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We present a nonmonotone trust region algorithm for nonlinear equality constrained optimization problems. In our algorithm,
we use the average of the successive penalty function values to rectify the ratio of predicted reduction and the actual reduction.
Compared with the existing nonmonotone trust region methods, our method is independent of the nonmonotone parameter. We
establish the global convergence of the proposed algorithm and give the numerical tests to show the efficiency of the algorithm.

1. Introduction

In this paper, we consider the equality constrained optimiza-
tion problem as follows:

min 𝑓 (𝑥) ,

s.t. 𝑐 (𝑥) = 0,
(1)

where 𝑓(𝑥) : 𝑅𝑛 → 𝑅, 𝑐(𝑥) = (𝑐
1
(𝑥), 𝑐
2
(𝑥), . . . , 𝑐

𝑚
(𝑥))𝑇,

𝑐
𝑖
(𝑥) : 𝑅𝑛 → 𝑅𝑚, (𝑖 = 1, 2, . . . , 𝑚), and (𝑚 ≤ 𝑛) are assumed

to be twice continuously differentiable.
Trust region method is one of the well-known methods

for solving problem (1). Due to its strong convergence and
robustness, trust region methods have been proved to be effi-
cient for both unconstrained and constrained optimization
problems [1–9].

Most traditional trust region methods are of descent type
methods; namely, they accept only a trial point as the next
iterate if its associated merit function value is strictly less
than that of the current iterate. However, just as pointed
out by Toint [10], the nonmonotone techniques are helpful
to overcome the case that the sequence of iterates follows
the bottom of curved narrow valleys, a common occurrence
in difficult nonlinear problems. Hence many nonmonotone
algorithms are proposed to solve the unconstrained and

constrained optimization problems [11–20]. Numerical tests
show that the performance of the nonmonotone technique is
superior to those of the monotone cases.

The nonmonotone technique was originally proposed
by Grippo, Lampariello and Lucidi [13] for unconstrained
optimization problems based on Newton’s method, in which
the stepsize 𝛼

𝑘
satisfies the following condition:

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≤ max
0≤𝑗≤𝑚𝑘

𝑓 (𝑥
𝑘−𝑗
) + 𝛽𝛼

𝑘
∇𝑓(𝑥
𝑘
)
𝑇

𝑑
𝑘
, (2)

where 𝛽 ∈ (0, 1), 0 ≤ 𝑚
𝑘
≤ min{𝑚

𝑘−1
+ 1,𝑀}, and𝑀 is a

prefixed nonnegative integer.
Although the nonmonotone technique based on (2)

works well in many cases, there are some drawbacks. Firstly,
a good function value generated in any iteration is essentially
discarded due to the maximum in (2). Secondly, in some
cases, the numerical performance is heavily dependent on
the choice of𝑀 (see, e.g., [16, 21]). To overcome these draw-
back, Zhang and Hager [21] proposed another nonmonotone
algorithm, and they used the average of function values to
replace the maximum function value in (2). The numerical
tests show that their nonmonotone line search algorithmused
fewer function and gradient evaluations, on average, than
either themonotone or the traditional nonmonotone scheme.
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Recently, Mo and Zhang [16] extended Zhang and Hager’s
nonmonotone technique to unconstrained optimization with
trust region global scheme and discussed the global and local
convergence of the proposed algorithm.

In this paper, we further extend the nonmonotone
technique [16, 21] to equality constrained optimization.
To design our algorithm, we first introduce some nota-
tions as follows: denote 𝑔(𝑥) = ∇𝑓(𝑥) and 𝐴(𝑥) =
(∇𝑐
1
(𝑥), ∇𝑐

2
(𝑥), . . . , ∇𝑐

𝑚
(𝑥)) ∈ 𝑅𝑛×𝑚. Assuming that𝐴(𝑥) has

full column rank, we define the projective matrix

𝑍 (𝑥) = 𝐼 − 𝐴 (𝑥) (𝐴(𝑥)
𝑇𝐴 (𝑥))

−1

𝐴(𝑥)
𝑇 ∈ 𝑅𝑛×𝑛 (3)

and the Lagrange function

𝐿 (𝑥, 𝜆) = 𝑓 (𝑥) + 𝜆
𝑇𝑐 (𝑥) , (4)

where 𝜆 is a projective version of the multiplier vector as
follows:

𝜆 (𝑥) = (𝐴(𝑥)
𝑇𝐴 (𝑥))

−1

𝐴(𝑥)
𝑇𝑔 (𝑥) . (5)

For convenience, we denote the previous quantities at 𝑥
𝑘

by𝑓
𝑘
, 𝑐
𝑘
,𝑔
𝑘
,𝐴
𝑘
,𝑍
𝑘
, and𝜆

𝑘
. At each iteration, we calculate the

trust region trial step as follows (see [22]): firstly, we calculate

] (𝑥
𝑘
) = −𝛼

𝑘
𝐴 (𝑥) [𝐴(𝑥

𝑘
)
𝑇

𝐴 (𝑥
𝑘
)]
−1

𝑐 (𝑥
𝑘
) , (6)

where

𝛼
𝑘
=

{{{{
{{{{
{

1, 𝑐
𝑘
= 0,

min
{{
{{
{

1,
Δ
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴
𝑘
[𝐴(𝑥
𝑘
)
𝑇

𝐴 (𝑥)]
−1

𝑐
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

}}
}}
}

, otherwise.

