
2

1𝑎
] . (24)

When 𝑡
3𝑟
= 𝑇
3𝑟
and 𝑡
4𝑟
= 0, the inventory level for serviceable

item in rework process satisfies

(𝑃
1
− 𝑎 − 𝑥

1
) 𝑇
3𝑟
−
𝑎𝑏

2
𝑇
2

3𝑟
= 𝑎 [𝑇

4𝑟
−
𝑏

2
𝑇
2

4𝑟
] . (25)

Neglecting 𝑇2
4𝑟
(because 0 < 𝑇

4𝑟
< 1), we get

𝑇
4𝑟
≈
1

𝑎
(𝑃
1
− 𝑎 − 𝑥

1
)
𝑥

𝑃
1

𝑇
1𝑎
. (26)

The total production inventory cost is the sum of the
production set up cost, inventory cost of serviceable item,
inventory cost of recoverable item, and scrap cost:

𝑇𝐶 = 𝐴 + ℎ [𝑇𝐼
1𝑎
+ 𝑇𝐼
3𝑟
+ 𝑇𝐼
2𝑎
+ 𝑇𝐼
4𝑟
+ 𝑇𝐼
3𝑎
]

+ ℎ
1
𝐼
𝑤
+ 𝑆
𝐶
𝑥
1
𝑇
3𝑟

(27)

and the total cycle time is
𝑇 = 𝑇

1𝑎
+ 𝑇
3𝑟
+ 𝑇
2𝑎
+ 𝑇
4𝑟
. (28)

Hence, the total cost per unit time without lost sales is given
by

𝑇𝐶𝑇NL =
𝑇𝐶

𝑇
. (29)

The optimal production uptime for the EPQ system
without lost sales can be obtained by setting

𝑑𝑇𝐶𝑇NL (𝑇1𝑎)

𝑑𝑇
1𝑎

= 0. (30)

When unavailability time of a machine is longer than the
production downtime duration, lost sales will occur. So the
total inventory cost is

𝐸 (𝑇𝐶) = 𝐴 + ℎ [𝑇𝐼
1𝑎
+ 𝑇𝐼
3𝑟
+ 𝑇𝐼
2𝑎
+ 𝑇𝐼
4𝑟
+ 𝑇𝐼
3𝑎
]

+ ℎ
1
𝐼
𝑤
+ 𝑆
𝐶
𝑥
1
𝑇
3𝑟
+ 𝑆
𝐿

× ∫

∞

𝑡=𝑇
2𝑎
+𝑇
4𝑟

𝑅 (𝑡) (𝑡 − (𝑇
2𝑎
+ 𝑇
4𝑟
)) 𝑓 (𝑡) 𝑑𝑡

(31)

and the total cycle time for lost sales is

𝐸 (𝑇) = 𝑇
1𝑎
+ 𝑇
3𝑟
+ 𝑇
2𝑎
+ 𝑇
4𝑟

+ ∫

∞

𝑡=𝑇
2𝑎
+𝑇
4𝑟

(𝑡 − (𝑇
2𝑎
+ 𝑇
4𝑟
)) 𝑓 (𝑡) 𝑑𝑡.

(32)

Hence, the total cost per unit time for lost sales is

𝐸 (𝑇𝐶𝑇) =
𝐸 (𝑇𝐶)

𝐸 (𝑇)
. (33)

We discuss lost sales scenario for two distributions, namely
uniform distribution and exponential distribution.

2.1. UniformDistribution. Define the probability distribution
function 𝑓(𝑡), when the preventive maintenance time 𝑡 is
distributed uniformly as follows:

𝑓 (𝑡) =

{{

{{

{

1

𝜏
, 0 ≤ 𝑡 ≤ 𝜏

0, otherwise.
(34)

Substituting 𝑓(𝑡) in (33) gives the total cost per unit time for
uniform distribution as

𝑇𝐶𝑇
𝑈

= (𝐴 + ℎ [𝑇𝐼
1𝑎
+ 𝑇𝐼
3𝑟
+ 𝑇𝐼
2𝑎
+ 𝑇𝐼
4𝑟
+ 𝑇𝐼
3𝑎
] + ℎ
1
𝐼
𝑤

+ 𝑆
𝐶
𝑥
1
𝑇
3𝑟
+ 𝑆
𝐿
∫

𝜏

0

(
𝑎 (1 + 𝑏𝑡)

𝜏
) (𝑡 − (𝑇

2𝑎
+ 𝑇
4𝑟
)) 𝑑𝑡)

× (𝑇
1𝑎
+ 𝑇
3𝑟
+ 𝑇
2𝑎
+ 𝑇
4𝑟
+ (
1

𝜏
)

×∫

𝜏

𝑡=𝑇
2𝑎
+𝑇
4𝑟

(𝑡 − (𝑇
2𝑎
+ 𝑇
4𝑟
)) 𝑑𝑡)

−1

(35)

substituting all the time variables in (35) in terms of 𝑇
1𝑎
,

the objective function; 𝑇𝐶𝑇
𝑢
is a function of 𝑇

1𝑎
only. The

optimum value of 𝑇
1𝑎
can be computed by setting

𝑑𝑇𝐶𝑇
𝑈
(𝑇
1𝑎
)

𝑑𝑇
1𝑎

= 0. (36)

To derive the best solution from nonlost sales and lost sales
scenarios, we propose the following steps [17].

