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This study presents an approach for low-cost mapping of tree heights at the landscape level. The proposed method integrates
parameters related to landscape (slope, orientation, and topographic height), tree size (crown diameter), and competition (crown
competition factor and age), and determines the mean stand tree height as a function of tree competitive capability. The model was
calibrated and validated against a standard inventory dataset collected over a dryland planted forest in the eastern Mediterranean
region. The validation of the model shows a high and significant level of correlation between measured and modeled datasets
(R* = 0.86; P < 0.01), with almost negligible (less than 1m) levels of absolute and relative errors. The validated model was
implemented for mapping mean tree height on a per-pixel basis by using high-spatial-resolution satellite imagery. The resulting
map was, in turn, validated against an independent dataset of ground measurements. The presented approach could help to reduce
the need for fieldwork in compiling single-tree-based inventories and to apply surface-roughness properties to hydrometeorological

studies and regional energy/water-balance evaluation.

1. Introduction

Tree height is considered to be a useful structural variable
in estimating wood volumes, biomass, carbon stocks, and
productivity of forest stands. It also determines the light
penetration into the forest canopy and is of importance for
certain habitat studies. In addition, tree height plays an essen-
tial role in micrometeorological research and global climate
modeling by determining forest aerodynamic roughness (i.e.,
zero-plane displacement and roughness length) and affecting
the transport of energy and substances between the land
surface and the atmosphere boundary layer [1]. Therefore,
the computation and mapping of tree-height distribution in
a widespread area becomes a key step in characterizing the
land-surface physical processes.

Although the relationship between vegetation structure
and surface reflectance obtained from satellite observation
has been a focus of a great deal of research, the evaluation

of mean tree height is still one of the main challenges
for remote sensing applications. The most frequently used
remote sensing techniques that are relevant to evaluation of
tree height are (1) automated photogrammetry (e.g., [2]); (2)
airborne ranging radar (e.g., [3]); and (3) laser altimetry (e.g.,
[4-6]). Since these methods are mainly based on airborne
platforms, the data collected by them is naturally of high
resolution, and usually enables observation of an individual
tree within a stand. Though such data are accurate and
therefore attractive for use, they are still very expensive to
obtain. Thus, for operational use and for covering relatively
large territories, it is more convenient to use low-cost high-
frequency observations at lower spatial resolution, such as
those obtained from passive optical systems (e.g., [7, 8]).
However, the imagery obtained by such sensors presents
significant limitations for forestry applications, because not
every forest parameter has its own unique spectral response.
Thus, for large-area studies, the spectral vegetation index



approach, that is, a single value generated by combining data
from multiple spectral bands, seems to be more appropriate.

The most basic spatial variable of the land surface that can
be simply extracted from optical remote sensing data is the
canopy cover (CC). From the ecological point of view, CC is
an important parameter of a forest ecosystem for it is related
to species richness and wildlife habitat and behavior (e.g.,
[9]); also, it is significant in studies of natural-hazard dynam-
ics and understory vegetation productivity [10]. Technically,
it can be assessed either by linear normalization of spectral
vegetation indices [11, 12] or by supervised or unsupervised
classification of multispectral imagery [13]. Both procedures
are relatively simple and easily applied by users with varied
levels of training. Furthermore, correlation of CC with other
stand parameters could be straightforward, according to
allometric relationships. It should be remembered, however,
that, theoretically, the same level of CC could be found in
dense stands of small trees and sparse stands of tall trees.
Although in practice such similarity is unlikely to be found,
the possibility highlights that CC could not be taken either as
a unique or as a “stand-alone” predictor of mean tree height
in the stand, and more robust combination of variables is
required. Nevertheless, we assumed that stand-level canopy
cover, as deduced from multispectral remote sensing imagery,
can be used as a proxy for those variables, and our objective
was to test this assumption in order to map mean tree height
distribution on the landscape scale.