(7)

Then we solve the trust region subproblem

min (𝑍
𝑘
𝑔
𝑘
)
𝑇

𝜔 + (
1

2
)𝜔𝑇 (𝑍

𝑘
𝐵
𝑘
𝑍
𝑘
) 𝜔

s.t. ‖𝜔‖ ≤ Δ
𝑘
,

(8)

where 𝐵
𝑘
denotes the Hessian matrix of the Lagrange func-

tion 𝐿(𝑥
𝑘
, 𝜆
𝑘
), Δ
𝑘
> 0 is the trust region radius. Let 𝜔

𝑘
be the

solution of (8) and

ℎ
𝑘
= 𝑍
𝑘
𝜔
𝑘
. (9)

The trust region trial step is taken as

𝑑
𝑘
= ℎ
𝑘
+ ]
𝑘
. (10)

To test whether the point 𝑥
𝑘
+ 𝑑
𝑘
can be accepted as the next

iteration, we use the Fletcher’s exact penalty function as the
merit function as follows:

𝜓 (𝑥, 𝜆, 𝜎) = 𝑓 (𝑥) + 𝜆
𝑇𝑐 (𝑥) + 𝜎‖𝑐(𝑥)‖

2, (11)

where 𝜎 > 0 is the penalty parameter.

To define our nonmonotone algorithm, we define

𝐹
𝑘
=
{{
{{
{

𝜓(𝑥
𝑘
, 𝜆
𝑘
, 𝜎
𝑘
) , if 𝑘 = 0,

(𝜂
𝑘−1
𝑄
𝑘−1
𝐹
𝑘−1
+ 𝜓 (𝑥

𝑘
, 𝜆
𝑘
, 𝜎
𝑘
))

𝑄
𝑘

, if 𝑘 ≥ 1,
(12)

where

𝑄
𝑘
= {
1, if 𝑘 = 0,
𝜂
𝑘−1
𝑄
𝑘−1
+ 1, if 𝑘 ≥ 1,

(13)

where 𝜂
𝑘−1
∈ [𝜂min, 𝜂max], 𝜂min ∈ [0, 1], 𝜂max ∈ [𝜂min, 1), and

𝜂min, 𝜂max are two chosen parameters.
From (12) and (13), we observe that 𝐹

𝑘
is a convex

combination of the function values

𝜓 (𝑥
0
, 𝜆
0
, 𝜎
0
) , 𝜓 (𝑥

1
, 𝜆
1
, 𝜎
1
) , . . . , 𝜓 (𝑥

𝑘
, 𝜆
𝑘
, 𝜎
𝑘
) , (14)

so𝐹
𝑘
is regarded as theweighted average of themerit function

values.
The paper is organized as follows. We describe our

algorithm in Section 2 and analyze the global convergence in
Section 3. The numerical tests are given in Section 4, and the
conclusion is presented in Section 5.

2. Algorithm

In this section, we give the details of the nonmonotone trust
region algorithm.We first recall the definition of a stationary
point of problem (1). A point 𝑥 is called a stationary point of
problem (1) if it satisfies

󵄩󵄩󵄩󵄩󵄩𝑍(𝑥)
𝑇𝑔 (𝑥)

󵄩󵄩󵄩󵄩󵄩 + ‖𝑐 (𝑥)‖ = 0. (15)

We define the actual reduction from 𝑥
𝑘
to 𝑥
𝑘
+ 𝑑
𝑘
by

Ared
𝑘
= 𝜓 (𝑥

𝑘
, 𝜆
𝑘
, 𝜎
𝑘
) − 𝜓 (𝑥

𝑘
+ 𝑑
𝑘
, 𝜆
𝑘+1
, 𝜎
𝑘
) (16)

and the nonmonotone actual reduction by

NAred
𝑘
= 𝐹
𝑘
− 𝜓 (𝑥

𝑘
+ 𝑑
𝑘
, 𝜆
𝑘+1
, 𝜎
𝑘
) . (17)

The predicted reduction is defined as

Pred
𝑘
= −𝑔𝑇
𝑘
𝑑
𝑘
− (
1

2
) 𝑑𝑇
𝑘
𝐵
𝑘
𝑑
𝑘
− ∇𝜆𝑇
𝑘
(𝑐
𝑘
+ 𝐴𝑇
𝑘
𝑑
𝑘
) − 𝜆𝑇
𝑘
𝐴𝑇
𝑘
𝑑
𝑘

+ 𝜎
𝑘
(
󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩𝑐𝑘 + 𝐴

𝑇

𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩󵄩
2

) .

