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The statistical application considered here arose in epigenomics, linking the DNA methylation proportions measured at specific
genomic sites to characteristics such as phenotype or birth order. It was found that the distribution of errors in the proportions
of chemical modification (methylation) on DNA, measured at CpG sites, may be successfully modelled by a Laplace distribution
which is perturbed by a Hermite polynomial. We use a linear model with such a response function. Hence, the response function is
known, or assumed well estimated, but fails to be differentiable in the classical sense due to themodulus function. Our problemwas
to estimate coefficients for the linearmodel and the corresponding covariancematrix and to comparemodels with varying numbers
of coefficients. The linear model coefficients may be found using the (derivative-free) simplex method, as in quantile regression.
However, this theory does not yield a simple expression for the covariance matrix of the coefficients of the linear model. Assuming
response functions which are C2 except where the modulus function attains zero, we derive simple formulae for the covariance
matrix and a log-likelihood ratio statistic, using generalized calculus. These original formulae enable a generalized analysis of
variance and further model comparisons.

1. Introduction and Motivation

This work arose in a biological context, in epigenomics,
namely, the modelling of the distribution of errors in the
proportions of chemicalmodification (methylation) onDNA,
measured at specific genomic sites (CpG sites). It was
observed that this error distribution may be suitably mod-
elled by a truncated Laplace distribution perturbed by a Her-
mite polynomial.

This error distribution was first noticed in Sequenom
measurements but has wider application. A survey of data
generated by measurements on the Infinium, Illumina,

Affymetrix, and MeDIP2 machines showed similar charac-
teristics to that of the Sequenom, where such an amended
Laplace distribution was required to properly describe the
probability density function. It is thought that variation in
the scattering angle of light in the measurement processes
common to all of these platforms is responsible for the
frequencies in the tails of the measurement distributions not
conforming to a simple Laplace density and requiring our
proposed amendment. Without the amendment the Laplace
density gives tail probabilities for the deviations that are too
high, potentially leading to an incorrect failure to reject a null
hypothesis. Because the observed frequency distribution of
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epigenomic and gene expressionmeasurements appears to be
a common feature of molecular biology, it is important that
the process of estimation and inference under the amended
Laplace probability density be studied. The paper reports
results from a study of estimation and inference under the
amended Laplace density.

We extend the theory of linear models as given in [1] to
deal with response variables with distributions more general
than the exponential family. We consider the Laplace dis-
tribution, and amendments thereof, with probability density
functions which have abrupt changes in gradient due to the
presence of the modulus function. The theory in this paper
corresponds to least absolute error (LAE) (or least abso-
lute deviation (LAD)) regression [2–4], also called median
regression [5], when the response function is the Laplace
distribution without modification. We focus on coefficient
estimation for a linear model with a response variable dis-
tribution assumed to be a truncated and/or perturbed ver-
sion of the Laplace distribution, estimating the standard
errors of these coefficients and understanding the asymptotic
theory.

The theory of generalized linearmodels as described in [1]
covers the case of distributions from the exponential family.
These distributions have probability density functions which
are twice continuously differentiable (C2), everywhere on
their support. The usual expressions for the standard errors
of the model coefficients for the generalized linear models in
[1] are derived using Taylor series and assume distributions
with probability density functions which are C2 everywhere
on their support.They cannot be applied to our model due to
the presence of the modulus function.

The modified Laplace probability density functions con-
sidered here have a sharp peak at the maximum. Maximum
likelihood estimation (MLE) of coefficients may be done
by non-gradient methods, such as the simplex method.
However, the usual classical expressions for the standard
errors of the coefficients, the informationmatrix, and the log-
likelihood ratio statistic do not apply due to lack of differ-
entiability. We derive expressions for generalized versions of
these quantities using generalized functions. Consequently,
we show that our MLE is asymptotically normal.

The method we present to estimate these statistics could
in principle be applied to other probability density functions
exhibiting abrupt changes in gradient. Response function
parameters are assumed known or previously estimated. The
theory is applied to find the standard errors for coefficients
of a linear model, assuming the response function has a
truncated Laplace distribution with added kurtosis, due to
perturbation by aHermite polynomial. To illustrate the appli-
cation, we show how birth order can be linked to methy-
lation status at two CpG sites in the promotor of the H19
gene.

2. The Model

2.1. The Expectation Is Linear. Let

y = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)

𝑇

∈ R
𝑛 (1)

be a vector of response variables; let

X = X
𝑛,𝑚
= (

1 𝑥
12
⋅ ⋅ ⋅ 𝑥
1𝑚

1 𝑥
22
⋅ ⋅ ⋅ 𝑥
2𝑚

...
1 𝑥
𝑛2
⋅ ⋅ ⋅ 𝑥
𝑛𝑚

) (2)

be an 𝑛 × 𝑚 matrix of explanatory variables (real-valued).
The subscripts denote the dimensions and will be omitted
when these are assumed fixed (in Sections 2 and 3). Let

𝛽 = (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑚
)

𝑇

∈ R
𝑚 (3)

be a vector of coefficients for our linear model and assume
that

𝐸 (y) = X𝛽. (4)

Then each component of the deviation (or error) vector

z = y − X𝛽 (5)

has expectation zero. The explanatory variables may be con-
tinuous or discrete. We assume 𝑛 ≥ 𝑚. Let 𝑟X denote the
rank of X; then 𝑟X ≤ 𝑚. In practice, we usually have 𝑛, the
number of data points, much larger than 𝑚, the number of
coefficients. Our goal is estimating the components of 𝛽 by
ML principles, and determining their standard errors, given
a set of response variables y, explanatory variables X, and
a response variable distribution based on the Laplace dis-
tribution as described below. In terms of generalized linear
models, the link function is assumed to be the identity.

2.2. The Distribution of the Deviations—AModified
Laplace Distribution

Example 1. Let 𝑓 : R → R be defined by

𝑓 (𝑧; 𝑝) = (

𝑝

𝑄 (𝑝)

) 𝑒

(−𝑝|𝑧|)
, (6)

where 𝑝 > 0 is a real-valued parameter and 𝑄(𝑝) is a real-
valued normalizing function defined so that

∫

∞

−∞

𝑓 (𝑧; 𝑝) 𝑑𝑧 = 1. (7)

Then 𝑓 is the probability density function for the Laplace
distribution, with scale parameter 𝑝, centred at the origin,
and with unbounded support. It is not differentiable at the
origin in the classical sense.

The method of MLE for the response function (6) corre-
sponds to least absolute error (LAE) regression [2–4]. How-
ever, the theory of LAE regression is not sufficiently general
for our epigenomic modelling problem.We next describe the
more general response functions we require.

Example 2. Now consider the case of bounded support. For
finite 𝐵 > 0, define 𝑓 : [−𝐵, 𝐵] → R by

𝑓 (𝑧; 𝑝) = (

𝑝

𝑄 (𝑝; 𝐵)

) 𝑒

(−𝑝|𝑧|)
, (8)
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where 𝑝 > 0 is a real-valued scale parameter and 𝑄(𝑝; 𝐵) is a
real-valued normalizing function defined so that

∫

𝐵

−𝐵

𝑓 (𝑧; 𝑝) 𝑑𝑧 = 1. (9)

Then 𝑓 is the probability density function for the truncated
Laplace distribution with scale parameter 𝑝, centred at the
origin, and with bounded support [−𝐵, 𝐵].

Example 3. More generally, consider perturbations of the
truncated Laplace probability density function of the follow-
ing form. Let

𝑓 (𝑧; 𝑝, q) = ( 𝑝

𝑄 (𝑝, 𝑔, q; 𝐵)
) 𝑒

(−𝑝|𝑧|)
𝑔 (|𝑧| ; q) , (10)

where real-valued 𝑔(𝑧; q) is equal to the constant map
𝑔
1
(𝑧) = 1 (11)

plus a perturbation, q is a vector of parameters for 𝑔, and
parameter vector p = (𝑝, q) ∈ R𝑟, 𝑟 ≥ 1. If 𝑟 = 1, 𝑔 has no
parameters. Here, 𝑄(𝑝, 𝑔, q; 𝐵) is a real-valued normalizing
function defined so that

∫

𝐵

−𝐵

𝑓 (𝑧; p) 𝑑𝑧 = 1. (12)

We assume that there exists some 𝜖 > 0 such that 𝑔(𝑧; q)
is C3 in 𝑧 on (−𝜖, 𝐵 + 𝜖) and that 𝑔(𝑧; q) > 0 on [0, 𝐵],
for fixed parameter vector q. Note that, as a consequence of
using themodulus function,𝑔(|𝑧|;q)will not be differentiable
with respect to 𝑧, at 𝑧 = 0, in general. As in Example 1, 𝑓 is
not differentiable at the origin due to the use of the modulus
function.

Example 4. We could allow unbounded support if
∫

∞

−∞
𝑒

(−𝑝|𝑧|)
𝑔(|𝑧|; q)𝑑𝑧 is finite.

Example 5. Now consider our motivating example, a trun-
cated Laplace distribution with bounded support [−1, 1],
perturbed by adding kurtosis. Such a distribution is used to
model the deviations in the proportions of methylation
measured at gene promoter CpG sites. Specifically, to fit
with observations, kurtosis is added to a Laplace probability
density function with bounded support by adding a third-
order Hermite polynomial to give an amended version.

Consider

𝑓 (𝑧; p) = (
𝑝

𝑄 (𝑝, 𝑔
2
, 𝑞; 𝐵)

) 𝑒

(−𝑝|𝑧|)
𝑔
2
(|𝑧| ; 𝑞) . (13)

Here, p = (𝑝, 𝑞), 𝑞 ≥ 0 is small, 𝐵 = 1,
𝑔
2
(𝑧; 𝑞) = 1 + 𝑞𝐻

3
(𝑧) , (14)

and𝐻
3
(𝑧) = 𝑧

3
− 3𝑧 is the third-order Hermite polynomial.

Solving for 𝑄 yields

𝑓 (𝑧; 𝑝, 𝑞)

=

𝑝

4
𝑒

(−𝑝|𝑧|)
[1 + 𝑞𝐻

3
(|𝑧|)]

2 [(𝑝

3
− 3𝑞𝑝

2
+ 6𝑞) − 𝑒

−𝑝
(𝑝

3
(1 − 2𝑞) + 6𝑝𝑞 + 6𝑞)]

.

(15)

Example 6. The functions 𝑔
3
(𝑧; 𝑞) = 1 − 𝑞𝑧 and 𝑔

4
(𝑧; 𝑞) =

𝑒

−𝑞𝑧
2

, assuming small positive 𝑞 and bounded support, could
be used in (10) to model distributions similar to the Laplace
but with thinner tails.

We restrict to symmetric distributions satisfying 𝑓(𝑧) =
𝑓(−𝑧).

3. Maximum Likelihood Estimation

3.1. The Log-Likelihood Function. Let

𝑓 (𝑧, p) (16)

be a probability density function with parameter vector p,
as described in Section 2. Let 𝑧

1
, . . . , 𝑧

𝑛
be a sequence of

independent and identically distributed deviations with joint
probability density function

𝑓 (𝑧
1
, . . . , 𝑧

𝑛
; p) = 𝑓 (𝑧

1
(𝛽) , . . . , 𝑧

𝑛
(𝛽) ; p)

= Π

𝑛

𝑖=1
𝑓 (𝑧
𝑖
(𝛽) ; p) .

(17)

This is also the likelihood function

𝐿z (z; p) = 𝐿𝛽 (𝛽; p;X, y)

= 𝐿 (z (𝛽) ; p) = 𝑓 (z (𝛽) ; p) ,
(18)

which may be regarded as a function of z or 𝛽; here, the
subscript reflects our point of view.We use the log-likelihood
function 𝑙 in the estimation of 𝛽, where, using various
notation,

𝑙z (z; p) = log
𝑒
(𝐿z (z; p))

= 𝑙𝛽 (𝛽; p;X, y) = 𝑙 (z (𝛽) ; p) .
(19)

Substituting measured values of 𝑦
𝑖
and known inputs 𝑥

𝑖𝑗
into

𝑙𝛽, we obtain a function of 𝛽 and p. The parameters p are
assumed known, but if not, may be estimated separately. In
our biological application, they are estimated byMLE and are
assumed fixed for a particular measuring process. Hence, we
have a function of 𝛽, the coefficients of our linear model.

Our aim is to find a maximum likelihood estimator
(MLE) denoted ̂𝛽

𝑛
∈ R𝑚, that is, some point at which 𝑙

attains its maximum value. The subscript 𝑛 corresponds to
the number of deviations. Now 𝑙 is a continuous function. If
𝐵 is finite, it has compact support in R𝑚. Since a continuous
function on a compact set attains its supremum, the existence
of aMLE for 𝑙𝛽 is guaranteed. Even if𝐵 = ∞, wemay consider
truncations with finite bounds 𝐵

𝑘
= 𝑘, 𝑘 = 1, 2, . . .. Since 𝑙 is

maximizedwhen the 𝑧
𝑖
are small, truncating𝑓 to [−𝑘, 𝑘] for 𝑘

large enough will not affect the set of points at which 𝑙 attains
its maximum. We show in Section 3.3 that a MLE ̂𝛽

𝑛
is not

necessarily unique.
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Case 1. If 𝑔(𝑧; q) = 𝑔
1
(𝑧) = 1 and so 𝑓 is the Laplace

probability density function with parameter 𝑝 as in (6) or (8),
then, for 𝛽 ∈ R𝑚 such that every 𝑧

𝑖
(𝛽) is in the support of 𝑓,

𝑙𝛽 (𝛽; 𝑝;X, y) = 𝑙𝛽,𝑛,𝑚 (𝛽; 𝑝;X𝑛,𝑚, y)

= − 𝑛 log (𝑄) + 𝑛 log (𝑝) +
𝑛

∑

𝑖=1

(−𝑝






𝑧
𝑖
(𝛽)





)

= − 𝑛 log (𝑄) + 𝑛 log (𝑝)

+

𝑛

∑

𝑖=1

(−𝑝






𝑦
𝑖
− (X𝛽)

𝑖






) ,

(20)

where 𝑄 = 2 if the support of 𝑓 is R. If the support of 𝑓 is
[−𝐵, 𝐵] then

𝑄 = 𝑄 (𝑝, 𝑔
1
; 𝐵) = 2 (1 − 𝑒

−𝑝𝐵
) . (21)

The theory of LAE regression (corresponding to MLE
using Laplace distributions without modification as response
functions) may be found in various texts, for example, [3].
Here, it is proved that there exists aMLE ̂𝛽

𝑛
corresponding to

at least 𝑟X zero errors. We are concerned with the extension
of these ideas to the case of perturbed and truncated Laplace
response functions. For the truncated Laplace distribution,
we prove that there exists a MLE ̂𝛽

𝑛
corresponding to at least

𝑟X zero errors. Consider the following more general case.