Although the majority of remote sensing applications
for forestry cover a wide variety of ecoregions (e.g., [14]),
the implementation of such techniques in predominantly
water-limited ecosystems has rarely been reported being a
subject only of some recent developments (e.g., [15-17]).
However, such ecosystems occupy a significant part of the
Earth’s surface and are continually afforested. Because of
the particular environmental problems common in such
environments (e.g., low rainfall concentrated in short periods
during the year, poor and shallow soils, high temperatures,
and low relative humidity) and the relatively simple vege-
tation structure associated with these problems, landscape-
level modeling is necessary to predict and optimize the
benefits dryland forestry can contribute to ecosystem sus-
tainability. Therefore, the development of applications that
can be easily implemented in drylands is important from
both ecological and silvicultural points of view. All in all,
the major justification and motivation for our present study
is specifically addressing the applicability of remote sensing
in studying the structure of dryland planted forest that can
be deemed as being typical of large tracts of afforested
lands of the eastern Mediterranean. This assumes that little
information is available and that little testing has been done
until now.

The presented approach is based on a standard inventory
dataset that was divided into calibration and validation data
subsets. The former was used for choosing independent
variables and calculating required coeflicients; the latter
was used for model validation. The validated model was
then implemented for mapping mean tree height on a per-
pixel basis, by means of multispectral high-spatial-resolution
satellite imagery. The resulting map was, in turn, validated
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against an independent dataset of ground-based measure-
ments.

This paper is structured as follows: first, the modeling
approach is presented, then the validation data subset is
analyzed, and finally, mean tree height distribution is mapped
and validated within a specific studied area.

2. Theoretical Model

Although, the height to which trees can grow is still poorly
understood, it is a common assumption that it is primarily
limited by hydraulic factors, that is, by the tree’s ability to
transport water from roots to top. Consequently, Koch et al.
[18] stated the following: “trees grow tall where resources
are abundant, stresses are minor, and competition for light
places a premium on height growth” Therefore, in water-
limited environments mean tree height can be presented as a
function of a tree’s competitive abilities. These abilities reflect
the interaction of any tree in a specific stand with other
surrounding individuals (e.g., [19]) and to some extent are
determined by landscape characteristics. The latter determine
the water redistribution within a specific area and control the
interception of incoming solar radiation.

Accordingly, we present mean tree height (H,) as a
variable related to competition (COMP) and landscape (i.e.,
site) factors (SITE):

H, =a+ (b x COMP) + (c x SITE), 1)

where COMP reflects characteristics of an individual tree and
its behavior within a specific stand, SITE is related to specific
plot elevation and orientation, and a, b, and c are regression
coeflicients.

Although the relationship between those factors is not
necessarily linear, that is, of the form of (1), the lack of
attention to this problem in the current literature allows us to
test the applicability of this simplified intuitive approximation
to exploration of the relationship between H, and other
stand variables. Moreover, many existing approaches that
examine the dependency of any target stand characteristic
on the combined effect of ecophysiological factors use linear
relationships (e.g., [20, 21]) which support the assumption
that (1) can serve as a reasonable approximation for H,.

Since our major concern was the ability to evaluate H, on
the landscape level, in order to solve (1) we included in the
final formulation only variables that were accessible—directly
or indirectly—via remote sensing imagery or from existing
databases. Those variables were carefully selected from the
calibration data subset that initially included the entire set of
inventory measures: age, diameter at breast height, tree and
plot basal area, crown width, soil depth, and number of trees
per plot (TPP).

Competition (COMP) has been defined as a parameter
that depends on the maturity of a particular stand and
involves the within-stand interaction between individuals.
To characterize such relationships, we considered the crown
competition factor (CCF; [22]) and stand age as independent
predictors of “COMP”

The advantage of using CCF, which represents the area
available to the average tree in the stand in relation to the
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TaBLE 1: Comparative statistics for calibration and validation data subsets.

Parameter Calibration subset Validation subset

Range Average STD Range Average STD
H, (m) 5-10 8 1 4-11 9 2
DBH (m) 0.12-0.2 0.16 0.02 0.10-0.19 0.16 0.03
CW (m) 3-5 4 1 3-5 4 1
CC (%) 25-91 56 20 28-90 56 19
TPP 6-10 7 1 7-10 8 2
Age (years) 32-37 35 1.5 30-38 35 2.3

H, represents mean tree height; DBH: diameter at breast height; CW: crown width; CC: canopy cover, TPP number of trees per plot, and STD: standard

deviation.

maximum area it could use if it existed in isolation [23], is
that it is generally independent of site and age. A logarithmic
transformation of CCF was used to reduce the effect of
sampling variation in large estimates of CCF [20].