(18)

Furthermore, we define the monotone ratio by

𝑟
𝑘
=
Ared
𝑘

Pred
𝑘

(19)

and the nonmonotone ratio by

Nr
𝑘
=
NAred

𝑘

Pred
𝑘

, (20)

where 𝐹
𝑘
is computed by (12) and (13).

The description of the algorithm is given as follows.

Algorithm 1. Step 0. Set 𝑥
0
∈ R𝑛, Δ

0
> 0, 𝜎

0
> 0, 𝜇 ∈ (0, 1),

0 < 𝑐
1
< 𝑐
2
< 1, 𝑐

3
> 0, a symmetric matrix 𝐵

0
∈ R𝑛×𝑛,

parameters 𝜂min ∈ [0, 1) and 𝜂max ∈ [𝜂min, 1), and 𝑘 := 0.
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Step 1. If ‖𝑍𝑇
𝑘
𝑔
𝑘
‖ + ‖𝑐
𝑘
‖ = 0, stop; otherwise, go to Step 2.

Step 2. Compute the trust region trial step 𝑑
𝑘
.

Step 3. Set 𝜎
𝑘
= 𝜎
𝑘
, if Pred

𝑘
≥ (1/2)𝜎

𝑘
(‖𝑐
𝑘
‖2 − ‖𝑐

𝑘
+ 𝐴𝑇
𝑘
𝑑
𝑘
‖
2

),
and then set

𝜎
𝑘
= max{𝜎

𝑘
, 2
𝑔𝑇
𝑘
𝑑
𝑘
+ (1/2) 𝑑𝑇

𝑘
𝐵
𝑘
𝑑
𝑘
+ ∇𝜆𝑇
𝑘
(𝑐
𝑘
+ 𝐴𝑇
𝑘
𝑑
𝑘
) + 𝜆𝑇
𝑘
𝐴𝑇
𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑘
󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑐 − 𝑘 + 𝐴

𝑇

𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩
2

} . (21)

Step 4. Compute 𝐹
𝑘
by (12) and (13), and compute the Nr

𝑘
by

(20).

Step 5. Set

𝑥
𝑘+1
= {
𝑥
𝑘
+ 𝑑
𝑘
, Nr

𝑘
≥ 𝜇,

𝑥
𝑘
, otherwise.

(22)

Step 6. Update Δ
𝑘+1

as

Δ
𝑘+1
:
{{
{{
{

∈ [𝑐
1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 , 𝑐2Δ 𝑘] , if Nr

𝑘
< 𝜇,

= Δ
𝑘
, if Nr

𝑘
≥ 𝜇,

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 < Δ 𝑘,

∈ [Δ
𝑘
, 𝑐
3
Δ
𝑘
] , if Nr

𝑘
≥ 𝜇,

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 = Δ 𝑘,

(23)

go to Step 3.

Step 7. Update 𝐵
𝑘
, and choose 𝜂

𝑘
∈ [𝜂min, 𝜂max]. Set 𝑘 := 𝑘+1;

go to Step 1.

3. Global Convergence

In this section, we discuss the global convergence of
Algorithm 1. The following assumptions are needed in our
convergence analysis:

Assumptions

(A1) The sequence {𝑥
𝑘
} and {𝑥

𝑘
+ 𝑑
𝑘
} are contained in a

compact set Ω.
(A2) There exists a positive constant𝑀 > 0 such that for

all 𝑘, ‖𝐵
𝑘
‖ ≤ 𝑀.

(A3) For all 𝑥 ∈ Ω, 𝐴(𝑥) is of column full rank.

We define two index sets as follows:

𝐼 = {𝑘 : Nr
𝑘
≥ 𝜇} , 𝐽 = {𝑘 : Nr

𝑘
≤ 𝜇} . (24)

The following lemmas (Lemmas 2–5) are helpful to analyze
the convergence of theAlgorithm 1, and the proofs are similar
to [4].

Lemma 2. Assume that (A1)–(A3) hold, and then there exists
a positive constant 𝐾

1
such that

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩𝑐𝑘 + 𝐴

𝑇

𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩󵄩
2

≥ 𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩
2min {󵄩󵄩󵄩󵄩𝑐𝑘

󵄩󵄩󵄩󵄩
2

, Δ
𝑘
} ,

Pred
𝑘
≥ (
1

2
) 𝜎
𝑘
𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩min {󵄩󵄩󵄩󵄩𝑐𝑘

󵄩󵄩󵄩󵄩 , Δ 𝑘} .