Case 2. If 𝑓 is a perturbed Laplace probability density func-
tionwith perturbing function𝑔(𝑧;q) and bounded support as
in (10), then for 𝛽 ∈ R𝑚 such that |𝑧

𝑖
(𝛽)| ≤ 𝐵, 𝑖 = 1, 2, . . . , 𝑛,

𝑙𝛽 (𝛽; p;X, y) = 𝑙𝛽,𝑛,𝑚 (𝛽; 𝑝;X𝑛,𝑚, y)

= − 𝑛 log (Q (𝑝, 𝑔, q; 𝐵)) + 𝑛 log (𝑝)

+

𝑛

∑

𝑖=1

(−𝑝






𝑧
𝑖
(𝛽)





) +

𝑛

∑

𝑖=1

log (𝑔 (


𝑧
𝑖
(𝛽)





; q))

= − 𝑛 log (𝑄 (𝑝, 𝑔, q; 𝐵)) + 𝑛 log (𝑝)

+

𝑛

∑

𝑖=1

(−𝑝






𝑦
𝑖
− (X𝛽)

𝑖






)

+

𝑛

∑

𝑖=1

log (𝑔 (


𝑦
𝑖
− (X𝛽)

𝑖






; q)) .

(22)

Note since 𝑔(𝑧
𝑖
; q) is strictly positive on [0, 𝐵], so is 𝑓(𝑧i; p)

and so log(𝑓(𝑧
𝑖
; p)) is well-defined on [−𝐵, 𝐵], 𝑖 = 1, 2, . . . , 𝑛.

In Section 3.3, we show that if the perturbing function
𝑔 is such that log𝑔(𝑧; q) is convex and non-increasing on
[0, 𝐵], there exists a MLE corresponding to at least 𝑟X
data points. We give an upper bound on |𝑑 log𝑔(𝑧; q)/𝑑𝑧|
on [0, 𝐵] which, if not exceeded, ensures that there exists a
MLE corresponding to at least one data point.We apply these
results to our motivating example, the Laplace distribution
with added kurtosis, described below.

Example 7. If 𝑔(𝑧; q) = 𝑔
2
(𝑧; 𝑞) = 1 + 𝑞𝐻

3
(𝑧) and so 𝑓 is a

Laplace probability density function with scale parameter 𝑝,
with added kurtosis and bounded support as in (13), then for
𝛽 ∈ R𝑚 such that |𝑧

𝑖
(𝛽)| ≤ 1, 𝑖 = 1, 2, . . . , 𝑛,

𝑙𝛽 (𝛽; 𝑝, 𝑞;X, y) = 𝑙𝛽,𝑛,𝑚 (𝛽; 𝑝;X𝑛,𝑚, y)

= − 𝑛 log (𝑄 (𝑝, 𝑔
2
, 𝑞; 1)) + 𝑛 log (𝑝)

+

𝑛

∑

𝑖=1

(−𝑝






𝑧
𝑖
(𝛽)





)

+

𝑛

∑

𝑖=1

log (1 + 𝑞𝐻
3
(






𝑧
𝑖
(𝛽)





))

= − 𝑛 log (𝑄 (𝑝, 𝑔
2
, 𝑞; 1)) + 𝑛 log (𝑝)

+

𝑛

∑

𝑖=1

(−𝑝






𝑦
𝑖
− (X𝛽)

𝑖






)

+

𝑛

∑

𝑖=1

log (1 + 𝑞𝐻
3
(






𝑦
𝑖
− (X𝛽)

𝑖






)) .

(23)

Now 𝑙𝛽 is not differentiable in the classical sense with
respect to the linear model coefficients 𝛽

𝑗
when any 𝑧

𝑖
=

0. Hence, we cannot assume that 𝑙𝛽 is differentiable at a
MLE. This paper addresses this issue firstly by proposing a
non-gradient method of coefficient estimation and secondly
(in Section 4) by using generalized functions to calculate
statistical estimates including estimates of standard errors. In
Section 5, we discuss the asymptotic theory of our MLE.

3.2. Coefficient Estimation Dealing with Abrupt Changes in
Gradient. Although 𝐿𝛽 and 𝑙𝛽 are continuous functions of
𝛽, their first derivatives are not. Consider the geometry of
the coefficient space R𝑚, where 𝛽 ∈ R𝑚. For each index 𝑖,
since the response function distribution is defined in terms of
absolute values, we can find a hyperplane𝐻0

𝑖
inR𝑚 on which

𝐿 = 𝐿𝛽 and 𝑙 = 𝑙𝛽 are not differentiable, defined by setting
𝑧
𝑖
= 0. Let x𝑇

𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑚
), the 𝑖th row of X, it is never

the zero vector since 𝑥
𝑖1
= 1, 𝑖 = 1, 2, . . . , 𝑛. Choose w ∈ R𝑚

so that x𝑇
𝑖
w = 0. Then

𝛽 = w + 𝑦𝑖x𝑖
x𝑇
𝑖
x
𝑖

(24)

yields 𝑧
𝑖
= 0. Let𝐻0

𝑖
be the set of all such 𝛽. For example, for

𝑚 = 2, for each error term there is a line in R2 on which 𝐿𝛽
and 𝑙𝛽 have a sharp ridge. By inspection of the geometry, we
would expect the values of 𝛽 which maximize 𝑙𝛽 to be either
on the union of the hyperplanes or very close to intersections
of the hyperplanes 𝐻0

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. Imagine searching

in 𝛽-space near the hyperplanes 𝐻0
𝑖
. Even if 𝐿𝛽 has a local

maximum near but not on the union of the hyperplanes, it
would be difficult to use a method based on the gradient of
either 𝐿𝛽 or 𝑙𝛽, since the gradient changes sharply whenever
we cross one of the 𝐻0

𝑖
. The simplex method of coefficient
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estimation, which does not require any partial derivatives,
suits this geometry.

3.3. The Maximum Likelihood Estimator Corresponds to
a Data Point

3.3.1. Convex and Non-Increasing Perturbations of the Laplace
Probability Density Function. Consider the probability den-
sity function

𝑓 (𝑧; 𝑝, q) = ( 𝑝

𝑄 (𝑝, 𝑔, q; 𝐵)
) 𝑒

(−𝑝|𝑧|)
𝑔 (|𝑧| ; q) , (25)

with support [−𝐵, 𝐵], for some finite 𝐵 > 0 as described in
Section 2.2 (Example 3). Recall we assume that there exists
some 𝜖 > 0 such that 𝑔(𝑧; q) is C3 in 𝑧 on (−𝜖, 𝐵 + 𝜖) and
that 𝑔(𝑧; q) > 0 on [0, 𝐵], for fixed parameter q. Let

Ω
𝐵
= {z ∈ R𝑛 : 



𝑧
𝑖






≤ 𝐵, 𝑖 = 1, . . . , 𝑛} = [−𝐵, 𝐵]

𝑛
. (26)

We consider the log-likelihood function

𝑙z (z; p) : Ω𝐵 → R (27)

(conditional on p) with its domain restricted to

A = {z (𝛽) : 𝛽 ∈ R𝑚} ∩ Ω
𝐵

= {y − X𝛽 : 𝛽 ∈ R𝑚} ∩ Ω
𝐵
,

(28)

that is, constrained to A or equivalently, consider the log-
likelihood function

𝑙𝛽 (𝛽; p;X, y) :B → R, (29)

constrained to B, where B ⊂ R𝑚 is defined as {𝛽 ∈ R𝑚 :

𝑧(𝛽) ∈ Ω
𝐵
}. Note that A = A(X, y, 𝐵) and similarly B =

B(X, y, 𝐵). Also, if the function 𝑍 is defined by

𝑍 : R
𝑚
→ R

𝑛
,𝛽

→ z (𝛽) = y − X𝛽,
(30)

then 𝑍(B) = A.

Lemma 8. If log(𝑔) : (−𝜖, 𝐵 + 𝜖) → R is convex and non-
increasing (i.e., 𝑑 log𝑔(𝑧; q)/𝑑𝑧 ≤ 0 on [0, 𝐵], then there exists
a maximum of 𝑙𝛽 : B → R corresponding to at least 𝑟X data
points. That is, there exists ̂𝛽

𝑛
∈ B ⊂ R𝑚 such that the

constrained 𝑙𝛽 attains its maximum at ̂𝛽
𝑛
, and there exists

at least 𝑟X indices 𝑖
𝑗
∈ {1, 2, . . . , 𝑛} such that 𝑧

𝑖
𝑗

(
̂𝛽
𝑛
) = 0,

𝑗 = 1, 2, . . . , 𝑟X.

Corollary 9. Let 𝑓(𝑧; 𝑝) be the Laplace probability density
function (8) with support [−𝐵, 𝐵] and parameter 𝑝. Then there
exists a maximum of 𝑙𝛽 :B → R corresponding to at least 𝑟X
data points.

Proof of Corollary 9. Let 𝑔 be the constant map 𝑔
1
(𝑧) = 1;

then log(𝑔(𝑧)) = 0, and hence log(𝑔(𝑧)) is convex and non-
increasing on [0, 𝐵]. Corollary 9 follows from Lemma 8.

Note that Corollary 9 could be proved directly by linear
programming theory. Linear programming has been applied
to the problem of minimising the sum of absolute errors in
various applications (see [6], a survey paper, and also [7]).
The convex analysis results we require are in Appendix A.

Proof of Lemma 8. To begin, assume that X has full rank 𝑚,
recall 𝑛 ≥ 𝑚 and that 𝑓 has bounded support. Then A is a
compact convex subset of an 𝑚-dimensional affine subspace
of R𝑛. Since the mapping 𝑍 is linear and has full rank𝑚, the
inverse imageB = 𝑍

−1
(A) is a compact convex subset ofR𝑚.

We partitionB ⊂ R𝑚, which is the support of 𝐿𝛽, into a finite
collection of compact convex sets, so that, on each subset, 𝑙𝛽
is convex.

Let 𝐻𝛿
𝑖
be the hyperplane in R𝑚 corresponding to the

error term 𝑧
𝑖
(𝛽) = 𝛿. Then𝐻−𝐵

𝑖
and𝐻𝐵

𝑖
are the hyperplanes

in R𝑚 corresponding to errors 𝑧
𝑖
= −𝐵 and 𝑧

𝑖
= 𝐵, respec-

tively. It follows that the log-likelihood function

𝑙𝛽 (𝛽; p;X, y) = − 𝑛 log (𝑄 (𝑝, 𝑔, q; 𝐵))

+ 𝑛 log (𝑝) +
𝑛

∑

𝑖=1

(−𝑝






𝑧
𝑖
(𝛽)





)

+

𝑛

∑

𝑖=1

log (𝑔 (


𝑧
𝑖
(𝛽)





; q))

= − 𝑛 log (𝑄 (𝑝, 𝑔, q; 𝐵)) + 𝑛 log (𝑝)

+

𝑛

∑

𝑖=1

(−𝑝






𝑦
𝑖
− (X𝛽)

𝑖






)

+

𝑛

∑

𝑖=1

log (𝑔 (


𝑦
𝑖
− (X𝛽)

𝑖






; q))

(31)

is a convex function in between the the hyperplanes 𝐻−B
𝑖
,

𝐻

0

𝑖
, and 𝐻𝐵

𝑖
, 𝑖 = 1, . . . , 𝑛. These 3𝑛 hyperplanes divide the

domainB in R𝑚 into at most 2𝑛 open sets bounded by (but
not intersecting) the hyperplanes. Each such open set (and
hence its closure) may be labelled by a set of 𝑛 signs. For any
𝛽 ∈ R𝑚 such that 0 < |𝑧

𝑖
(𝛽)| < 𝐵, 𝑖 = 1, . . . , 𝑛; (sgn(𝑧

1
(𝛽)),

sgn(𝑧
2
(𝛽)), . . . , sgn(𝑧

𝑛
(𝛽))) labels the open set containing 𝛽.

Next, consider R𝑛 as the union of its orthants, which we
denote O

𝑘
, 𝑘 = 1, . . . , 2𝑛. We assume the orthants are closed

sets. For example, the non-negative orthant is {𝑧 ∈ R𝑛 :

𝑧
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛}. In the interior of any O

𝑘
, the sign of

𝑧
𝑖
does not change, 𝑖 = 1, . . . , 𝑛. Relabel the open subsets

B
𝑘
= B
𝑘
(X, y, 𝐵), where 𝑘 ∈ {1, 2, . . . , 2𝑛}, so that 𝑍(B

𝑘
) ⊂

int(O
𝑘
). LetA

𝑘
= 𝑍(B

𝑘
) = A

𝑘
(X, y, 𝐵).