There are very few published studies of the impact of
stand age and competition on simple measures of tree size.
However, the age-related decline in productivity and biomass
development of forests after canopy closure is well known and
well documented (e.g., [24-28]). Therefore, we assume that
the reason for such a decline is age-related decrease in tree
competitive abilities, in which case, one would expect that any
combined effect of age and CCF (that implies the influence of
CC) would be representative as a measure of competition:

bx COMP = b, + [b, x In (CCF)] + [b; x Age].  (2)

The “SITE” factors are plot-specific variables that charac-
terize the topography and the orientation of a plot. They were
computed after Hasenauer and Monserud [20] as

d x SITE = [d, x ELEV] + [d, x ELEV?] + [d; x SL]

+[d, x SL]* + [ds x SL x sin (AS)] 3)

+ [dg x SL x cos (AS)],

where ELEV is the elevation of the site (1), SL is the slope (°),
and AS is the aspect (i.e., the direction in which a slope faces)
that were calculated from the digital terrain model (DTM;
[29]).

3. Materials and Methods

3.1. Study Area. The study was conducted in the Yatir forest
(31°35' N and 35°05' E, 630 m AMSL; area ~3000 ha) located
in a transitional area between arid and semiarid climatic
zones in southern Israel. The long-term average annual
precipitation is ~285 mm, and the average total annual poten-
tial evapotranspiration is 1600 mm. The forest comprises
predominantly of Pinus halepensis Mill. trees, mostly planted
during 1964-1974. Average tree density is ~320 + 75 trees ha™'
[17], mean tree height (H,) ~9+2m, diameter at breast
height (DBH) ~17 + 4 cm, canopy cover (CC) ~53% +15%,
and effective leaf area index (LAI) ~1.7 [30]. The trees grow
on shallow Rendzina and lithosol soils, 0.2-1.5m in depth

that overlay chalks and limestone. The understory vegetation
develops during the rainy season and disappears shortly
thereafter [31]. The specific study area (SSA) was set to 1km?
at the central most mature part of the forest, which was
planted in the late 1960 s.

3.2. Sampling Design, Measurements, and Calculations. The
Israeli Forest Service provided the inventory dataset. The
data collection followed the traditional line-plot cruising
approach, with circular plot shape [23]. Ninety-seven plots,
each of 200 m?, were established throughout the studied
forest by using a forest map overlaid with the network of
250 m* quadrates. Training plots were located at the upper
right-hand corner of every second quadrate. On each tree
located within each training plot, we measured (a) DBH
(measured with a caliper 1.37 m above the ground); (b) crown
width (CW; measured with a measuring tape as the average of
four different diameters of the canopy extension as observed
from below); and (¢) H, (measured with a clinometer). Plot
basal area was calculated from DBH measurements. The tree
canopy was assumed to be circular, and CW that represented
an equivalent canopy diameter was used to compute the
crown area (CA). Canopy cover (CC) was calculated as the
ratio of the sum of the crown area of all trees within a plot to
the area of the plot, as adjusted for canopy overlap, according
to Crookstone and Stage [32].

The entire set of 97 plots was then arbitrarily separated
into calibration and validation subsets, comprising, respec-
tively, 73 and 24 plots, that is, ~75% and ~25%, respectively,
of all the plots. Both subsets were chosen with the aid of a
random number generator [33, 34]. Comparative statistics
for both subsets are presented in Table 1. Each subset has
been classified into 5% CC classes. The mean value of each
measured and calculated variable was estimated per CC
class.

In addition, an independent dataset of measurements was
collected over the six 1000 m? plots chosen within a specific
research site of about 1km”. The exact spatial location and
the perimeter of each plot were determined with a GPS
(GPS) receiver with an accuracy of +2m. The results were
then converted into a GIS polygon vector layer by using the
Maplnfo Professional software, Version 7.0. This additional
dataset was used to validate a map of mean tree height
prepared by using multispectral satellite imagery.



3.3. Multicollinearity Test. As we stated above, CCF is an
age-independent parameter. However, some degree of mul-
ticollinearity between age and CCF still might be expected,
because the studied forest is subject to intensive management
practice that aims to reduce tree density as age increases,
to provide optimal growing conditions for the remaining
trees. Although there is no statistical test that can deter-
mine whether or not multicollinearity is a problem [35], its
extent can be detected via the variance inflation factor (VIF;
[36]) which measures the impact of multicollinearity among
the predictors on the precision of estimation. The VIF is
computed as (1/(1 — R?)) for each independent variable. A
general rule is that VIF higher than 10 indicates problems
with multicollinearity [37, 38], that is, that the correlation
between certain predictor variables is so large that they do
not provide adequately independent information for reliable
predictions.