Step 1. Calculate (30), (24), and (26) and set 𝑇sb = 𝑇2𝑎 + 𝑇4𝑟.

Step 2. If 𝑇sb < 𝜏, then the obtained solution is not feasible,
and go to Step 3; otherwise the solution is obtained.

Step 3. Set 𝑇sb = 𝜏. Find 𝑇1aub using (26) and (24). Calculate
𝑇𝐶𝑇NL(𝑇1aub) using (29).

Step 4. Calculate (36), (24), and (26) and set 𝑇sb = 𝑇2𝑎 + 𝑇4𝑟.

Step 5. If 𝑇sb ≥ 𝜏, then 𝑇∗1𝑎 = 𝑇1aub and the corresponding
total cost is 𝑇𝐶𝑇NL(𝑇1aub); otherwise, calculate 𝑇𝐶𝑇𝑈(𝑇1𝑎).

Step 6. If 𝑇𝐶𝑇NL(𝑇1aub) ≤ 𝑇𝐶𝑇𝑈(𝑇1𝑎), then 𝑇∗1𝑎 = 𝑇1aub:
otherwise 𝑇∗

1𝑎
= 𝑇
1𝑎
.

2.2. Exponential Distribution. Define the probability distri-
bution function 𝑓(𝑡), when the preventive maintenance time
𝑡 is distributed exponential with mean 1/𝜆 as

𝑓 (𝑡) = 𝜆𝑒
−𝜆𝑡
, 𝜆 > 0. (37)
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Figure 3: Convexity of total cost.
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Figure 4: Sensitivity analysis of production uptime for uniform
distribution.

Here, the total cost per unit time for the lost sale 𝑆
𝐿
is

𝑇𝐶𝑇
𝐸
= (𝐴 + ℎ [𝑇𝐼

1𝑎
+ 𝑇𝐼
3𝑟
+ 𝑇𝐼
2𝑎
+ 𝑇𝐼
4𝑟
+ 𝑇𝐼
3𝑎
]

+ ℎ
1
𝐼
𝑤
+ 𝑆
𝐶
𝑥
1
𝑇
3𝑟

+𝑆
𝐿
∫

∞

𝑡=𝑇
2𝑎
+𝑇
4𝑟

𝑅 (𝑡) (𝑡 − (𝑇
2𝑎
+ 𝑇
4𝑟
)) 𝜆𝑒
−𝜆𝑡
𝑑𝑡)

× (𝑇
1𝑎
+ 𝑇
3𝑟
+ 𝑇
2𝑎
+ 𝑇
4𝑟
+ (
1

𝜆
) 𝑒
−𝜆(𝑇
2𝑎
+𝑇
4𝑟
)
)

−1

.

(38)
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Figure 5: Sensitivity analysis of total cost for uniform distribution.
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Figure 6: Sensitivity analysis of production uptime for exponential
distribution.

Arguing as in (Section 2.1), we can obtain optimum total
cost. The high nonlinearity of the cost functions (29), (35),
and (38) does not guarantee that the optimal solution is
global. However, using parametric values, convexity of the
objective function is established.

3. Numerical Examples and
Sensitivity Analysis

Consider, following parametric values to study the working
of the proposed problem. Let𝐴 = $200 per production cycle,
𝑃 = 10,000 units per unit time, 𝑎 = 5000 units per unit
time, 𝑏 = 10%, 𝑥 = 500 units per unit time; 𝑥

1
= 400

units per unit time, ℎ = $5 per unit per unit time. ℎ
1
=
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Figure 7: Sensitivity analysis of total cost for exponential distribu-
tion.

$3 per unit per unit time, 𝑆
𝐿
= $10 per unit, 𝑆

𝐶
= $12

per unit, and the preventive maintenance time is uniformly
distributed over the interval [0, 0.1] [17]. Using the solution
procedure outlined, the optimal production uptime is 𝑇

1𝑎
=

41.5 days and the correspondingminimum total cost per unit
time is 𝑇𝐶𝑇

𝑈
= $2575. This establishes that some lost sales

reduce the total cost per unit time. The convexity of 𝑇𝐶𝑇
𝑈
is

established in Figure 3.
The sensitivity analysis is carried out by changing each

of the parameters by −40%, −20%, +20%, and +40%. The
optimal production uptime 𝑇

1𝑎
and the optimal total cost per

unit time for inventory parameters under consideration are
shown in Table 1.