(25)

Lemma 3. Let 𝜁
𝑘
(𝑑) = 𝑔𝑇

𝑘
𝑑 + (1/2)𝑑𝑇𝐵

𝑘
𝑑, and assume that

(A1)–(A3) hold. Then there exists a positive constant 𝐾
2
such

that

𝜁
𝑘
(𝑑
𝑘
) ≤ 𝜁
𝑘
(V
𝑘
) − 𝐾
2

󵄩󵄩󵄩󵄩𝑍𝑘 (𝑔𝑘 + 𝐵𝑘V𝑘)
󵄩󵄩󵄩󵄩

×min{
󵄩󵄩󵄩󵄩𝑍𝑘 (𝑔𝑘 + 𝐵𝑘V𝑘)

󵄩󵄩󵄩󵄩
𝑀 + 1

, Δ
𝑘
} .

(26)

Lemma 4. Assume that (A1)–(A3) hold. Then there exists a
positive constant 𝐾

3
such that

󵄨󵄨󵄨󵄨Ared𝑘 − Pred𝑘
󵄨󵄨󵄨󵄨 ≤ 𝐾3𝜎𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

. (27)

Lemma 5. Assume that (A1)–(A3) holds. Then there exists a
positive constant 𝐾

4
such that

Pred
𝑘
≥ 𝐾
2

󵄩󵄩󵄩󵄩𝑍𝑘 (𝑔𝑘 + 𝐵𝑘V𝑘)
󵄩󵄩󵄩󵄩min{

󵄩󵄩󵄩󵄩𝑍𝑘 (𝑔𝑘 + 𝐵𝑘V𝑘)
󵄩󵄩󵄩󵄩

𝑀 + 1
, Δ
𝑘
}

− 𝐾
4

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩 + 𝜎𝑘 (

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩𝑐𝑘 + 𝐴

𝑇

𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩󵄩
2

) .

(28)

The following lemma shows themonotonicity property of
the function sequence {𝐹

𝑘
}.

Lemma6. Suppose that {𝑥
𝑘
} is generated byAlgorithm 1.Then

the following inequality holds for all 𝑘:

𝜓
𝑘+1
≤ 𝐹
𝑘+1
≤ 𝐹
𝑘
. (29)

Proof. We first prove that (29) holds for all 𝑘 ∈ 𝐼; that is,

𝜓
𝑘+1
≤ 𝐹
𝑘+1
≤ 𝐹
𝑘
, ∀𝑘 ∈ 𝐼. (30)

For 𝑘 ∈ I, according to Lemma 2, Assumptions (A1) and (A2),
we obtain

𝜓
𝑘+1
≤ 𝐹
𝑘
− (
1

2
) 𝜎
𝑘
𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩min {󵄩󵄩󵄩󵄩𝑐𝑘

󵄩󵄩󵄩󵄩 , Δ 𝑘} . (31)

According to (8)–(13), we have the following inequality:

𝐹
𝑘+1
=
𝜂
𝑘
𝑄
𝑘
𝐹
𝑘
+ 𝜓
𝑘+1

𝑄
𝑘+1

≤
𝜂
𝑘
𝑄
𝑘
𝐹
𝑘
+ 𝐹
𝑘
− (1/2) 𝜎

𝑘
𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩min {󵄩󵄩󵄩󵄩𝑐𝑘

󵄩󵄩󵄩󵄩 , Δ 𝑘}

𝑄
𝑘+1

= 𝐹
𝑘
−
(1/2) 𝜎

𝑘
𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩min {󵄩󵄩󵄩󵄩𝑐𝑘

󵄩󵄩󵄩󵄩 , Δ 𝑘}

𝜂
𝑘
𝑄
𝑘

.

(32)
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By (12) and (13), if 𝜂
𝑘
= 0, we have

𝐹
𝑘+1
= 𝜓
𝑘+1
. (33)

Otherwise, if 𝜂
𝑘
̸= 0, we have

𝐹
𝑘+1
− 𝐹
𝑘
=
𝜓
𝑘+1
− 𝐹
𝑘+1

𝑄
𝑘+1

. (34)

So, from (32) to (34), we know that (30) holds.
Next, we prove that (29) holds for all 𝑘 ∈ 𝐽. From Step 4

of Algorithm 1, we get 𝑥
𝑘+1
= 𝑥
𝑘
and 𝜓

𝑘+1
= 𝜓
𝑘
for 𝑘 ∈ 𝐽.

Firstly, we prove that 𝜓
𝑘+1
≤ 𝐹
𝑘+1

.
We consider two cases.