3.4. Satellite Data Acquisition and Processing. A multispectral
IKONOS image obtained on March 21, 2004 under cloud-
free sky conditions was used. IKONOS has four spectral
bands in the blue (0.45-0.52 ym), green (0.51-0.60 ym), red
(0.63-0.70 ym), and near-infrared (0.76-0.85 um) regions.
An IKONOS image covers a nominal area of 16 km x 16 km
at nadir with a spatial resolution of 4 m in all multispectral
bands. The image was radiometrically and atmospherically
corrected according to supplier’s instructions (http://www
.geoeye.com/products/imagery/ikonos/spectralhtm)  and
the 6S radiative transfer model [39] and registered into the
UTM projection by using 20 ground control points (GCPs)
obtained in the field with the dGPS receiver, resulting in
average rectification errors of 0.7 and 0.85 pixels for the X
and Y planes, respectively. The SSA was then extracted from
the entire image with the ERDAS Imagine software.

The degree of canopy cover for an independent six-plot
dataset has been described in terms of fractional vegetation
cover (FVC). For that we used a simplified two-end member
spectral mixture analysis model comprising a single equation
that presents a surface reflectance measured by a satellite
as the weighted sum of canopy and background reflectance
terms [11, 30]. These two terms are further represented by
minimum (min) and maximum (max) values of the normal-
ized difference vegetation index (NDVI), obtained from in-
situ reflectance measurements carried with a LICOR LI-1800
high-spectral-resolution field spectroradiometer, operating
in the range 400-1100 nm with spectral resolution of 2nm,
yielding

NDVI - NDVI_. .~ %%
) . (4)

FVC = <
NDVI,_ . — NDVI

max min

The FVC was then compared with the CC, as calculated from
field measurements.

4. Results

4.1. Variance Inflation Factor and Multicollinearity. The sta-
tistical analysis did not support the expectation of multi-
collinearity between age and In(CCF) measures; it yielded a
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FIGURE 1: A comparison between measured and modeled mean tree
height over the validation data subset.

VIF value of 1.15. In addition, the direct comparison between
the two variables, which resulted in a very weak and insignif-
icant linear correlation (R* = 0.13; P = 0.28), also served as a
supplementary proof for the lack of multicollinearity between
parameters used to represent competition.

4.2. Model Parameters and Comparisons with Measured
Results. Both components of (1) had statistically significant
predictive capability with almost equal positive magnitude of
multipliers (slope = 0.8, P < 0.01 and slope = 0.6, P < 0.05
for COMP and SITE, resp.) showing that the variation of
H, was sufficiently explained by either measure. The overall
regression’s P value was 0.001, with R* = 0.84 and no
recognized multicollinearity (VIF = 1.25). We suggest that the
inclusion of the “age” parameter as one of the independent
predictors (significant at P < 0.004 level as compared with
P = 0.4 for In(CCF)) could be speculated to be a reason for
the higher significance of a COMP variable. In addition to
the ecological meaning of such inclusion, in planted stands
it provides a good explanation for the within-stand variation
in tree sizes, because it is tightly related to stand density
manipulations.

Figure 1 compares measured with predicted values of
mean tree height for 12 CC classes over the validation
dataset. It reveals high and significant correlation between
the two (R*> = 0.86; P < 0.01). Table 2 shows that both
sets resulted in an identical average (H, = 9m) with a
small standard deviation (STD) that was ~11% higher for
the measured than for the predicted dataset (1.9 and 1.7 m,
resp.), which highlights the higher intrinsic variability of the
former.

Here it must be noted that though the effect of In(CCF)
was not statistically significant for the model represented
by (2), excluding it from the calculation did not change
the correlation level depicted in Figure 1, nor the resulting
statistics (see below) in the specific case. Nevertheless, we
decided to include it in the final model, as it is the only
parameter that takes into account the “social status” of trees
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TABLE 2: Comparison between measured and predicted values of mean tree height for twelve CC classes (each class represents an average
of two plots) over the validation dataset. Each class contains two cases. Relative and absolute errors were calculated as RE = (|measured —

modeled|)/measure and AE = |measured — modeled|, respectively.