Figures 4 and 6 depict sensitivity analysis of production
uptime, 𝑇

1𝑎
, with respect to all the inventory parameters

considered in the modeling when preventive maintenance
time follows uniform distribution/exponential distribution.
It is observed that production uptime is slightly sensitive to
changes in 𝑃 and 𝑎 and moderately sensitive to changes in 𝑏
and 𝜏, with little impact due to changes in the other inventory
parameters. 𝑇

1𝑎
has negative impact with the increase in the

production rate, 𝑃, and positive impact when scale demand,
𝑎, and rate of demand, 𝑏, increase.

The optimal total cost per unit time is slightly sensitive
to changes in 𝑎, 𝑃, 𝑥, and 𝐿 and moderately sensitive to
changes in𝐴, 𝑏, 𝜏, 𝑆

𝐶
, 𝑥
1
, and S

𝐿
. No change is observed in the

optimal total cost per unit time for the remaining inventory
parameters. The optimal total cost per unit time is inversely
related to 𝑃 and 𝑃

1
and directly related to other inventory

parameters (see Figures 5 and 7).

4. Conclusions

In this research, rework of imperfect quality and random
preventive maintenance time are incorporated in economic

production quantity model when demand increases with
time.The randompreventivemaintenance time is distributed
uniformly and exponentially.Themodels are validated by the
example. The sensitivity analysis suggests that the optimal
total cost per unit time is sensitive to changes in the
production rate, the demand rate, and the product defect
rate in both the uniform and the exponential distributed
preventive maintenance time. To combat increasing demand,
the management should adopt the latest machinery which
decreases defective production rate, reducing rework, and
as a consequence, the machine’s production uptime can be
utilized to its utmost. Further research can be carried out to
study the effect of deterioration of units.

Notations

𝐼
1𝑎
: Serviceable inventory level in a production

uptime
𝐼
2𝑎
: Serviceable inventory level in a production

downtime
𝐼
3𝑎
: Serviceable inventory level in a rework

uptime
𝐼
3𝑟
: Serviceable inventory level from rework

uptime
𝐼
4𝑟
: Serviceable inventory level from rework

process in rework downtime
𝐼
𝑟1
: Recoverable inventory level in a production

uptime
𝐼
𝑟3
: Recoverable inventory level in a rework

uptime
𝑇𝐼
1𝑎
: Total serviceable inventory in a production

uptime
𝑇𝐼
2𝑎
: Total serviceable inventory in a production

downtime
𝑇𝐼
3𝑎
: Total serviceable inventory in a rework

uptime
𝑇𝐼
3𝑟
: Total serviceable inventory from a rework

uptime
𝑇𝐼
4𝑟
: Total serviceable inventory from rework

process in a rework downtime
𝑇𝑇𝐼
𝑟1
: Total recoverable inventory level in a
production uptime

𝑇𝑇𝐼
𝑟3
: Total recoverable inventory level in a rework
uptime

𝑇
1𝑎
: Production uptime

𝑇
2𝑎
: Production downtime

𝑇
3𝑟
: Rework uptime

𝑇
4𝑟
: Rework downtime

𝑇sb: Total production downtime
𝑇
1aub: Production uptime when the total

production downtime is equal to the upper
bound of uniform distribution parameter

𝐼
𝑚
: Inventory level of serviceable items at the

end of production uptime
𝐼
𝑀𝑟

: Maximum inventory level of recoverable
items in a production uptime

𝐼
𝑤
: Total recoverable inventory
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𝑃: Production rate
𝑃
1
: Rework process rate

𝑅 = 𝑅(𝑡): Demand rate; 𝑎(1+𝑏𝑡), 𝑎 > 0, 0 < 𝑏 < 1
𝑥: Product defect rate
𝑥
1
: Product scrap rate

𝐴: Production setup cost
ℎ: Serviceable items holding cost
ℎ
1
: Recoverable items holding cost

𝑆
𝐶
: Scrap cost

𝑆
𝐿
: Lost sales cost

𝑇𝐶: Total inventory cost
𝑇: Cycle time
𝑇𝐶𝑇: Total inventory cost per unit time for

lost sales model
𝑇𝐶𝑇NL: Total inventory cost per unit time for

without lost sales model
𝑇𝐶𝑇
𝑈
: Total inventory cost per unit time

for lost sales model with uniform dis-
tribution preventive maintenance time

𝑇𝐶𝑇
𝐸
: Total inventory cost per unit time for

lost sales model with exponential dis-
tribution preventive maintenance time.
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