Now, B = ⋃
𝑘
cl(B
𝑘
), where cl(B

𝑘
) denotes the closure

of the set. Since cl(B
𝑘
) is bounded by hyperplanes, it is

convex. It is closed and bounded and hence compact. Choose
𝑘 ∈ {1, . . . , 2

𝑛
}, such thatB

𝑘
is non-empty. Since continuous

functions are bounded on compact sets, the supremum of 𝑙𝛽,
when restricted to cl(B

𝑘
), must be attained at one or more

points in cl(B
𝑘
). By Corollary A.3, the supremum (in our

case the maximum) of 𝑙𝛽 on cl(B
𝑘
) is attained on the whole
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set or on a union of faces of dimension less than 𝑚 or at a
vertex. Since there are a finite number of sets to consider, the
maximum of 𝑙𝛽 must occur at a vertex but might occur, for
example, on the whole of a set or on a union of faces. This
is important to consider when using search algorithms such
as the simplex method; as repeated application with different
starting points may give a set of solutions which, for example,
lie on a line segment. Note the following points.

(i) Assuming that 𝑟X = 𝑚, any vertex of the set in R𝑚 at
which 𝑙𝛽 attains its maximum must correspond to 𝑚
data points, possibly more (degeneracy). This is due
to the fact that in R𝑛, the gradient ∇𝑙z(z; p) points in
the direction of the boundary of the corresponding
orthant and away from the boundary ofΩ

𝐵
.

(ii) A MLE is not necessarily unique.
(iii) If 𝑟X < 𝑚, then we may apply the same reasoning to

a subspace ofR𝑚 of dimension 𝑟X on which the error
mapping has full rank 𝑟X.

(iv) Since at theMLE the absolute values of the deviations
|𝑧
𝑖
(
̂𝛽
𝑛
)| will all be small, this proof for finite 𝐵may be

extended to 𝐵 = ∞.

Lemma 8 is useful but we need to know what happens for
more general perturbing functions 𝑔. First, we consider the
Laplace distribution without perturbation.

3.3.2. The Truncated Laplace Probability Density Function.
For 𝑛 = 1, let

𝑓 (𝑧; 𝑝) = (

𝑝

𝑄 (𝑝; 1)

) 𝑒

(−𝑝|𝑧|) (32)

be the Laplace probability density function (8) with scale
parameter 𝑝 and with support [−1, 1]. Then

𝑄 (𝑝; 1) = 2 (1 − 𝑒

−𝑝
) ,

𝑓 (𝑧; 𝑝) =

𝑝

2 (1 − 𝑒

−𝑝
)

𝑒

(−𝑝|𝑧|)
,

(33)

and

log (𝑓 (𝑧; 𝑝)) = log(
𝑝

2 (1 − 𝑒

−𝑝
)

) − 𝑝 |𝑧| . (34)

The latter is a piecewise affine function in 𝑧. It has amaximum
value of log(𝑝/(2(1 − 𝑒−𝑝))) when 𝑧 = 0. More generally, for
𝑛 > 1 and independent deviations (error terms) 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
,

𝑙z (z; 𝑝) =
𝑛

∑

𝑖=1

log (𝑓 (𝑧
𝑖
; 𝑝))

=

𝑛

∑

𝑖=1

(−𝑝






𝑧
𝑖






) + 𝑛 log(
𝑝

2 (1 − 𝑒

−𝑝
)

) .

(35)

Hence, the log-likelihood function is, up to a constant term, a
piecewise linear function in the error terms, with amaximum

attained when all the errors are zero. However, we must
restrict our domain to A ⊂ R𝑛, or equivalently to B ⊂ R𝑚.
The log-likelihood function

𝑙𝛽 (𝛽; 𝑝) = − 𝑝
𝑛

∑

𝑖=1






(y − X𝛽)
𝑖






+ 𝑛 log(
𝑝

2 (1 − 𝑒

−𝑝
)

)

(36)

is a piecewise linear function, up to a constant term, in
between the hyperplanes𝐻−1

𝑖
,𝐻0
𝑖
, and𝐻+1

𝑖
, 𝑖 = 1, . . . , 𝑛. Let

X
𝑗
denote the 𝑗th column of X, 𝑗 = 1, 2 . . . , 𝑚. Let

Sp {X} = Sp {X
1
,X
2
, . . . ,X

𝑚
} ⊂ R

𝑛
, (37)

denote the span of the columns of X.
Now 𝑙z : cl(A

𝑘
) → R has a critical point at z(𝛽) ∈

A
𝑘
if and only if the gradient ∇𝑙z = (𝜕𝑙/𝜕𝑧1, . . . , 𝜕𝑙/𝜕𝑧𝑛)

𝑇

(evaluated at z(𝛽)) is orthogonal to Sp{X}. The columns
of X are tangent vectors to A at this point. The gradient
∇𝑙z = −𝑝(sgn(𝑧

1
(𝛽)), sgn(𝑧

2
(𝛽)), . . . , sgn(𝑧

𝑛
(𝛽)))𝑇 is con-

stant in the interior of any orthant. If we travel along a straight
line path in any orthant, 𝑙z either always increases, always
decreases, or remains constant. Hence, we will not find an
isolated local maximum or minimum inA

𝑘
, an open set, for

the constrained 𝑙z.
We need to be aware of the case whereA

𝑘
lies in or very

close to a level set of 𝑙z. We might need to test for this. This
happens when the sign vector (sgn(𝑧

1
), . . . , sgn(𝑧

𝑛
))

𝑇 is
orthogonal to Sp{X}, or nearly so. In the former case, the
constrained 𝑙 is constant on cl(A

𝑘
). In the latter case, the

constrained 𝑙 will differ very little around the maximum on
cl(A
𝑘
). If this is the case for all the A

𝑘
, then the ML values

for the coefficients 𝛽
𝑗
will not be sharply defined (will have

large variance).

3.3.3. More General Perturbations of the Laplace Probability
Density Function. Thequestion is, given a nontrivial perturb-
ing function 𝑔(𝑧; q), does the log-likelihood function attain
its maximum at a data point? We have given conditions on 𝑔
in Lemma 8 which are sufficient to ensure the maximum is
attained at a data point. We give a more general criterion in
Lemma 10.

Assume that log(𝑔) is non-linear in any orthant. Oth-
erwise, we can write 𝑔 in the form of a scaled Laplace
distribution and apply Lemma 8.Then 𝑙 is the sumof an affine
function and a non-linear function in any orthant.This affine
function is

𝑙
𝑝,𝐵
= − 𝑛 log (𝑄 (𝑝, 𝑔

1
; 𝐵)) + 𝑛 log (𝑝)

+

𝑛

∑

𝑖=1

(−𝑝






𝑧
𝑖






) ,

(38)

the log-likelihood function corresponding to the Laplace dis-
tribution. The non-linear function is
𝑙nlin = − 𝑛 log (𝑄 (𝑝, 𝑔, q; 𝐵)) + 𝑛 log (𝑄 (𝑝, 𝑔1; 𝐵))

+

𝑛

∑

𝑖=1

log𝑔 (


𝑧
𝑖






; q) .
(39)
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Then 𝑙 = 𝑙
𝑝,𝐵
+ 𝑙nlin, and so ∇𝑙 = ∇𝑙

𝑝,𝐵
+ ∇𝑙nlin, where

∇𝑙
𝑝,𝐵
= −𝑝(sgn (𝑧

1
) , sgn (𝑧

2
) , . . . , sgn (𝑧

𝑛
))

𝑇

,

∇𝑙nlin = (
𝑑 log (𝑔 (𝑧

1
; q))

𝑑𝑧
1

,

𝑑 log (𝑔 (𝑧
2
; q))

𝑑𝑧
2

, . . . ,

𝑑 log (𝑔 (𝑧
𝑛
; q))

𝑑𝑧
𝑛

)

𝑇

.

(40)

It is possible that there exist orthants O
𝑘
in which the

set A
𝑘
(X, y, 𝐵) is orthogonal to the gradient ∇𝑙

𝑝,𝐵
. It is

possible that 𝑙
𝑝,𝐵

attains its global maximum (with respect to
A(X, y, 𝐵)) on the whole of such an A

𝑘
(X, y, 𝐵). Hence, it is

important to consider the behaviour of 𝑙nlin in such orthants.

Lemma 10. Assume bounded support and let

𝛾 = sup
0≤𝑧≤𝐵

{










𝑑𝑔 (𝑧; q) /𝑑𝑧
𝑔 (𝑧; q)










}

= sup
0≤𝑧≤𝐵

{











𝑑 log (𝑔 (𝑧; q))
𝑑𝑧











} ,

(41)

where sup denotes supremum.Then, if 𝛾 < 𝑝, the supremum or
maximumof 𝑙 is attained at a data point. In the special case that
𝑆𝑝{X} is orthogonal to (− sgn(𝑧

1
), − sgn(𝑧

2
), . . . , − sgn(𝑧

𝑛
))

𝑇

in any orthant, it may be that the supremum is also attained
elsewhere.

Proof of Lemma 10. Choose A
𝑘
(X, y, 𝐵) = A(X, y, 𝐵) ∩ O

𝑘
,

where 𝑘 ∈ {1, 2 . . . , 2𝑛}, such that the set A
𝑘
(X, y, 𝐵) is non-

empty, choose z ∈ A
𝑘
(X, y, 𝐵) (an open set relative toA), and

let w(𝑘,X) be the projection of

∇𝑙
𝑝,𝐵

𝑝

= (− sgn (𝑧
1
) , − sgn (𝑧

2
) , . . . , − sgn (𝑧

𝑛
))

𝑇 (42)

onto Sp{X}. Consider the case w(𝑘,X) is non-zero. Then the
affine function 𝑙

𝑝,𝐵
is not constant onA

𝑘
(X, y, 𝐵). Given any

k inA
𝑘
(X, y, 𝐵), there exists some 𝜖 > 0 and a map

ℎ
𝑝,𝐵
: (−𝜖, 𝜖) → R

𝑡 → 𝑙
𝑝,𝐵
(k + 𝑡w (𝑘,X))

(43)

which is increasing at 𝑡 = 0, since

(

𝑑ℎ
𝑝,𝐵

𝑑𝑡

)

𝑡=0

= ∇𝑙

𝑇

𝑝,𝐵
(

𝑑 (k + 𝑡w (𝑘,X))
𝑑𝑡

)

𝑡=0

= ∇𝑙

𝑇

𝑝,𝐵
w (𝑘,X)

= (w (𝑘,X))𝑇w (𝑘,X) .

(44)

Now consider

ℎ : (−𝜖, 𝜖) → R

𝑡 → 𝑙 (k + 𝑡w (𝑘,X)) .
(45)

Since 𝑔(𝑧; q) is continuous and strictly positive on [0, 𝐵], 𝛾 is
finite. We show that if 𝛾 < 𝑝, 𝑑ℎ/𝑑𝑡 > 0 at 𝑡 = 0, that is, at k.
Specifically,

𝑑ℎ

𝑑𝑡

= −𝑝

𝑛

∑

𝑖=1

(sgn (V
𝑖
+ 𝑡𝑤
𝑖
(𝑘,X)) 𝑤

𝑖
(𝑘,X))

+

𝑛

∑

𝑖=1

(𝑑𝑔 (






𝑧
𝑖






; q) /𝑑 


𝑧
𝑖






)

ℎ(𝑡)

𝑔 (






V
𝑖
+ 𝑡𝑤
𝑖
(𝑘,X)



; q)

× (sgn (V
𝑖
+ 𝑡𝑤
𝑖
(𝑘,X))) 𝑤

𝑖
(𝑘,X)

≥ −𝑝

𝑛

∑

𝑖=1

(sgn (V
𝑖
+ 𝑡𝑤
𝑖
(𝑘,X)) 𝑤

𝑖
(𝑘,X))

+ 𝛾

𝑛

∑

𝑖=1

(sgn (V
𝑖
+ 𝑡𝑤
𝑖
(𝑘,X)) 𝑤

𝑖
(𝑘,X))

= (1 −

𝛾

𝑝

) (w (𝑘,X))𝑇w (𝑘,X)

> 0

(46)

if 𝛾 < 𝑝 and w(𝑘,X) is non-zero. Then the supremum of
𝑙, constrained to cl(A

𝑘
(X, y, 𝐵)), must be attained on the

boundary of A
𝑘
(X, y, 𝐵), relative to A, and this must be at

a data point due to the direction of ∇𝑙.
In the limiting case, where w(𝑘,X) = 0, but we still

have 𝛾 < 𝑝, we find that the supremum of 𝑙, constrained
to cl(A

𝑘
(X, y, 𝐵)) (relative to A), must be attained at a data

point but may be attained at other points in A
𝑘
(X, y, 𝐵) as

well. Assume this is not the case, that is, there exists no data
point at which 𝑙 attains its supremum when constrained to
cl(A
𝑘
(X, y, 𝐵)). We find a contradiction as follows. Assume

there exists some k ∈ A
𝑘
(X, y, 𝐵), an open set (relative toA),

such that

𝑙z (k) − sup {𝑙z (z) : z ∈ bd (O𝑘) ∩ cl (A𝑘 (X, y, 𝐵))}

= 𝜏 > 0,

(47)

where bd denotes boundary. Imagine perturbing the columns
of X slightly (and continuously) to obtain X so that 𝑙𝛽, a
continuous function, conditional on X, changes by at most
𝜏/3, that is,







𝑙𝛽 (𝛽; p;X, y) − 𝑙𝛽 (𝛽; p;X

, y)



<

𝜏

3

(48)

for all 𝛽 ∈ B
𝑘
(X, y, 𝐵) ∩ B

𝑘
(X, y, 𝐵), and so that now

w(𝑘,X) ̸= 0. We also require the perturbation small enough
that






sup {𝑙z (z; p) : z ∈ bd (O𝑘) ∩ cl (A𝑘 (X, y, 𝐵))}

− sup {𝑙z (z; p) : z ∈ bd (O𝑘) ∩ cl (A𝑘 (X

, y, 𝐵))}




<

𝜏

3

.