CC class COMP SITE Measured height (m) Modeled height (m) Relative Error Absolute error (m)
<30 8.44 6.35 6.6 71 0.07 0.4
30-35 9.43 9.79 10.5 9.9 0.05 0.6
35-40 5.71 6.67 4.4 5.0 0.14 0.6
40-45 9.74 7.25 9.3 8.6 0.08 0.7
45-50 7.37 8.98 7.6 7.7 0.02 0.1
50-55 9.38 10.30 8.8 10.1 0.15 1.3
55-60 10.04 10.55 11.0 10.7 0.02 0.3
60-65 11.04 9.52 11.1 10.9 0.02 0.2
65-70 10.01 9.31 8.9 9.9 0.11 1.0
70-75 7.22 9.17 8.8 7.6 0.13 1.1
75-80 9.32 10.07 10.3 9.8 0.05 0.5
>80 9.96 7.89 8.7 9.0 0.03 0.3
AVG 8.97 8.82 8.8 8.8 0.07 0.59
STD 1.53 1.43 1.9 1.8 0.05 0.39
R? 0.2 0.86

P value 0.15 <0.01

VIF 1.25

TaBLE 3: Comparison between measured and predicted values of
mean tree height.

Plot Measured Predicted Absolute
height (m) height (m) error (m)

1 8.8 9.1 0.3

2 7.4 8.1 0.7

3 8.5 9.1 0.6

4 8.0 8.3 0.3

5 7.7 8.2 0.5

6 9.1 9.1 0

AVG 8.3 8.7 0.4

STD 0.66 0.50 0.25

R? 0.88

Slope 0.71

Offset 2.83

P value <0.01

within the plot, and including it seemed important from the
silvicultural point of view.

Further analysis of the data is presented in Table 3. It
highlights that for more than 75% of the classes the absolute
error (AE = |measured — modeled|) was less than or equal
to 1 m, whereas a higher deviation from the measured data
was registered for the remaining 25% of the classes (i.e., two
cases). Both groups, however, remained within the bound-
aries of the standard error for photogrammetric interpreta-
tion of aerial photography used by the Survey of Israel (i.e.,
2m, L. Sosnitsky, personal communication). The average AE
was 0.6 m and was considered to be negligible. The average

relative error (RE = |measured — modeled|/measured) was
7% + 5%; it was smaller than 10% for 66.67% of classes and
never exceeded 15%. Hence, based on a combination of high
correlation coefficient (Figure 1) and the above statistics we
deduced that the overall accuracy of the model could be
considered adequate, demonstrating the validity of the linear
approximation (1).

In light of the results presented in Table 2, the proposed
model (1) was implemented for mapping mean tree height
over the SSA on a per-pixel basis, as based on a multispectral
satellite image. All variables required for the SITE term were
assessed at 20 m spatial resolution DTM [29]. A 4 m spatial
resolution IKONOS image was then aggregated to 20m
resolution, to make it comparable with DTM.

The FVC was calculated according to (4) with values of
0.13 and 0.75 used for NDVI_; and NDVI, .., respectively
[30]. This resulted in a map of the spatial distribution of FVC
that ranged from 40% to 70% over the study area within the
entire image, and averaged 51.5% + 4% for the six training
plots. This value corresponds to an average CC calculated
from measured crown width of 50% + 11%, with an average
absolute error less than 10% + 6%. The FVC was then used
to calculate the CCF as discussed in details by Sprintsin et al.
[17] and, consequently, the COMP term.

Figure 2 is a map of spatial distribution of mean tree
height over 1 km”. This map was then overlain with the vector
layer of six 1000 m? plots. The mean H, value for each plot
was extracted with a Zonal Statistics procedure of the ERDAS
Imagine software and then compared with ground-based
measurements. Those comparisons, presented in Table 3,
show high and significant linear correlation between the
calculated and measured values (R* = 0.88; slope = 0.71;
P < 0.01) indicating freedom from systematic error in
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FIGURE 2: Spatial distribution of mean tree height over the specific study area. Note the location of training plots used in validation of the

map accuracy (gray squares).

the calculations. It also shows that both sets were very
comparable with regard to mean values (8.3 and 8.7m for
measured and modeled sets, resp.) and on a plot-to-plot basis,
with an absolute error that never exceeded 0.7 m and had an
average of 0.4 m, which was considered as negligible.