Case 1 (𝑘 − 1 ∈ 𝐼). According to (8), we have 𝜓
𝑘
≤ 𝐹
𝑘
. Then it

follows from (12) and (13) and 𝜓
𝑘+1
= 𝜓
𝑘
that

𝐹
𝑘+1
≥
𝜂
𝑘
𝑄
𝑘
𝜓
𝑘
+ 𝜓
𝑘+1

𝑄
𝑘+1

=
𝜂
𝑘
𝑄
𝑘
𝜓
𝑘+1
+ 𝜓
𝑘+1

𝑄
𝑘+1

= 𝜓
𝑘+1
. (35)

Case 2 (𝑘 − 1 ∈ 𝐽). In this situation, let 𝐾 = {𝑖 | 1 < 𝑖 ≤
𝑘, 𝑘 − 𝑖 ∈ 𝐼}. If 𝐾 = 0, from Step 4 of Algorithm 1, we have
𝐹
0
= 𝐹
𝑘−𝑗
= 𝐹
𝑘+1

, 𝑗 = 0, 1, . . . , 𝑘 − 1. Consequently, it follows
from (12) and (13) that

𝐹
𝑘+1
= 𝐹
𝑘
= 𝜓
𝑘+1
. (36)

We suppose that 𝐾 ̸= 0 and set 𝑚 = min{𝑖 : 𝑖 ∈ 𝐾}, and then
we have

𝜓
𝑘−𝑗
= 𝜓
𝑘
= 𝜓
𝑘+1
, 𝑗 = 0, 1, . . . , 𝑚 − 1. (37)

By (12), we obtain

𝑄
𝑘
𝐹
𝑘
= 𝜂
𝑘−1
𝑄
𝑘−1
𝐹
𝑘−1
+ 𝜓
𝑘
, 𝑘 ≥ 1. (38)

According to (38) repeatedly, we can get

𝜂
𝑘
𝑄
𝑘
𝐹
𝑘
+ 𝜓
𝑘+1
=
𝑚−1

∏
𝑖=0

𝜂
𝑘−𝑖
𝑄
𝑘−𝑚+1

𝐹
𝑘−𝑚+1

+
𝑚−2

∑
𝑗=0

𝑗

∏
𝑖=0

𝜂
𝑘−𝑖
𝜓
𝑘−𝑗
+ 𝜓
𝑘+1
.

(39)

Using the definition of𝐾 and𝑚, we know that 𝑘 −𝑚 ∈ 𝐼 and
𝐹
𝑘−𝑚+1

≥ 𝜓
𝑘−𝑚+1

through (8).
From (37) and (39), it follows that

𝜂
𝑘
𝑄
𝑘
𝐹
𝑘
+ Ψ
𝑘+1

≥
𝑚−1

∏
𝑖=0

𝜂
𝑘−𝑖
𝑄
𝑘−𝑚+1

𝜓
𝑘−𝑚+1

+
𝑚−2

∑
𝑗=0

𝑗

∏
𝑖=0

𝜂
𝑘−𝑖
𝜓
𝑘−𝑗
+ 𝜓
𝑘+1

= (
𝑚−1

∏
𝑖=0

𝜂
𝑘−𝑖
𝑄
𝑘−𝑚+1

+
𝑚−2

∑
𝑗=0

𝑗

∏
𝑖=0

𝜇
𝑘−𝑖
+ 1)𝜓

𝑘+1

= 𝑄
𝑘+1
𝜓
𝑘+1
.

(40)

From (12) and (40) we know that

𝐹
𝑘+1
=
𝜂
𝑘
𝑄
𝑘
𝐹
𝑘
+ 𝜓
𝑘+1

𝑄
𝑘+1

≥
𝑄
𝑘+1
𝜓
𝑘+1

𝑄
𝑘+1

= 𝜓
𝑘+1

(41)

By (35), (36), and (42), we get

𝜓
𝑘+1
≤ 𝐹
𝑘+1
, ∀𝑘 ∈ 𝐽. (42)

Nowwe prove that𝐹
𝑘+1
≤ 𝐹
𝑘
. If 𝜂
𝑘
̸= 0, from (34) and (42), the

conclusion is obvious. If 𝜂
𝑘
= 0, then by (12), (13) and 𝑘 ∈ 𝐽,

we have 𝐹
𝑘+1
= 𝐹
𝑘
. Thus (29) holds for all 𝑘 ∈ 𝐽. The proof is

completed.

Theorem 7. Suppose that the Assumptions (A1)–(A3) hold
and the sequence {𝑥

𝑘
} is generated by Algorithm 1. Then the

algorithm is well defined.