(49)



8 ISRN Probability and Statistics

Now k = y − X𝛽k for some unique 𝛽k. Let k

= y − X𝛽k. If

the perturbation ofX is small enough, then𝛽k ∈B𝑘(X

, y, 𝐵)

and so k ∈ A
𝑘
(X, y, 𝐵).

Now, |𝑙z(k

) − 𝑙z(k)| < 𝜏/3. Hence,

𝑙z (k

) − sup {𝑙z (z) : z ∈ bd (O𝑘) ∩ cl (A𝑘 (X


, y, 𝐵))}

>

𝜏

3

> 0,

(50)

which is not possible since w(𝑘,X) ̸= 0. Hence, we have a
contradiction. Now, for completeness, assume there exists
some r ∈ bd(A

𝑘
(X, y, 𝐵)), r not a data point (that is some

𝑟
𝑖
= ±𝐵) such that

𝑙z (r) − sup {𝑙z (z) : z ∈ bd (O𝑘) ∩ cl (A𝑘 (X, y, 𝐵))}

= 𝜏 > 0.

(51)

Then there exists k ∈ A
𝑘
(X, y, 𝐵), such that

𝑙z (r) − 𝑙z (k) <
𝜏

6

. (52)

Hence,

𝑙z (k) − sup {𝑙z (z) : z ∈ bd (O𝑘) ∩ cl (A𝑘 (X, y, 𝐵))}

>

5𝜏

6

> 0.

(53)

The contradiction follows as above. Hence, we have proved
the lemma.

3.3.4. An Amended Laplace Probability Density Function with
Added Kurtosis. We may apply Lemma 10 to show that, for
the amended Laplace probability density functionwith added
kurtosis (Example 5) and for realistic values of 𝑝 and 𝑞, the
maximum of the log-likelihood function must be attained at
a data point. Here, 𝑔(𝑧; 𝑞) = 𝑔

2
(𝑧; 𝑞) = 1 + 𝑞(𝑧

3
− 3𝑧) =

1 + 𝑞𝐻
3
(𝑧) on [0, 1], that is, 𝑔

2
(|𝑧|; 𝑞) = 1 + 𝑞(𝐻

3
(|𝑧|)) on

[−1, 1]. In 𝑛 dimensions,

𝑙 (𝛽; p;X, y) = − 𝑛 log (𝑄 (𝑝, 𝑔
2
, 𝑞; 1))

+ 𝑛 log (𝑝) +
𝑛

∑

𝑖=1

(−𝑝






𝑦
𝑖
− (X𝛽)

𝑖






)

+

𝑛

∑

𝑖=1

log (1 + 𝑞𝐻
3
(






𝑦
𝑖
− (X𝛽)

𝑖






))

= − 𝑛 log (𝑄 (𝑝, 𝑔
2
, 𝑞; 1)) + 𝑛 log (𝑝)

+

𝑛

∑

𝑖=1

(−𝑝






𝑦
𝑖
− (X𝛽)

𝑖






)

+

𝑛

∑

𝑖=1

log (1 + 𝑞 (


𝑦
𝑖
− (X𝛽)

𝑖






3

−3






𝑦
𝑖
− (X𝛽)

𝑖






) ) .

(54)

Consider, for 𝑧 ∈ [0, 1],

𝑑 log (𝑔
2
(𝑧; 𝑞))

𝑑𝑧

=

𝑑 (log (1 + 𝑞 (𝑧3 − 3𝑧)))
𝑑𝑧

=

3𝑞 (𝑧

2
− 1)

1 + 𝑞 (𝑧

3
− 3𝑧)

,

𝑑

2 log (𝑔
2
(𝑧; 𝑞))

𝑑𝑧

2
=

𝑑

2
(log (1 + 𝑞 (𝑧3 − 3𝑧)))

𝑑𝑧

2

=

(3𝑞) (2𝑧 − 𝑞 (3 + 𝑧

4
))

(1 + 𝑞 (𝑧

3
− 3𝑧))

2
.

(55)

When 0 < 𝑞 < 0.5, 𝑑2 log(𝑔
2
(𝑧; 𝑞))/𝑑𝑧

2 is negative when
𝑧 = 0 and positive when 𝑧 = 1, and so the continuous
monotonic function log(𝑔

2
) has a point of inflection, where

𝑑

2 log(𝑔
2
(𝑧; 𝑞))/𝑑𝑧

2
= 0 in (0, 1), at say 𝜔(𝑞). Hence, log(𝑔

2
)

and 𝑙 are both concave and convex on [0, 1]. When 𝑞 is small,
the concavity occurs close to the origin and the functions
are convex on most of (0, 1). Moreover, 𝑑 log(𝑔

2
(𝑧; 𝑞))/𝑑𝑧 is

always negative on (0, 1), and its limit as 𝑧 → ∞ is also
negative, so we will not get isolated local maxima in one
dimension.The function log(𝑔

2
(𝑧; 𝑞)) and its first and second

derivatives are plotted in Figures 1, 2, and 3, respectively;
setting 𝑞 = 0.025, a typical value. Reading from Figure 2, the
upper bound 𝛾 is approximately 0.075, when 𝑞 = 0.025. Since
typically𝑝 ≥ 3, the criterion (𝛾 < 𝑝) for Lemma 10 is satisfied.

3.3.5. Non-Increasing Perturbations Both Concave and Con-
vex. In certain situations we might find the criteria for both
Lemmas 8 and 10 are not satisfied but that log𝑔(𝑧; q) is non-
increasing on [0, 𝐵] and convex on [𝑤(𝑞), 𝐵], where 𝑤(𝑞) is
small. Since a sum of convex functions is convex (see [8]),
𝑙 will be convex wherever log𝑔(|𝑧

𝑖
|; q) is convex for 𝑖 =

1, 2, . . . , 𝑛. For example, for 𝑔 = 𝑔
2
and 𝐵 = 1, we can prove a

partial result as follows. By restricting to the domain

B (X, y, [𝜔 (𝑞) , 1])

=

𝑛

⋂

𝑖=1

{𝛽 ∈ R
𝑚
: 𝜔 (𝑞) ≤






𝑧
𝑖
(𝛽)





≤ 1} ⊂B (X, y, 1)

(56)

or equivalently by substituting for each set A
𝑘
(X, y, 1) the

subset

{z ∈ ∩A
𝑘
(X, y, 1) : 𝜔 (𝑞) < 



𝑧
𝑖






< 1, 𝑖 = 1, . . . , 𝑛}

⊂ A
𝑘
(X, y, 1) ,

(57)

and applying convex function theory as for Lemma 8 we can
prove that there exists 𝛽

1
∈ B(X, y, [𝜔(𝑞), 1]) at which 𝑙

attains its maximum, and there exists at least one index 𝑖
such that 𝑧

𝑖
(𝛽
1
) = 𝜔(𝑞). Hence, there exists some 𝛽

2
∈

B(X, y, 1) = B(X, y, [0, 1]) at which 𝑙 attains its maximum,
and there exists at least one index 𝑖 such that 𝑧

𝑖
(𝛽
2
) ≤ 𝜔(𝑞).

In other words, there exists some point at which 𝑙 has a
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Figure 1: The non-linear part of the log-likelihood function, 𝑛 = 1;
log(𝑔(𝑧; 𝑞)), 𝑞 = 0.025.
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3
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+
q
(z

3
−
3
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Figure 2: The first derivative of log(𝑔(𝑧; 𝑞)), 𝑞 = 0.025.

maximum at which at least one of the errors is small. It makes
sense to search for the maxima of 𝑙 near or at vertices.

For 𝑔 = 𝑔
2
, we may apply Lemma 10 and so do not need

this partial result, but for a perturbation similar in shape
to 𝑔
2
, non-increasing everywhere on [0, 1], with log𝑔(𝑧; q)

convex everywhere on (𝜔(𝑔; q), 1], concave everywhere on
[0, 𝜔(𝑔; q)), for some small positive 𝜔(𝑔; q), and with steep
slope at the point of inflection (𝑧 = 𝜔(𝑔; q)), such analysis
would be useful.

4. Statistics for Linear Model Coefficients
Assuming Perturbed and Truncated Laplace
Response Functions

4.1. Dealing with Abrupt Changes in Gradient. The inclusion
of the modulus (absolute value) function in the Laplace
probability density function (6) (and variations thereof) is the
cause of abrupt changes in the gradient of the log-likelihood

0 0.2 0.4 0.6 0.8 1
z

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

3
q
(2
z
−
q
(3
z
4
))
/(
1
+
q
(z

3
−
3
z
))
2

Figure 3: The second derivative of log(𝑔(𝑧; 𝑞)), 𝑞 = 0.025.

function 𝑙𝛽 (see Section 4.2). This section is devoted to deal-
ing with the problems which are associated with these abrupt
changes, encountered when deriving statistical formulae, for
example, for standard errors.

The fact that 𝑙𝛽 is not differentiable in the classical sense
at a local maximummeans that the assumptions made in the
derivation of the usual classical formulae for the information
matrix, the expected value of theHessian of the log-likelihood
function and the variance-covariance matrix for the model
coefficients𝛽

𝑗
, 𝑗 = 1, 2, . . . , 𝑚, are notmet. ForC2 probability

density functions (and C2 log-likelihood functions), these
formulae are derived using Taylor series. We find alternative
expressions for these quantities assuming the truncated
and/or perturbed Laplace response functions (as defined in
Section 2) which areC3 where the modulus function is non-
zero. In Section 5 these expressions will be used to prove the
asymptotic convergence of our MLE to a random variable
with a normal distribution.

4.2. Differentiation in a Generalized Sense. The following
generalized functions are required to determine the first
and second partial derivatives of the log-likelihood function
𝑙𝛽, with respect to the coefficients 𝛽

𝑗
. These derivatives are

needed for the calculation of the standard errors. We require

sgn (𝑧) =
{
{

{
{

{

1, 𝑧 > 0,

0, 𝑧 = 0,

−1, 𝑧 < 0

(58)

and 𝛿(𝑧)which is the delta function, that is, 𝛿(𝑧) = 0 except at
𝑧 = 0, and ∫∞

−∞
𝛿(𝑧)𝑑𝑧 = 1. These expressions and the modu-

lus function are connected by

𝑑 |𝑧|

𝑑𝑧

= sgn (𝑧) , (59)

𝑑 sgn (𝑧)
𝑑𝑧

= 2𝛿 (𝑧) , (60)
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where the differentiation is taken in the generalized sense (see
[9, 10]). Hence, for 𝑧

𝑖
∈ [−𝐵, 𝐵], the generalized derivative

𝑑𝑔 (






𝑧
𝑖






; q)
𝑑𝑧
𝑖

= sgn (𝑧
𝑖
)

𝑑𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






. (61)

Also, the derivative of the delta function may be defined via
integration by parts, assuming ℎ : R → R isC1, we have

∫

∞

−∞

𝛿


(𝑡) ℎ (𝑡) 𝑑𝑡 = −∫

∞

−∞

𝛿 (𝑡) ℎ


(𝑡) 𝑑𝑡 = −ℎ


(0) . (62)

In Section 5, we investigate the behaviour of our model as
𝑛 → ∞, and so use subscripts to clarify the variables under
consideration (z or 𝛽) and/or the dimension of the space(s)
under consideration. Using (10) and (59), it follows that

𝜕𝑙

𝜕𝑧
𝑖

=

𝜕𝑙z,𝑛
𝜕𝑧
𝑖

= −𝑝 sgn (𝑧
𝑖
) +

𝑑

𝑑𝑧
𝑖

log (𝑔 (


𝑧
𝑖






; q))

= −𝑝 sgn (𝑧i) +
sgn (𝑧

𝑖
)

𝑔 (






𝑧
𝑖






; q)
(

𝑑𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






) .

(63)

Since z = y − X
𝑛,𝑚
𝛽 (see (5)),

𝜕𝑙

𝜕𝛽
𝑗

=

𝜕𝑙𝛽,𝑛,𝑚

𝜕𝛽
𝑗

= 𝑝

𝑛

∑

𝑖=1

𝑥
𝑖𝑗
sgn (𝑧

𝑖
)

−

𝑛

∑

𝑖=1

𝑥
𝑖𝑗

sgn (𝑧
𝑖
)

𝑔 (






𝑧
𝑖






; q)
𝑑𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






.