4.3. Practical Implementation of the Proposed Methodology.
As was mentioned earlier in this paper (Section 1), accurate
approximation of the mean tree height could benefit hydrom-
eteorological studies for which detailed description of canopy
structure is required in estimation of surface aerodynamic
roughness properties and consequent assessment of water
and energy balances. To test the accuracy of the proposed
methodology, the measured and the calculated values of H,
for each CC class of the validation data subset (see Table 2)
were used as an input for surface aerodynamic resistance (r,)
calculations [40]:

. In((z - d)/z,)

¢ Ku '
in which z is the height of meteorological measurements
(15m for Yatir); d. is the zero-plane displacement (m); z, is
the roughness length (m), u is the wind speed (m s1), and k
is von Karman’s constant (k = 0.41). d, and z,, were taken as
a fraction of tree height (d, = 0.78H, and z, = 0.075H, after
[41] for conifers). Wind speed was taken to be constant (u =
2.7ms '), approximated from the tower-top (18 m height)
measurements that were averaged for daylight hours over six
consecutive years (2000-2006).

©)

30 >
y=081x+247 e
R?>=10.89 -

7, (s/m) with modeled mean tree height

5 T T T T
5 10 15 20 25 30

7, (s/m) with measured mean tree height

FIGURE 3: Comparison between aerodynamic resistance (r,) calcu-
lated from field-measured values of mean tree height (H,) and that
calculated from mean tree height as estimated with the presented
model (1)-(3).

Figure 3 compares resistance calculated from field-
measured values of H,(r, ...,;) with that based on estimated
Hy(7, moa )- A comparison between the two sets revealed
almost equal values (r, .4 =14.4£5.25 m; ¥omeas = 142 £
4.5sm™") and low relative error, averaging 10% + 1%. The
respective sets were highly correlated (R* = 0.89) and not
significantly different from one another.
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5. Discussion and Conclusions

One of the challenges currently faced by foresters is how
to assess the spatial extent of standard forest characteristics.
Remote-sensing methods, with their ability to cover large
areas while entailing moderate costs, seem to offer a good
answer to this challenge. Thus, it is important to be able to
relate surface phenomena to spectral characteristics. How-
ever, as we mentioned above (Section 1), not every forest
parameter has its own unique spectral response. For this
reason, determining an optimal compromise between min-
imization of inputs and lowering spatial resolution should be
a major task of remote sensing applications, and this was a
major aim of the present study. This objective was achieved by
adopting stand-level mean canopy cover—the only parameter
that can be simply extracted from multispectral optical
remote sensing imagery—as a proxy for other forest struc-
tural characteristics. Our approach determines the mean tree
height of a forest stand by using a combination of landscape,
stand, and canopy characteristics. Such a combination reflects
the interactions among the varied factors that are responsible
for tree growth and precisely describes the “social position”
of an individual tree within a particular stand. Accurate
estimation of the height of a vegetation layer, in turn, leads
to a better determination of surface aerodynamic roughness
properties and their spatial distribution, which could be
easily and accurately derived from multispectral observa-
tions. These outputs can contribute to hydrometeorological
studies and evaluation of the regional water and energy
balance.

We should note, however, that the main challenge that
one could face in applying the presented methodology in
environments other than drylands is the proper estimation
of CC from multispectral imagery. The main reason for
this difficulty is the signal generated by understory vege-
tation (which is generally negligible in semiarid and arid
regions) that could seriously contaminate the reflectance of
a single pixel. In such cases, the number of end members
of spectral mixture analysis model will be increased and
an appropriate unmixing technique will be required [42].
Nevertheless, although it is technically possible to measure
the crown projection area on remote sensing imagery, the
actual maximum crown width cannot always be defined
(even on aerial photographs) because of neighboring trees
and overlapping crowns [43]. One important issue, therefore,
is to examine the difficulties encountered in applying the
proposed method in more complex terrain, mixed forests
and milder climates that are characterized by more complex
structures of vegetation layer.

The results presented here, however, indicate that the
proposed combination of landscape and canopy character-
istics can be exploited for mean tree height assessment
on the regional scale in simply structured environments.
The model presented here serves the need to estimate tree
characteristics from their canopy extent; it helps to satisfy the
requirement to reduce the need for fieldwork in single-tree-
based forest inventories and to fill the knowledge gap caused
by underrepresentation of the available applications in the
current forestry literature.
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