Proof. Since the algorithm does not stop in Step 2, then we
have either ‖𝑐

𝑘
‖ ̸= 0 or ‖𝑍𝑇

𝑘
𝑔
𝑘
‖ ̸= 0.We prove the conclusion by

contradiction; if the conclusion is not true, by the algorithm,
we have 𝑥

𝑘+1
= 𝑥
𝑘
, but

𝑁𝑟
𝑘
< 𝜇, lim

𝑘→∞

Δ
𝑘
= 0. (43)

Case 1 (‖𝑐
𝑘
‖ ̸= 0). Then from Lemmas 2 and 4, we have

lim
𝑘→∞

󵄨󵄨󵄨󵄨𝑟𝑘 − 1
󵄨󵄨󵄨󵄨 = lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Ared
𝑘
− Pred

𝑘

Pred
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ lim
𝑘→∞

2𝐾
3
𝜎
𝑘

󵄩󵄩󵄩󵄩Δ 𝑘
󵄩󵄩󵄩󵄩
2

𝜎
𝑘
𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩min {󵄩󵄩󵄩󵄩𝑐𝑘

󵄩󵄩󵄩󵄩 , Δ 𝑘}

≤ lim
𝑘→∞

2𝐾
3
𝜎
𝑘

󵄩󵄩󵄩󵄩Δ 𝑘
󵄩󵄩󵄩󵄩
2

𝜎
𝑘
𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩 Δ 𝑘

= 0,

(44)

which means that 𝑟
𝑘
> 𝜇 for 𝑘 large enough, according to

Lemma 6, and we have that NAred
𝑘,𝑖
= 𝐹(𝑥

𝑘
+ 𝑑
𝑘
) − 𝜓(𝑥

𝑘
+

𝑑
𝑘
) > Ared

𝑘
, so Nr

𝑘
≥ 𝑟
𝑘
> 𝜇, which contradicts (43).

Case 2 (‖𝑐
𝑘
‖ = 0). In this case, we have ‖V

𝑘
‖ = 0 and

‖𝑍𝑇
𝑘
𝑔
𝑘
‖ ̸= 0, By Lemma 3, and we can have

Pred
𝑘
= −𝜁 (𝑑

𝑘
) ≥ 𝐾
2

󵄩󵄩󵄩󵄩𝑍𝑘 (𝑔𝑘 + 𝐵𝑘V𝑘)
󵄩󵄩󵄩󵄩

×min{
󵄩󵄩󵄩󵄩𝑍𝑘 (𝑔𝑘 + 𝐵𝑘V𝑘)

󵄩󵄩󵄩󵄩
𝑀 + 1

, Δ
𝑘
}

= 𝐾
2

󵄩󵄩󵄩󵄩𝑍𝑘𝑔𝑘
󵄩󵄩󵄩󵄩 Δ 𝑘.

(45)

Combining with Lemma 4, we have

lim
𝑘→∞

󵄨󵄨󵄨󵄨𝑟𝑘 − 1
󵄨󵄨󵄨󵄨 = lim
𝑘→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Ared
𝑘
− Pred

𝑘

Pred
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ lim
𝑘→∞

𝐾
3
𝜎
𝑘

󵄩󵄩󵄩󵄩Δ 𝑘
󵄩󵄩󵄩󵄩
2

𝐾
2

󵄩󵄩󵄩󵄩𝑍𝑘𝑔𝑘
󵄩󵄩󵄩󵄩 Δ 𝑘

= 0.

(46)

Then similar to Case 1, we can get a contradiction. Combining
Cases 1 and 2, we can get the conclusion.
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Similar to Lemma 7.11 in [4], we get the proposition of the
penalty parameter as follows.

Lemma 8. Under Assumption A1, if ‖𝑍𝑇
𝑘
𝑔
𝑘
‖ + ‖𝑐

𝑘
‖ ̸= 0, then

there exist a integer 𝑘
0
and a positive constant 𝜎⋆ such that for

all 𝑘 ≥ 𝑘
0
, 𝜎
𝑘
= 𝜎⋆.

Without loss of generality, we assume that 𝜎
𝑘
= 𝜎⋆ for all

𝑘. The following theorem gives the convergence proposition
of the constraint sequence {‖𝑐

𝑘
‖}.

Theorem 9. Under the Assumptions (A1)–(A3), we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩 = 0. (47)

Proof. First, we prove that

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩 = 0. (48)

Assume by contradiction that (48) does not hold, then there
exists a constant 𝜀 > 0 such that ‖𝑐

𝑘
‖ ≥ 𝜀 for all 𝑘. According

to Lemma 6, we have

𝐹
𝑘+1
≤ 𝐹
𝑘
−
Pred
𝑘

𝑄
𝑘+1

,

𝐹
𝑘
− 𝐹
𝑘+1
≥
Pred
𝑘

𝑄
𝑘+1

,

𝐹
𝑘−1
− 𝐹
𝑘
≥
Pred
𝑘

𝑄
𝑘

,

𝐹
𝑘−2
− 𝐹
𝑘−1
≥
Pred
𝑘

𝑄
𝑘−1

,

...

𝐹
1
− 𝐹
2
≥
Pred
𝑘

𝑄
2

.