(64)

Letting ∇𝑙𝛽,𝑛,𝑚 denote the gradient of 𝑙𝛽,𝑛,𝑚 and letting ∇𝑙z,𝑛
denote the gradient of 𝑙z,𝑛, we have

∇𝑙𝛽,𝑛,𝑚 = −X
𝑇

𝑛,𝑚
∇𝑙z,𝑛. (65)

In addition, using (60) and omitting the dependence of 𝑔
upon its parameters for brevity,

𝜕

2
𝑙z,𝑛
𝜕𝑧

2

𝑖

= −2𝑝𝛿 (𝑧
𝑖
) + 2𝛿 (𝑧

𝑖
)

1

𝑔 (






𝑧
𝑖






)

(

𝑑𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






)

+ sgn (𝑧
𝑖
)

𝑑

𝑑𝑧
𝑖

(

1

𝑔 (






𝑧
𝑖






)

𝑑𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






)

= −2𝑝𝛿 (𝑧
𝑖
) + 2𝛿 (𝑧

𝑖
)

1

𝑔 (






𝑧
𝑖






)

(

𝑑𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






)

+ (sgn (𝑧
𝑖
))

2 𝑑

𝑑






𝑧
𝑖






(

1

𝑔 (






𝑧
𝑖






)

𝑑𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






)

= −2𝑝𝛿 (𝑧
𝑖
) + 2𝛿 (𝑧

𝑖
)

1

𝑔 (






𝑧
𝑖






)

(

𝑑𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






)

+ (sgn (𝑧
𝑖
))

2

× [

1

𝑔 (






𝑧
𝑖






)

𝑑

2
𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






2
− (

1

𝑔(






𝑧
𝑖






)

2
)(

𝑑𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






)

2

]

= −2𝑝𝛿 (𝑧
𝑖
) + 2𝛿 (𝑧

𝑖
)

1

𝑔 (






𝑧
𝑖






)

(

𝑑𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






)

+

(sgn (𝑧
𝑖
))

2

(𝑔 (






𝑧
𝑖






))

2
[𝑔 (






𝑧
𝑖






)

𝑑

2
𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






2
− (

𝑑𝑔 (






𝑧
𝑖






)

𝑑






𝑧
𝑖






)

2

] ,

(66)

and, if 𝑖 ̸= 𝑗,

𝜕

2
𝑙z,𝑛

𝜕𝑧
𝑖
𝜕𝑧
𝑗

= 0. (67)

LetHz,𝑛 denote the generalized Hessian of 𝑙z,𝑛, where

Hz,𝑛 =

(

(

(

(

(

(

(

𝜕

2
𝑙

𝜕𝑧

2

1

𝜕

2
𝑙

𝜕𝑧
1
𝜕𝑧
2

⋅ ⋅ ⋅

𝜕

2
𝑙

𝜕𝑧
1
𝜕𝑧
𝑛

𝜕

2
𝑙

𝜕𝑧
2
𝜕𝑧
1

𝜕

2
𝑙

𝜕𝑧

2

2

⋅ ⋅ ⋅

𝜕

2
𝑙

𝜕𝑧
2
𝜕𝑧
𝑛

...
𝜕

2
𝑙

𝜕𝑧
𝑛
𝜕𝑧
1

𝜕

2
𝑙

𝜕𝑧
𝑛
𝜕𝑧
2

⋅ ⋅ ⋅

𝜕

2
𝑙

𝜕𝑧

2

𝑛

)

)

)

)

)

)

)

, (68)

and let 𝐸(Hz,𝑛) denote its expected value. Then Hz,𝑛 and
𝐸(Hz,𝑛) are diagonal matrices. Since the diagonal elements
of 𝐸(Hz,𝑛) are all equal (see Section 4.6), this matrix is a
multiple of the identity. We have

𝐸 (Hz,𝑛) = 𝐸(
𝜕

2
𝑙z,𝑛
𝜕𝑧
1

2
) 𝐼
𝑛
, (69)

where 𝐼
𝑛
denotes the 𝑛 × 𝑛 identity matrix. LetH𝛽,𝑛,𝑚 denote

the generalized Hessian of 𝑙𝛽,𝑛,𝑚, where

H𝛽,𝑛,𝑚 =

(

(

(

(

(

(

(

𝜕

2
𝑙

𝜕𝛽

2

1

𝜕

2
𝑙

𝜕𝛽
1
𝜕𝛽
2

⋅ ⋅ ⋅

𝜕

2
𝑙

𝜕𝛽
1
𝜕𝛽
𝑚

𝜕

2
𝑙

𝜕𝛽
2
𝜕𝛽
1

𝜕

2
𝑙

𝜕𝛽

2

2

⋅ ⋅ ⋅

𝜕

2
𝑙

𝜕𝛽
2
𝜕𝛽
𝑚

...
𝜕

2
𝑙

𝜕𝛽
𝑚
𝜕𝛽
1

𝜕

2
𝑙

𝜕𝛽
𝑚
𝜕𝛽
2

⋅ ⋅ ⋅

𝜕

2
𝑙

𝜕𝛽

2

𝑚

)

)

)

)

)

)

)

, (70)

and let 𝐸(H𝛽,𝑛,𝑚) denote its expected value. Then

H𝛽,𝑛,𝑚 = X𝑇
𝑛,𝑚

Hz,𝑛X𝑛,𝑚 (71)

and

𝐸 (H𝛽,𝑛,𝑚) = X𝑇
𝑛,𝑚
𝐸 (Hz,𝑛)X𝑛,𝑚

= 𝐸(

𝜕

2
𝑙z,𝑛
𝜕𝑧

2

1

)X𝑇
𝑛,𝑚

X
𝑛,𝑚
.

(72)
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If any 𝑧
𝑖
= 0, then the 𝑖th diagonal element ofHz,𝑛 is infinite.

In this case H𝛽,𝑛,𝑚 has infinite components. We prove in
Section 4.6 that 𝐸(𝜕2𝑙z,𝑛/𝜕𝑧

2

1
) is finite.

4.3. A Classical Relation to Be Generalized. LetJ𝛽,𝑛,𝑚 denote
the𝑚 × 𝑚 Fisher information matrix, where

(J𝛽,𝑛,𝑚)
𝑗𝑘

= 𝐸[(

𝜕𝑙𝛽,𝑛,𝑚

𝜕𝛽
𝑗

− 𝐸(

𝜕𝑙𝛽,𝑛,𝑚

𝜕𝛽
𝑗

))(

𝜕𝑙𝛽,𝑛,𝑚

𝜕𝛽
𝑘

− 𝐸(

𝜕𝑙𝛽,𝑛,𝑚

𝜕𝛽
𝑘

))] .

(73)

The components of our MLE ̂𝛽
𝑛
depend on the errors 𝑧

𝑖

and have a distribution whose variance-covariance matrix is
denotedV𝛽,𝑛,𝑚, where

(V𝛽,𝑛,𝑚)
𝑗𝑘
= 𝐸 [(𝛽

𝑗
− 𝐸 (𝛽

𝑗
)) (𝛽
𝑘
− 𝐸 (𝛽

𝑘
))] , (74)

𝑗 = 1, 2, . . . , 𝑚, and 𝑘 = 1, 2, . . . , 𝑚. If the log-likelihood
function 𝑙 was sufficiently smooth around the region of
interest (i.e., around its maximum value), then Taylor series
expansions could be used to derive a relationship between
𝐸(H𝛽,𝑛,𝑚),J𝛽,𝑛,𝑚, andV𝛽,𝑛,𝑚, namely,

V𝛽,𝑛,𝑚 = J
−1

𝛽,𝑛,𝑚 = (−𝐸 (H𝛽,𝑛,𝑚))
−1

, (75)

(see [1]). However, our 𝑙 is not sufficiently smooth, and so
we cannot make use of this relationship without further
justification. In general, (75) does not hold, assuming a
truncated (and possibly perturbed) Laplace distribution.

In Sections 4.5 and 4.6 we calculate the expected values of
the first and second partial derivatives of the log-likelihood
function 𝑙𝛽,𝑛,𝑚 using generalized functions; this enables us
to derive a generalized Taylor series expansion for the
log-likelihood function about a maximum even when the
maximum is, for example, on a ridge or at a vertex. Also,
this enables us to derive an expression for the generalized
variance-covariance matrix for the MLEs of the model coef-
ficients and an expression for the generalized log-likelihood
ratio statistic.These formulae differ from the standard formu-
lae for the case of smooth log-likelihood functions, although
their form is similar. Specifically, in our case, we prove that
J𝛽,𝑛,𝑚 is a multiple of 𝐸(H𝛽,𝑛,𝑚), but that the multiple is not
−1, rather, it is a negative real number that depends on 𝑝, the
perturbation 𝑔, its parameters q, and the bound 𝐵. We prove
that our generalizedV𝛽,𝑛,𝑚 is a multiple ofJ−1𝛽,𝑛,𝑚, where the
multiple is a positive real number depending on 𝑝, 𝑔, q, and
𝐵. We assume independent error distributions.

4.4. The Mean and Variance of the Partial Derivatives of
the Log-Likelihood Function. The mean and the variance of
𝜕𝑙/𝜕𝑧
𝑖
are required in the calculation of J𝛽,𝑛,𝑚. Recall 𝑓(𝑧1,

. . . , 𝑧
𝑛
; p) = Π𝑛

𝑖=1
𝑓(𝑧
𝑖
; p) is the joint probability density func-

tion for the independent deviations (errors), and that

𝑙 = 𝑙z,𝑛 =
𝑛

∑

𝑖=1

log (𝑓 (𝑧
𝑖
; p)) , (76)

so

𝜕𝑙

𝜕𝑧
𝑖

=

𝜕𝑙z,𝑛
𝜕𝑧
𝑖

=

𝜕 log (𝑓 (𝑧
𝑖
; p))

𝜕𝑧
𝑖

. (77)

Let

𝜇
𝑖
(𝑝, 𝑔, q; 𝐵) = 𝐸(

𝜕𝑙z,𝑛
𝜕𝑧
𝑖

)

= ∫

Ω
𝐵

(

𝜕 log (𝑓 (𝑧
𝑖
; p))

𝜕𝑧
𝑖

)(𝑓 (z; p)) 𝑑𝑧
1
⋅ ⋅ ⋅ 𝑑𝑧
𝑛

= ∫

𝐵

−𝐵

(

𝜕 log (𝑓 (𝑧
𝑖
; p))

𝜕𝑧
𝑖

) (𝑓 (𝑧
𝑖
; p)) 𝑑𝑧

𝑖
,

(78)

𝑖 = 1, . . . , 𝑛; then 𝜇(𝑝, 𝑔, q; 𝐵) = 𝜇
𝑖
(𝑝, 𝑔, q; 𝐵) is independent

of index 𝑖. Since 𝑓(𝑧
𝑖
; p) = 𝑓(−𝑧

𝑖
; p), 𝑖 = 1, . . . , 𝑛, 𝐿 and 𝑙 are

symmetric about the origin, and so

𝜇 = 𝜇 (𝑝, 𝑔, q; 𝐵) = 0 (79)

for any choice of 𝑝, 𝑔, q, and 𝐵. Let

]
𝑖
(𝑝, 𝑔, q; 𝐵) = var(

𝜕𝑙z,𝑛
𝜕𝑧
𝑖

)

= ∫

Ω
𝐵

(

𝜕 log (𝑓 (𝑧
𝑖
; p))

𝜕𝑧
𝑖

)

2

(𝑓 (z; p)) 𝑑𝑧
1
⋅ ⋅ ⋅ 𝑑𝑧
𝑛

= ∫

𝐵

−𝐵

(

𝜕 log (𝑓 (𝑧
𝑖
; p))

𝜕𝑧
𝑖

)

2

(𝑓 (𝑧
𝑖
; p)) 𝑑𝑧

𝑖
,

(80)

where var denotes variance. Using (63) for 𝜕𝑙z,𝑛/𝜕𝑧𝑖,

]
𝑖
(𝑝, 𝑔, q; 𝐵) = 2∫

𝐵

0

(𝐹 (𝑧
𝑖
; p))2𝑓 (𝑧

𝑖
; p) 𝑑𝑧

𝑖
, (81)

where, for 𝑧 ∈ (0, 𝐵],

𝐹 (𝑧; p) = 𝐹 (𝑧; 𝑝, 𝑔, q) = −𝑝 + 1

𝑔 (𝑧)

𝑑𝑔 (𝑧; q)
𝑑𝑧

(82)

and 𝐹(0; p) = 0. Since ]
𝑖
(𝑝, 𝑔, q; 𝐵) is independent of index

𝑖, we omit the subscript. Hence, the information matrixJz,𝑛,
defined with respect to 𝑙z,𝑛, is

Jz,𝑛 = ]𝐼
𝑛
. (83)

If 𝑔(𝑧; q) = 𝑔
1
(𝑧) = 1, then 𝐹(𝑧; 𝑝) = 𝐹(𝑧; 𝑝, 𝑔

1
) = −𝑝,

and so

] (𝑝, 𝑔
1
; 𝐵) = 𝑝

2
. (84)

For the nontrivial perturbing function 𝑔
2
, for fixed 𝑝 and 𝑞,

one can show that ] depends on 𝐵 by direct calculation.
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4.5. The Information Matrix. We calculate the information
matrix J𝛽,𝑛,𝑚 (conditional on 𝑝, 𝑔, q, and 𝐵). We are trying
to quantify the steepness of the slope of 𝑙𝛽,𝑛,𝑚 around a
maximum, in the directions represented by the coefficients
𝛽
𝑗
. If 𝑙𝛽,𝑛,𝑚 is very flat in one direction, then the model

coefficient representing that direction is not well defined (will
have large variance). When calculating J𝛽,𝑛,𝑚, we are taking
into account the behaviour of the gradient of 𝑙𝛽,𝑛,𝑚 on a whole
neighbourhood of the MLE (how it differs from the expected
value) and discontinuities on sets of measure zero can be
accommodated. Recall (64), for 𝑗 = 1, 2, . . . , 𝑚,

𝜕𝑙𝛽,𝑛,𝑚

𝜕𝛽
𝑗

= 𝑝

𝑛

∑

𝑖=1

𝑥
𝑖𝑗
sgn (𝑧

𝑖
)

−

𝑛

∑

𝑖=1

𝑥
𝑖𝑗

sgn (𝑧
𝑖
)

𝑔 (






𝑧
𝑖






; q)
(

𝑑𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






) .

(85)

Hence, omitting some subscripts on 𝑙 for brevity, we obtain

𝐸(

𝜕𝑙𝛽,𝑛,𝑚

𝜕𝛽
𝑗

)

= ∫

Ω
𝐵

𝜕𝑙

𝜕𝛽
𝑗

(𝑧
1
, . . . , 𝑧

𝑛
) 𝑓 (𝑧
1
, . . . , 𝑧

𝑛
; p) 𝑑𝑧

1
⋅ ⋅ ⋅ 𝑑𝑧
𝑛

= ∫

Ω
𝐵

(

𝑛

∑

𝑖=1

(

𝜕𝑙

𝜕𝑧
𝑖

𝜕𝑧
𝑖

𝜕𝛽
𝑗

))

× 𝑓 (𝑧
1
; p) ⋅ ⋅ ⋅ 𝑓 (𝑧

𝑛
; p) 𝑑𝑧

1
⋅ ⋅ ⋅ 𝑑𝑧
𝑛

=

𝑛

∑

𝑖=1

(−𝑥
𝑖𝑗
)∫

𝐵

−𝐵

(

𝜕𝑙

𝜕𝑧
𝑖

)𝑓 (𝑧
𝑖
; p) 𝑑𝑧

𝑖

=

𝑛

∑

𝑖=1

(−𝑥
𝑖𝑗
) 𝐸(

𝜕𝑙

𝜕𝑧
𝑖

)

=

𝑛

∑

𝑖=1

(−𝑥
𝑖𝑗
) 𝜇 = 0.