(49)

By using (13), we can prove that

𝑄
𝑘+1
= 1 +

𝑘

∑
𝑗=0

𝑗

∏
𝑖=0

𝜂
𝑘−𝑖

≤ 1 +
𝑘

∑
𝑗=0

𝜂𝑗+1max ≤
∞

∑
𝑗=0

𝜂𝑗max =
1

1 − 𝜂max
.

(50)

Adding all the previous inequalities and by Lemma 2, we have

𝐹
1
− 𝐹
𝑘+1
≥
𝑘+1

∑
𝑖=1

Pred
𝑖

𝑄
𝑖+1

≥
1

2 (1 − 𝜂max)

𝑘+1

∑
𝑖=1

𝜎
𝑖
𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑖
󵄩󵄩󵄩󵄩min {󵄩󵄩󵄩󵄩𝑐𝑖

󵄩󵄩󵄩󵄩 , Δ 𝑖} .

(51)

By Assumption (A1), we know that 𝐹
1
− 𝐹
𝑘+1

is bounded, let
𝑘 → ∞, and we have

+∞ > 𝐹
1
− 𝐹
𝑘+1

≥
1

2 (1 − 𝜂max)

∞

∑
𝑘=1

𝜎∗𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩min {󵄩󵄩󵄩󵄩𝑐𝑘

󵄩󵄩󵄩󵄩 , Δ 𝑘} .
(52)

Since ‖𝑐
𝑘
‖ ≥ 𝜀 for all 𝑘, we have lim

𝑘→∞
Δ
𝑘
= 0. But similar

to the proof of Theorem 7, we get Nr
𝑘
> 𝜇, and therefore we

have Δ
𝑘+1
> Δ
𝑘
, which contradicts to lim

𝑘→∞
Δ
𝑘
= 0. This

contradiction shows that (48) holds.
Next we prove (47). Assume that (47) does not hold, then

there exist a subsequence {𝑚
𝑗
} and a positive constant 𝜀

1
such

that
󵄩󵄩󵄩󵄩󵄩𝑐𝑚𝑗
󵄩󵄩󵄩󵄩󵄩 ≥ 𝜀1. (53)

On the other hand, according to (48) we know that there
exists another subsequence {𝑙

𝑖
} such that for 𝜀

2
= 𝜀
1
/2, we

have
󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩 ≥ 𝜀2 𝑚

𝑗
≤ 𝑘 ≤ 𝑙

𝑗
,

󵄩󵄩󵄩󵄩󵄩𝑐𝑙𝑗
󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀2.

(54)

We defineK = {𝑘 | 𝑚
𝑗
≤ 𝑘 ≤ 𝑙

𝑗
}. According to Lemma 2, we

get the following inequality:

𝐹
1
− 𝐹
𝑘+1
≥

1

2 (1 − 𝜂max)
∑
𝑘∈K

𝜎
𝑘
𝐾
1

󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩min {𝜀

2
, Δ
𝑘
} . (55)

By Assumption (A1), 𝐹
𝑘

is bounded, so we have that
min{𝜀

2
/2, Δ
𝑗
} = 𝜀
2
/2 can be true only finite number of times.

Thus there exists 𝑘
1
> 0 such that for 𝑗 > 𝑘

1
, we have

min{𝜀
2
/2, Δ
𝑗
} = Δ

𝑗
. Hence for 𝑗 > 𝑘

1
, we have

𝑘

∑
𝑗∈K,𝑗=𝑘1

Δ
𝑗
≤
2 (1 − 𝜂max)

𝐾
1
𝐾
2
𝜀2
2

[𝐹
1
−min
𝑥∈Ω

𝐹 (𝑥)] < ∞. (56)

Then we know that
∞

∑
𝑗∈K,𝑗=𝑘

Δ
𝑗
󳨀→ 0 (𝑘 󳨀→ ∞) . (57)

Now, for large 𝑗,

󵄩󵄩󵄩󵄩󵄩𝑥𝑙𝑗 − 𝑥𝑚𝑗
󵄩󵄩󵄩󵄩󵄩 ≤

𝑙𝑗−1

∑
𝑘=𝑚𝑗

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥𝑘
󵄩󵄩󵄩󵄩 ≤

𝑙𝑗−1

∑
𝑘=𝑚𝑗

Δ
𝑘
<
∞

∑
𝑘=𝑚𝑗

Δ
𝑘
󳨀→ 0.

(58)

Since 𝑐(𝑥) is continuous, thus for 𝑗 large enough we have
‖𝑐
𝑚𝑗
− 𝑐
𝑙𝑗
‖ < 𝜀
2
,

󵄩󵄩󵄩󵄩󵄩𝑐𝑚𝑗
󵄩󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩𝑐𝑚𝑗 − 𝑐𝑙𝑗

󵄩󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩𝑐𝑙𝑗
󵄩󵄩󵄩󵄩󵄩 < 2𝜀2, (59)

and this contradicts to the assumption ‖𝑐
𝑚𝑗
‖ ≥ 2𝜀

2
, which

means that (47) holds.
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Theorem 10. If (A1) holds, we have

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑍
𝑇

𝑘
𝑔
𝑘

󵄩󵄩󵄩󵄩󵄩 = 0. (60)

Proof. Similar to the proof of Theorem 4 in [18].