(86)

Since the expectations of the partial derivatives of 𝑙𝛽,𝑛,𝑚 are
zero, the diagonal elements ofJ𝛽,𝑛,𝑚 are an indication of the
steepness of the gradient around the maximum likelihood
estimate. Now,

(J𝛽,𝑛,𝑚)
𝑗𝑘
= 𝐸[(

𝜕𝑙

𝜕𝛽
𝑗

− 𝐸(

𝜕𝑙

𝜕𝛽
𝑗

))(

𝜕𝑙

𝜕𝛽
𝑘

− 𝐸(

𝜕𝑙

𝜕𝛽
𝑘

))]

= 𝐸[(

𝜕𝑙

𝜕𝛽
𝑗

)(

𝜕𝑙

𝜕𝛽
𝑘

)]

= ∫

Ω
𝐵

(

𝜕𝑙

𝜕𝛽
𝑗

)(

𝜕𝑙

𝜕𝛽
𝑘

)𝑓 (z; p) 𝑑𝑧
1
⋅ ⋅ ⋅ 𝑑𝑧
𝑛

= ∫

Ω
𝐵

(

𝑛

∑

𝑖=1

(

𝜕𝑙

𝜕𝑧
𝑖

𝜕𝑧
𝑖

𝜕𝛽
𝑗

))

× (

𝑛

∑

𝑡=1

(

𝜕𝑙

𝜕𝑧
𝑡

𝜕𝑧
𝑡

𝜕𝛽
𝑘

))𝑓 (z; p) 𝑑𝑧
1
⋅ ⋅ ⋅ 𝑑𝑧
𝑛

= ∫

Ω
𝐵

(

𝑛

∑

𝑖=1

(−𝑥
𝑖𝑗

𝜕𝑙

𝜕𝑧
𝑖

))

× (

𝑛

∑

𝑡=1

(−𝑥
𝑡𝑘

𝜕𝑙

𝜕𝑧
𝑡

))

× 𝑓 (𝑧
1
; p) ⋅ ⋅ ⋅ 𝑓 (𝑧

𝑛
; p) 𝑑𝑧

1
⋅ ⋅ ⋅ 𝑑𝑧
𝑛

= ∫

Ω
𝐵

(

𝑛

∑

𝑖=1

(𝑥
𝑖𝑗

𝜕𝑙

𝜕𝑧
𝑖

)(𝑥
𝑖𝑘

𝜕𝑙

𝜕𝑧
𝑖

))

× 𝑓 (𝑧
1
; p) ⋅ ⋅ ⋅ 𝑓 (𝑧

𝑛
; p) 𝑑𝑧

1
⋅ ⋅ ⋅ 𝑑𝑧
𝑛
,

(87)

since the cross-terms indexed by 𝑖 ̸= 𝑡 equal zero by symmetry,
that is,

∫

𝑧
𝑖
=𝐵,𝑧
𝑡
=𝐵

𝑧
𝑖
=−𝐵,𝑧

𝑡
=−𝐵

(𝑥
𝑖𝑗

𝜕𝑙

𝜕𝑧
𝑖

)(𝑥
𝑡𝑘

𝜕𝑙

𝜕𝑧
𝑡

)𝑓 (𝑧
𝑖
; p)

× 𝑓 (𝑧
𝑡
; p) 𝑑𝑧

𝑖
𝑑𝑧
𝑡
= 𝑥
𝑖𝑗
𝑥
𝑡𝑘
𝜇

2
= 0.

(88)

So

(J𝛽,𝑛,𝑚)
𝑗𝑘
= ∫

Ω
𝐵

(

𝑛

∑

𝑖=1

(𝑥
𝑖𝑗
𝑥
𝑖𝑘
(

𝜕𝑙

𝜕𝑧
𝑖

)

2

))

× 𝑓 (𝑧
1
; p) ⋅ ⋅ ⋅ 𝑓 (𝑧

𝑛
; p) 𝑑𝑧

1
⋅ ⋅ ⋅ 𝑑𝑧
𝑛

=

𝑛

∑

𝑖=1

(𝑥
𝑖𝑗
𝑥
𝑖𝑘
)∫

𝐵

−𝐵

(

𝜕𝑙

𝜕𝑧
𝑖

)

2

𝑓 (𝑧
𝑖
; p) 𝑑𝑧

𝑖

= ] (𝑝, 𝑔, q; 𝐵)
𝑛

∑

𝑖=1

(𝑥
𝑖𝑗
𝑥
𝑖𝑘
) .

(89)

Hence,

J𝛽,𝑛,𝑚 = X𝑇
𝑛,𝑚

Jz,𝑛X𝑛,𝑚 = ] (𝑝, 𝑔, q; 𝐵)X𝑇
𝑛,𝑚

X
𝑛,𝑚
. (90)

If 𝑔(𝑧; q) = 𝑔
1
(𝑧) = 1, thenJ𝛽,𝑛,𝑚 = 𝑝

2X𝑇
𝑛,𝑚

X
𝑛,𝑚

.

4.6. The Expected Value of the Generalized Hessian. In order
to calculate the expected value of the generalized Hessian we
require

𝐸 (H𝛽,𝑛,𝑚) = X𝑇
𝑛,𝑚
𝐸 (Hz,𝑛)X𝑛,𝑚 = 𝐸(

𝜕

2
𝑙z,𝑛
𝜕𝑧

2

1

)X𝑇
𝑛,𝑚

X
𝑛,𝑚
,

(91)

and

𝜕

2
𝑙z,𝑛
𝜕𝑧

2

𝑖

= − 2𝑝𝛿 (𝑧
𝑖
) + 2𝛿 (𝑧

𝑖
)

1

𝑔 (






𝑧
𝑖






; q)
(

𝑑𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






)

+

(sgn (𝑧
𝑖
))

2

(𝑔 (






𝑧
𝑖






; q))2

× [𝑔 (






𝑧
𝑖






; q)
𝑑

2
𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






2
− (

𝑑𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






)

2

] .

(92)
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Let

𝜁
𝑖
(𝑝, 𝑔, q; 𝐵) = 𝐸(

𝜕

2
𝑙z,𝑛
𝜕𝑧

2

𝑖

) = ∫

Ω
𝐵

𝜕

2
𝑙

𝜕𝑧

2

𝑖

𝑓 (z; p) 𝑑𝑧
1
⋅ ⋅ ⋅ 𝑧
𝑛

= ∫

𝐵

−𝐵

𝜕

2
𝑙

𝜕𝑧

2

𝑖

𝑓 (𝑧
𝑖
; p) 𝑑𝑧

𝑖

= − 2𝑝𝑓 (0; p) + 2𝑓 (0; p) 1

𝑔 (0; q)

× (

𝑑𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






)

𝑧
𝑖
=0

+ ∫

𝐵

−𝐵

1

𝑔 (






𝑧
𝑖






; q)
𝑑

2
𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






2
𝑓 (𝑧
𝑖
; p) 𝑑𝑧

𝑖

− ∫

𝐵

−𝐵

1

(𝑔 (






𝑧
𝑖






; q))2
(

𝑑𝑔 (






𝑧
𝑖






; q)
𝑑






𝑧
𝑖






)

2

× 𝑓 (𝑧
𝑖
; p) 𝑑𝑧

𝑖
,

(93)

since (𝑑𝑔(|𝑧
𝑖
|; q)/𝑑|𝑧

𝑖
|)
𝑧
𝑖
=0
= (𝑑𝑔(𝑢; q)/𝑑𝑢)

𝑢=0
, where 𝑢 =

|𝑧
𝑖
|. The quantity 𝜁

𝑖
(𝑝, 𝑔, q; 𝐵) does not depend on 𝑖, so we

omit the index. Hence,

𝐸 (H𝛽,𝑛,𝑚) = 𝜁 (𝑝, 𝑔, q; 𝐵)X
𝑇

𝑛,𝑚
X
𝑛,𝑚
. (94)

If 𝑔(𝑧; q) = 𝑔
1
(𝑧) = 1, then

𝜁 (𝑝, 𝑔
1
; 𝐵) =

−2𝑝

2

𝑄 (𝑝, 𝑔
1
; 𝐵)

=

−𝑝

2

(1 − 𝑒

−𝑝𝐵
)

, (95)

and so although the generalised Hessian H𝛽,𝑛,𝑚 has infinite
elements, its expected value is negative definite. By continuity,
if 𝑔(𝑧; q) is close enough to the constant map 𝑔

1
, the expected

value 𝐸(H𝛽,𝑛,𝑚) will still be negative definite. Note that if 𝑔
has negative slope at the origin, the peak of 𝑙z,𝑛 at the origin
becomes sharper, compared to that for the case 𝑔 = 𝑔

1
. If 𝑔

has positive slope at the origin, we see the opposite effect.

4.7. The Generalized Variance-Covariance Matrix for the
Model Coefficients. Weuse a generalized Taylor series expan-
sion (in the coefficients 𝛽

𝑗
) to approximate 𝑙𝛽,𝑛,𝑚 by a negative

definite quadratic function about a localmaximum.Although
we know that, for finite 𝑛, this approximation is not exact,
we show in Section 5 that we would expect it to become
more accurate as 𝑛 → ∞. Assuming X

𝑛,𝑚
and y ∈ R𝑛 are

given, conditional on 𝑝 and q, we could write a Taylor series
expansion for 𝑙𝛽,𝑛,𝑚 about a ML estimator ̂𝛽 = ̂𝛽

𝑛
∈ B as

follows:

𝑙𝛽,𝑛,𝑚 (𝛽) ≈ 𝑙𝛽,𝑛,𝑚 (
̂𝛽
𝑛
) + (𝛽 − ̂𝛽

𝑛
)

𝑇

(∇𝑙𝛽)�̂�
𝑛

+ (

1

2

) (𝛽 − ̂𝛽
𝑛
)

𝑇

H�̂�
𝑛

(𝛽 − ̂𝛽
𝑛
) + ⋅ ⋅ ⋅ ,

(96)

if𝑓 and hence 𝐿𝛽,𝑛,𝑚 and 𝑙𝛽,𝑛,𝑚 were sufficiently smooth. Now
our probability density function 𝑓 and hence 𝑙𝛽,𝑛,𝑚 are not

sufficiently smooth, but we can replace the second derivative
of 𝑙𝛽,𝑛,𝑚 by its expected value using generalized functions. Let
Δ𝛽 = 𝛽 − ̂𝛽

𝑛
. This yields the approximation

𝑙𝛽,𝑛,𝑚 (𝛽) ≈ 𝑙𝛽,𝑛,𝑚 (
̂𝛽
𝑛
) + (

1

2

) (Δ𝛽)
𝑇

𝐸 (H𝛽,𝑛,𝑚) Δ𝛽.

(97)

Assuming 𝐸(H𝛽,𝑛,𝑚) is nonsingular, which is true when 𝑔 =
𝑔
1
, we ignore higher order terms. Equation (97) provides an

indication of the behaviour of 𝑙𝛽,𝑛,𝑚 about a maximum since,
for example, if 𝑔 = 𝑔

1
, then 𝐸(H𝛽,𝑛,𝑚) is negative definite.

Next we consider the score function∇𝑙𝛽,𝑛,𝑚 and use a Tay-
lor series approximation incorporating generalized functions
(about a local maximum ̂𝛽

𝑛
) to derive a relationship between

the expected value of the generalized Hessian 𝐸(H𝛽,𝑛,𝑚),
the information matrixJ𝛽,𝑛,𝑚, and the generalized variance-
covariance matrixV𝛽,𝑛,𝑚. This approximation is

(∇𝑙𝛽,𝑛,𝑚)𝛽
≈ (∇𝑙𝛽,𝑛,,𝑚)�̂�

𝑛

+ 𝐸 (H𝛽,𝑛,𝑚) Δ𝛽

= 𝐸 (H𝛽,𝑛,𝑚) Δ𝛽.

(98)

Since 𝐸(∇𝑙𝛽,𝑛,𝑚) = 0 and 𝐸(H𝛽,𝑛,𝑚) has full rank, 𝐸(̂𝛽𝑛) = 𝛽.
Wemultiply each side by its own transpose and take expected
values to obtain

𝐸 [(∇𝑙𝛽,𝑛,𝑚)𝛽
(∇𝑙𝛽,𝑛,𝑚)

𝑇

𝛽
]

= (𝐸 (H𝛽,𝑛,𝑚)) 𝐸 [Δ𝛽(Δ𝛽)
𝑇

] (𝐸 (H𝛽,𝑛,𝑚))
𝑇

.

(99)

Hence,

J𝛽,𝑛,𝑚 = (𝐸 (H𝛽,𝑛,𝑚))V𝛽,𝑛,𝑚(𝐸 (H𝛽,𝑛,𝑚))
𝑇

= (𝐸 (H𝛽,𝑛,𝑚))V𝛽,𝑛,𝑚 (𝐸 (H𝛽,𝑛,𝑚)) ,

(100)

so

V𝛽,𝑛,𝑚 = V𝛽,𝑛,𝑚 (𝑝, 𝑔, q,X𝑛,𝑚; 𝐵)

= (𝐸 (H𝛽,𝑛,𝑚))
−1

J𝛽,𝑛,𝑚(𝐸 (H𝛽,𝑛,𝑚))
−1

=

] (𝑝, 𝑔, q; 𝐵)
(𝜁 (𝑝, 𝑔, q; 𝐵))2

(X𝑇
𝑛,𝑚

X
𝑛,𝑚
)

−1

.

(101)

Here, we require X
𝑛,𝑚

to have full rank and that 𝜁(𝑝, 𝑔, q;
𝐵) ̸= 0, which is certainly true when 𝑔 = 𝑔

1
.

4.8. Generalized Statistical Expressions and Relations. We
have shown that the expected value of the generalizedHessian
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𝐸(H𝛽,𝑛,𝑚) and the informationmatrixJ𝛽,𝑛,𝑚 are multiples of
X𝑇
𝑛,𝑚

X
𝑛,𝑚

. Specifically,

𝐸 (H𝛽,𝑛,𝑚) = X𝑇
𝑛,𝑚
𝐸 (Hz,𝑛)X𝑛,𝑚

= 𝐸(

𝜕

2
𝑙 (𝑧
1
; 𝑝, 𝑔, q)
𝜕𝑧

2

1

)X𝑇
𝑛,𝑚

X
𝑛,𝑚

= 𝜁 (𝑝, 𝑔, q; 𝐵)X𝑇
𝑛,𝑚

X
𝑛,𝑚
,

J𝛽,𝑛,𝑚 = 𝐸((
𝜕𝑙 (𝑧
1
; 𝑝, 𝑔, q)
𝜕𝑧
1

)

2

)X𝑇
𝑛,𝑚

X
𝑛,𝑚

= ] (𝑝, 𝑔, q; 𝐵)X𝑇
𝑛,𝑚

X
𝑛,𝑚

(102)

(see (94) and (90)). Hence, if ](𝑝, 𝑔, q; 𝐵) ̸= 0 (true if 𝑔 = 𝑔
1
),

then

𝐸 (H𝛽,𝑛,𝑚) =
𝐸 (𝜕

2
𝑙 (𝑧
1
; 𝑝, 𝑔, q) /𝜕𝑧2

1
)

𝐸 ((𝜕𝑙 (𝑧
1
; 𝑝, 𝑔, q) /𝜕𝑧

1
)

2

)

J𝛽,𝑛,𝑚

=

𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

J𝛽,𝑛,𝑚.

(103)

In addition, assuming that the scalar 𝜁(𝑝, 𝑔, q; 𝐵) is also non-
zero (true if 𝑔 = 𝑔

1
) and that X

𝑛,𝑚
has full rank 𝑚, we have

proved the following relations:

(V𝛽,𝑛,𝑚 (𝑝, 𝑔, q,X𝑛,𝑚; 𝐵))
−1

=

(𝜁 (𝑝, 𝑔, q; 𝐵))2

] (𝑝, 𝑔, q; 𝐵)
X𝑇
𝑛,𝑚

X
𝑛,𝑚

(104)

=

𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

𝐸 (H𝛽,𝑛,𝑚)

(105)

=

(𝜁 (𝑝, 𝑔, q; 𝐵))2

(] (𝑝, 𝑔, q; 𝐵))2
J𝛽,𝑛,𝑚,

(106)

to be used in the derivation of the generalized log-likelihood
ratio statistic (Section 4.11).

4.9. Statistical Relations for the Laplace Distribution. If
𝑔(𝑧, q) = 𝑔

1
(𝑧) = 1, then using (21), (84), and (95):

𝑄 (𝑝, 𝑔
1
; 𝐵) = 2 (1 − 𝑒

−𝑝𝐵
) ,

] (𝑝, 𝑔
1
; 𝐵) = 𝑝

2
,

𝜁 (𝑝, 𝑔
1
; 𝐵) =

−2𝑝

2

𝑄 (𝑝, 𝑔
1
; 𝐵)

=

−𝑝

2

(1 − 𝑒

−𝑝𝐵
)

.

(107)

Hence,

J𝛽,𝑛,𝑚 = 𝑝
2X𝑇
𝑛,𝑚

X
𝑛,𝑚
,

𝐸 (H𝛽,𝑛,𝑚) =
(−𝑝

2
)

(1 − 𝑒

−𝑝𝐵
)

X𝑇
𝑛,𝑚

X
𝑛,𝑚
,

(108)

so

V𝛽,𝑛,𝑚 =
(1 − 𝑒

−𝑝𝐵
)

2

𝑝

2
(X𝑇
𝑛,𝑚

X
𝑛,𝑚
)

−1

.
(109)

Here,
J𝛽,𝑛,𝑚 = − (1 − 𝑒

−𝑝𝐵
) 𝐸 (H𝛽,𝑛,𝑚) , (110)

V𝛽,𝑛,𝑚 = (1 − 𝑒
−𝑝𝐵
)

2

J𝛽,𝑛,𝑚
−1
, (111)

where 𝑝 > 0, 𝐵 > 0, and X
𝑛,𝑚

has full rank 𝑚. Hence, (75),
derived for C2 distributions, does not hold for the Laplace
distribution with bounded support. However, (75) describes
the limiting behaviour, as 𝐵 → ∞.

4.10. Statistical Relations for a Laplace Distribution with
Added Kurtosis. Now consider our motivating example, a
Laplace distribution with bounded support [−1, 1] amended
by adding kurtosis. In this case𝑔(𝑧, q) = 𝑔

2
(𝑧; 𝑞) = 1+𝑞𝐻

3
(𝑧)

(see (14)), 𝐵 = 1,
𝑄 (𝑝, 𝑞)

=

2 [(𝑝

3
− 3𝑞𝑝

2
+ 6𝑞) − 𝑒

−𝑝
(𝑝

3
(1 − 2𝑞) + 6𝑝𝑞 + 6𝑞)]

𝑝

3
,

𝑓 (𝑧; 𝑝, 𝑞)

=

𝑝

4
𝑒

(−𝑝|𝑧|)
[1 + 𝑞𝐻

3
(|𝑧|)]

2 [(𝑝

3
− 3𝑞𝑝

2
+ 6𝑞) − 𝑒

−𝑝
(𝑝

3
(1 − 2𝑞) + 6𝑝𝑞 + 6𝑞)]

.

(112)
Also, using (82) and (81), we obtain

𝐹 (𝑧; 𝑝, 𝑞) = 𝐹 (𝑧; 𝑝, 𝑔
2
, 𝑞) = −𝑝 +

3𝑞 (𝑧

2
− 1)

1 + 𝑞 (𝑧

3
− 3𝑧)

,

] (𝑝, 𝑔
2
, 𝑞; 1) = 2∫

1

0

(𝐹 (𝑧; 𝑝, 𝑞))

2

𝑓 (𝑧; 𝑝, 𝑞) 𝑑𝑧,

(113)

and using (93), we obtain
𝜁 (𝑝, 𝑔

2
, 𝑞; 1) = − 2𝑝𝑓 (0; 𝑝, 𝑞) + 2𝑓 (0; 𝑝, 𝑞)

×

1

𝑔 (0; 𝑞)

(

𝑑𝑔 (|𝑧| ; 𝑞)

𝑑 |𝑧|

)

𝑧=0

+ ∫

1

−1

1

𝑔 (|𝑧| ; 𝑞)

𝑑

2
𝑔 (|𝑧| ; 𝑞)

𝑑|𝑧|

2
𝑓 (𝑧; 𝑝, 𝑞) 𝑑𝑧

− ∫

1

−1

1

(𝑔 (|𝑧| ; 𝑞))

2
(

𝑑𝑔 (|𝑧| ; 𝑞)

𝑑 |𝑧|

)

2

× 𝑓 (𝑧; 𝑝, 𝑞) 𝑑𝑧

=

−2𝑝

2

𝑄 (𝑝, 𝑞)

+

−6𝑝𝑞

𝑄 (𝑝, 𝑞)

+ 2∫

1

0

1

𝑔 (𝑧; 𝑞)

𝑑

2
𝑔 (𝑧; 𝑞)

𝑑𝑧

2
𝑓 (𝑧; 𝑝, 𝑞) 𝑑𝑧

− 2∫

1

0

1

(𝑔 (𝑧; 𝑞))

2
(

𝑑𝑔 (𝑧; 𝑞)

𝑑𝑧

)

2

× 𝑓 (𝑧; 𝑝, 𝑞) 𝑑𝑧
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=

−2𝑝

2
− 6𝑝𝑞

𝑄 (𝑝, 𝑞)

+ 2∫

1

0

6𝑞𝑧

(1 + 𝑞 (𝑧

3
− 3𝑧))

𝑓 (𝑧; 𝑝, 𝑞) 𝑑𝑧

− 2∫

1

0

1

(1 + 𝑞 (𝑧

3
− 3𝑧)

2

)

× (3𝑞 (𝑧

2
− 1))

2

𝑓 (𝑧; 𝑝, 𝑞) 𝑑𝑧.

(114)

For typical values 𝑝 = 5.254 and 𝑞 = 0.025, numerical inte-
gration gives ] = 28.3561 and 𝜁 = −28.4957, to four decimal
places. In this case,

J𝛽,𝑛,𝑚 = 28.3561X
𝑇

𝑛,𝑚
X
𝑛,𝑚
,

𝐸 (H𝛽,𝑛,𝑚) = −28.4957X
𝑇

𝑛,𝑚
X
𝑛,𝑚
,

(115)

and so

V𝛽,𝑛,𝑚 =
28.3561

(−28.4957)

2
(X𝑇
𝑛,𝑚

X
𝑛,𝑚
)

−1

. (116)

Here

J𝛽,𝑛,𝑚 =
28.3561

−28.4957

𝐸 (H𝛽,𝑛,𝑚) ,

V𝛽,𝑛,𝑚 =
(28.3561)

2

(−28.4957)

2
J
−1

𝛽,𝑛,𝑚.

(117)

In this example, (75) could be used as an approximation but
does not exactly describe the relationship between𝐸(H𝛽,𝑛,𝑚),
J𝛽,𝑛,𝑚, andV𝛽,𝑛,𝑚.

4.11. The Generalized Log-Likelihood Ratio Statistic. The log-
likelihood ratio statistic enables us to assess the adequacy of a
model. It enables us to compare a model with𝑀 coefficients
(parameters) with a model of interest which differs only in
that it has fewer coefficients, say 𝑃, with 𝑀 > 𝑃 ≥ 1, see
[1], for example. We wish to compare a linear model with 𝑚
coefficients, the 𝛽

𝑗
, for 𝑗 = 1, 2, . . . , 𝑚 with a lesser linear

model with fewer coefficients. The aim is to decide whether
or not the excluded coefficients are useful. Our comparison is
conditional on the parameters 𝑝 and q.

Let 𝐿𝜌,𝑛,𝑀(𝜌1, . . . , 𝜌𝑀; 𝑝, q;X𝑛,𝑀, y) denote the likeli-
hood function for the model with 𝑀 parameters, and let
𝐿𝜓,𝑛,𝑃(𝜓1, . . . , 𝜓𝑃; 𝑝, q;X𝑛,𝑃, y) denote the likelihood function
for the lessermodel. Let �̂� (or �̂�

𝑛
) be themaximum likelihood

estimator of 𝜌 = (𝜌
1
, . . . , 𝜌

𝑀
)

𝑇, and let �̂� (or �̂�
𝑛
) be the

maximum likelihood estimator of 𝜓 = (𝜓
1
, . . . , 𝜓

𝑃
)

𝑇. Then
the likelihood ratio

𝜆 =

𝐿𝜌,𝑛,𝑀 (�̂�; 𝑝, q;X𝑛,𝑀, y)
𝐿𝜓,𝑛,𝑃 (�̂�; 𝑝, q;X𝑛,𝑃, y)

(118)

is a ratio of two probabilities andwill be greater than one since
the model with 𝑀 parameters provides the more complete
description of the model. In our application,𝑀 = 𝑚, 𝜌 = 𝛽,
and usually (but not necessarily) 𝑃 = 𝑚 − 1. We show that a
multiple (conditional on 𝑝 and q) of

log (𝜆) = log (𝐿𝜌,𝑛,𝑀 (�̂�; 𝑝, q;X𝑛,𝑀, y))

− log (𝐿𝜓,𝑛,𝑃 (�̂�; 𝑝, q;X𝑛,𝑃, y))
(119)

has a chi-squared distribution as follows.
The derivation of the log-likelihood ratio statistic (for

smooth functions) may be found in the textbooks. For exam-
ple, for generalized linear models (see [1]) where the log-
likelihood function is smooth in a neighbourhood of its
maximum, 𝐷 = 2 log(𝜆) is distributed approximately as
𝜒

2
(𝑀−𝑃, 𝛿

𝐷
). Here 𝛿

𝐷
is a noncentrality parameter, a positive

constant which will be near zero if the lesser model fits the
data almost as well as the model with more coefficients.
Consider our situation inwhich the log-likelihood function is
continuous at a maximum, but where this maximum occurs
at a vertex or possibly on a ridge in (𝛽, 𝑙)-space, and gener-
alized calculus is required to consider Taylor series expan-
sions. Then, as in (97), around �̂�, replacing the Hessian of
log(𝐿
𝑀
) = 𝑙
𝑀

by its expected value, we obtain the following
approximation:

log (𝐿𝜌,𝑛,𝑀 (𝐸 (�̂�) ; 𝑝, q;X𝑛,𝑀, y))

− log (𝐿𝜌,𝑛,𝑀 (�̂�; 𝑝, q;X𝑛,𝑀, y))

= log (𝐿𝜌,𝑛,𝑀 (𝐸 (�̂�))) − log (𝐿𝜌,𝑛,𝑀 (�̂�))

≈

1

2

(𝐸 (�̂�) − �̂�)
𝑇

𝐸 (H𝜌,𝑛,𝑀) (𝐸 (�̂�) − �̂�) .