Based on Theorems 9 and 10, we get the following global
convergence result.

Theorem 11. Under Assumptions (A1)–(A3), we have

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑍
𝑇

𝑘
𝑔
𝑘

󵄩󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑐𝑘
󵄩󵄩󵄩󵄩 = 0. (61)

4. Numerical Tests

In this section, we test our algorithm for some typical
problems. The program code was written in MATLAB and
run in MATLAB 7.1 environment. The parameters in our
algorithm are taken as follows: Δ

0
= 0.1, 𝜎

0
= 1, 𝜇 = 0.1,

𝑐
1
= 0.2, 𝑐

2
= 0.8, 𝑐

3
= 1.2, 𝜂

𝑘
≡ 0.75, and 𝐵

0
= 𝐼, and 𝐵

𝑘
is

updated by BFGS formulas as follows:

𝐵
𝑘+1
=
{{
{{
{

𝐵
𝑘
, if 𝛿𝑇

𝑘
𝑦
𝑘
≤ 0,

𝐵
𝑘
+
𝑦
𝑘
𝑦𝑇
𝑘

𝑦𝑇
𝑘
𝛿
𝑘

−
𝐵
𝑘
𝛿
𝑘
𝛿𝑇
𝑘
𝐵
𝑘

𝛿𝑇
𝑘
𝐵
𝑘
𝛿
𝑘

, if 𝛿𝑇
𝑘
𝑦
𝑘
> 0,

(62)

where 𝛿
𝑘
= 𝑥
𝑘+1
− 𝑥
𝑘
, 𝑦
𝑘
= (∇𝑓(𝑥

𝑘+1
) − 𝐴(𝑥

𝑘+1
)𝜆(𝑥
𝑘+1
) −

(∇𝑓(𝑥
𝑘
) − 𝐴(𝑥

𝑘
)𝜆(𝑥
𝑘
)). For deciding when to stop the

execution of the algorithmdeclaring convergencewe used the
criterion ‖𝑍𝑇

𝑘
𝑔
𝑘
‖ + ‖𝑐

𝑘
‖ ≤ 10−5. We also stop the execution

when 500 iterations were completed without achieving con-
vergence and denoted by fail. Our test problems are chosen
from [23], and the problems are numbered in the same way
as in [23]. For example, HS28 is the problem 28 in [23].
To test the efficiency of our algorithm, we compare our
algorithm with the algorithms in [15, 18], where we choose
the nonmonotone parameter𝑀 = 5.

The test results are given in Table 1: here we use No. to
denote the number of the test problems, 𝐼

𝑔
and 𝐼
𝑓
denote

the number of gradient estimation and the function value
estimation, and Time denotes the CPU time when the
algorithm is terminated.

From Table 1, we see that our algorithm spendmore CPU
time than algorithms [15, 18], but we use less function value
estimation and gradient value estimation for most of the
test problem. These numerical tests show that our algorithm
works quiet well.

5. Conclusion

In this paper, we presented a nonmonotone trust region
method based on the weighted average of the successive
penalty values for equality constrained optimization. Com-
pared with the existing nonmonotone trust region methods
for constrained optimization, our method is independent on
the nonmonotone parameter𝑀. The numerical comparison
with some nonmonotone trust region methods shows the
efficiency of our proposed method. How to obtain the local
fast convergence of our method deserves further study, and
we leave it as the future work.

Table 1: Test results for our method and the methods in [15, 18].

No. Our method The method in [18] The method in [15]
𝐼
𝑡
/𝐼
𝑔

Time 𝐼
𝑡
/𝐼
𝑔

Time 𝐼
𝑡
/𝐼
𝑔

Time
H28 11/13 0.3438 13/24 0.2652 13/24 0.1404
H39 59/61 1.4688 24/37 0.3432 64/126 0.2625
H42 45/73 0.8281 133/195 0.2652 fail
H47 17/21 0.5625 63/121 0.5460 60/118 0.2964
H48 7/10 0.3125 14/26 0.2340 14/26 0.7488
H49 100/197 2.3750 118/234 0.4524 118/234 0.3144
H50 23/27 0.7344 63/124 0.9360 63/124 0.4212
H51 143/223 2.6094 57/88 0.6084 57/88 1.0764
H52 426/658 7.4844 50/100 0.8112 149/188 1.9812
H63 18/20 0.5469 15/27 0.5928 15/27 0.1404
H77 11/15 0.4063 25/48 1.2324 109/132 3.4788
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