(120)

So, by (105) assuming that the scalar factors ](𝑝, 𝑔, q; 𝐵)
and 𝜁(𝑝, 𝑔, q; 𝐵) are both non-zero and thatX

𝑛,𝑀
has full rank

2

𝐸 ((𝜕

2
𝑙 (𝑧
1
; 𝑝, 𝑔, q)) /𝜕𝑧2

1
)

𝐸 (((𝜕𝑙 (𝑧
1
; 𝑝, 𝑔, q)) /𝜕𝑧

1
)

2

)

(𝑙𝜌,𝑛,𝑀 (𝐸 (�̂�)) − 𝑙𝜌,𝑛,𝑀 (�̂�))

≈ (𝐸 (�̂�) − �̂�)
𝑇 𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

𝐸 (H𝜌,𝑛,𝑀) (𝐸 (�̂�) − �̂�)

= (𝐸 (�̂�) − �̂�)
𝑇

V
−1

𝜌,𝑛,𝑀 (𝐸 (�̂�) − �̂�) ,

(121)

which has the distribution 𝜒2(𝑀) if the MLE has a normal
distribution.We show in Section 5 that the distribution of the
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MLE is asymptotically normal. Hence, if 𝑛 is large enough,
this will be a good approximation. Similarly

2

𝐸 ((𝜕

2
𝑙 (𝑧
1
; 𝑝, 𝑔, q)) /𝜕𝑧2

1
)

𝐸 (((𝜕𝑙 (𝑧
1
; 𝑝, 𝑔, q)) /𝜕𝑧

1
)

2

)

(𝑙𝜓,𝑛,𝑃 (𝐸 (�̂�)) − 𝑙𝜓,𝑛,𝑃 (�̂�))

≈ (𝐸 (�̂�) − �̂�)
𝑇 𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

𝐸 (H𝜓,𝑛,𝑃) (𝐸 (�̂�) − �̂�)

= (𝐸 (�̂�) − �̂�)
𝑇

V
−1

𝜓,𝑛,𝑃 (𝐸 (�̂�) − �̂�) ,

(122)

which has the distribution 𝜒2(𝑃), approximately. Noting that

𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

=

−1

(1 − 𝑒

−𝑝𝐵
)

< 0, (123)

when 𝑔 = 𝑔
1
, let

𝐷gen = −2
𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

log (𝜆) . (124)

Then 𝐷gen, the log-likelihood ratio statistic calculated with
generalized functions, a positive number, may be expressed
as

𝐷gen = − 2
𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

× (𝑙𝜌,𝑛,𝑀 (�̂�; 𝑝, q;X𝑛,𝑀, y) − 𝑙𝜓,𝑛,𝑃 (�̂�; 𝑝, q;X𝑛,𝑃, y))

= − 2

𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

× (𝑙𝜌,𝑛,𝑀 (�̂�; 𝑝, q;X𝑛,𝑀, y)

−𝑙𝜌,𝑛,𝑀 (𝐸 (�̂�) ; 𝑝, q;X𝑛,𝑀, y))

+ 2

𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

× (𝑙𝜓,𝑛,𝑃 (�̂�; 𝑝, q;X𝑛,𝑃, y)

−𝑙𝜓,𝑛,𝑃 (𝐸 (�̂�) ; 𝑝, q;X𝑛,𝑃, y))

− 2

𝜁 (𝑝, 𝑔, q; 𝐵)
] (𝑝, 𝑔, q; 𝐵)

× (𝑙𝜌,𝑛,𝑀 (𝐸 (�̂�) ; 𝑝, q;X𝑛,𝑀, y)

−𝑙𝜓,𝑛,𝑃 (𝐸 (�̂�) ; 𝑝, q;X𝑛,𝑃, y)) .
(125)

Hence, 𝐷gen is the sum of three terms; the first (positive) has
the distribution 𝜒2(𝑀) (approximately). The second (nega-
tive) has the distribution 𝜒2(𝑃) (approximately). The third
is a positive constant (say 𝛿gen) that depends on 𝑝 and q.

Hence, 𝐷gen is distributed approximately as 𝜒2(𝑀 − 𝑃, 𝛿gen).
If the lesser model gives a good description of the data,
then 𝛿gen will be small. The generalized log-likelihood ratio
statistic 𝐷gen is easily calculated and is hence a potentially
useful statistic for assessing our linear model for which the
log-likelihood function is not C2. Note if 𝑔 = 𝑔

1
, 𝐷gen =

(2 log(𝜆))/(1 − 𝑒−𝑝𝐵), and so𝐷gen → 2 log(𝜆), as 𝐵 → ∞.

5. The Maximum Likelihood Estimator Is
Consistent and Asymptotically Normal

The generalized expressions derived in Section 4 will be used
to prove the asymptotic convergence of ourMLE to a random
variable with a normal distribution. Recall the following
assumptions.

(i) Our model is linear (see (4)).
(ii) The response function 𝑓 is a Laplace probability den-

sity function, generally perturbed and/or truncated,
as given in (10).

We make the following further assumptions.

(i) There exists a unique true vector of coefficients 𝛽
0
∈

R𝑚 whose value we are trying to estimate.
(ii) The matrix X

𝑛,𝑚
has full rank𝑚, so that X𝑇

𝑛,𝑚
X
𝑛,𝑚

has
full rank𝑚.

(iii) The lim
𝑛→∞

(1/𝑛)X𝑇
𝑛,𝑚

X
𝑛,𝑚
=W
𝑚
, a positive definite

matrix.
(iv) Assuming fixed 𝑚, for 𝑛 ≥ 𝑚, denote by ̂𝛽

𝑛
a

(not necessarily unique) MLE of the true value 𝛽
0
,

corresponding to the explanatory variables in X
𝑛,𝑚

.

Lemma 11. TheML estimates ̂𝛽
𝑛
exist, for 𝑛 ≥ 𝑚.

Proof of Lemma 11. Since a continuous function on a compact
set attains it maximum, the existence of a maximum of the
log-likelihood function 𝑙𝛽,𝑛,𝑚 is guaranteed for finite bound
𝐵. Even if the domain is not bounded, we can work with finite
bound 𝐵, and then let 𝐵 → ∞.

Theorem 12. The random variable √𝑛(̂𝛽
𝑛
− 𝛽
0
) converges in

distribution to an𝑚-dimensional normally distributed random
vector with mean 0 and covariance matrix (]/𝜁2)W−1

𝑚
, that is,

as 𝑛 → ∞,

√𝑛 (
̂𝛽
𝑛
− 𝛽
0
)

𝐷

→ 𝑁(0, ( ]

𝜁

2
)W−1
𝑚
) . (126)

Lemma 13. The random variable (1/√𝑛)∇𝑙𝛽,𝑛,𝑚 converges in
distribution to an𝑚-dimensional normally distributed random
vector with mean 0 and covariance matrix ]W

𝑚
, that is, as

𝑛 → ∞,

(

1

√𝑛

)∇𝑙𝛽,𝑛,𝑚

𝐷

→ 𝑁(0, ]W
𝑚
) . (127)

Hence, (1/𝑛)∇𝑙𝛽,𝑛,𝑚 converges in probability to 0.
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Proof of Lemma 13. Consider the random variable ∇𝑙𝛽,𝑛,𝑚 =
−X𝑇
𝑛,𝑚
∇𝑙
𝑧,𝑛
. If we repeat the sampling of 𝑛 ≥ 𝑚 data points,

using X
𝑛,𝑚

a total of 𝑡 times, we may write

∇𝑙𝛽,𝑛𝑡,𝑚 = − X
𝑇

𝑛𝑡,𝑚
∇𝑙
𝑧,𝑛𝑡
,

= − 𝑡X𝑇
𝑛,𝑚
∇𝑙
𝑧,𝑛
,

(128)

where ∇𝑙
𝑧,𝑛

denotes the average of 𝑡 samples of the random
vector∇𝑙

𝑧,𝑛
. Now∇𝑙

𝑧,𝑛
has mean 0 and covariance matrix ]𝐼

𝑛
,

and so by themultivariateCentral LimitTheorem, as 𝑡 → ∞,

√
𝑡 ∇𝑙
𝑧,𝑛

𝐷

→ 𝑁(0, ]𝐼
𝑛
) ,

X𝑇
𝑛,𝑚
√
𝑡 ∇𝑙
𝑧,𝑛

𝐷

→ 𝑁(0,X𝑇
𝑛,𝑚

]X
𝑛,𝑚
) ,

(

1

√𝑡

)∇𝑙𝛽,𝑛𝑡,𝑚

𝐷

→ 𝑁(0,X𝑇
𝑛,𝑚

]X
𝑛,𝑚
) ,

(

1

√𝑛𝑡

)∇𝑙𝛽,𝑛𝑡,𝑚

𝐷

→ 𝑁(0, ]
𝑛

X𝑇
𝑛,𝑚

X
𝑛,𝑚
) .

(129)

Hence, as 𝑛 → ∞ and 𝑡 → ∞,

(

1

√𝑛𝑡

)∇𝑙𝛽,𝑛𝑡,𝑚

𝐷

→ 𝑁(0, ]W
𝑚
) . (130)

Hence, as 𝑛 → ∞,

(

1

√𝑛

)∇𝑙𝛽,𝑛,𝑚

𝐷

→ 𝑁(0, ]W
𝑚
) . (131)

Lemma 14. Although for finite 𝑛, the log-likelihood function
𝑙𝛽,𝑛,𝑚 is not differentiable at a maximum; (1/𝑛)𝑙𝛽,𝑛,𝑚 converges
in distribution to a negative definite quadratic function centred
at 𝛽
0
. Hence, the MLEs ̂𝛽

𝑛
are consistent, that is, they converge

in probability to the true value 𝛽
0
.

Proof of Lemma 14. Using a generalized Taylor series expan-
sion about 𝛽

0
and noting that by Lemma 13, (1/𝑛)∇𝑙𝛽,𝑛,𝑚

converges in probability to 0, we can write

lim
𝑛→∞

𝑙𝛽,𝑛,𝑚 (𝛽) − 𝑙𝛽,𝑛,𝑚 (𝛽0)

𝑛

= lim
𝑛→∞

(𝛽 − 𝛽
0
)

𝑇
𝐸 (H𝛽,𝑛,𝑚)

𝑛

(𝛽 − 𝛽
0
)

= (𝛽 − 𝛽
0
)

𝑇

( lim
𝑛→∞

𝜁X𝑇
𝑛,𝑚

X
𝑛,𝑚

𝑛

) (𝛽 − 𝛽
0
)

= 𝜁(𝛽 − 𝛽
0
)

𝑇W
𝑚
(𝛽 − 𝛽

0
) .

(132)

This shows that, in the limit as 𝑛 → ∞, the log-likelihood
function 𝑙𝛽,𝑛,𝑚 has an isolated maximum at 𝛽

0
, and so a

sequence of MLEs ̂𝛽
𝑛
must converge to 𝛽

0
in probability

(consistency).

In the Proof of Lemma 14 we ignored the third partial
derivatives of 𝑙𝛽,𝑛,𝑚 in the generalized Taylor series expansion.
The justification is as follows. Since 𝑔 is assumed to be C3

on an open interval which contains [0, 𝐵], |𝑑3𝑔/𝑑𝑧3|must be
bounded above by some positive real number 𝐺

3
on [0, 𝐵].

Hence, the absolute values of the third partial derivatives
of 𝑙 must be bounded above by some positive real number
except at points z, where some 𝑧

𝑖
= 0 (data points). Note

that 𝐸(𝜕3𝑙/𝜕𝑧3
𝑖
) = 0, 𝑖 = 1, 2, . . . , 𝑛. This follows from (66),

using the symmetry introduced by themodulus function and
(62). Hence, the third partial derivative terms will be small
compared to the second partial derivative terms near a critical
point, and so we may ignore them in our generalized Taylor
series expansion for 𝑙, when the expected value of the Hessian
has full rank.

Proof of Theorem 12. Consider the first degree approximation

∇𝑙𝛽,𝑛,𝑚 (𝛽) ∼ 𝐸 (H𝛽,𝑛,𝑚) (𝛽 − 𝛽0) . (133)

Since 𝐸(H𝛽,𝑛,𝑚) has full rank,

(𝛽 − 𝛽
0
) ∼ (𝐸 (H𝛽,𝑛,𝑚))

−1

∇𝑙𝛽,𝑛,𝑚 (𝛽) , (134)

so

𝑛

√𝑛

(𝛽 − 𝛽
0
) ∼ (

𝐸 (H𝛽,𝑛,𝑚)

𝑛

)

−1

∇𝑙𝛽,𝑛,𝑚 (𝛽)

√𝑛

.
(135)

By Lemma 13, as 𝑛 → ∞,

(

1

√𝑛

)∇𝑙𝛽,𝑛,𝑚

𝐷

→ 𝑁(0, ]W
𝑚
) . (136)

Hence, as 𝑛 → ∞,

√𝑛 (𝛽 − 𝛽
0
)

𝐷

→ 𝑁(0, (𝜁W
𝑚
)

−1

]W
𝑚
(𝜁W
𝑚
)

−𝑇

) .
(137)

Hence, as 𝑛 → ∞,

√𝑛 (𝛽 − 𝛽
0
)

𝐷

→ 𝑁(0, ( ]

𝜁

2
)W−1
𝑚
) . (138)

An alternative Proof of Theorem 12 for the simplest case,
that is, in the absence of truncation or perturbation, (i.e., 𝑔 =
𝑔
1
and 𝐵 = ∞) is in [2].This case is also discussed in [11, page

451].

6. Real and Simulated Data Illustrations

6.1. Empirical Distribution of Methylation Proportion Devi-
ations. Quantitative analysis of DNA methylation at spe-
cific genomic sites (known as CpG sites) was carried out
with the Sequenom MassARRAY Compact System (http://
www.sequenom.com/). Briefly, this involves accurate deter-
mination and comparison of the mass of transcription cleav-
age products following chemical modification of the DNA
which is dependent upon the a priori methylation status,
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Figure 4: Deviations in methylation proportion.

using MALDI-TOF mass spectrometry (Bruker-Sequenom)
(see [12]). Quantitative CpG methylation was assessed using
proprietary EpiTyper software v1.0.5 (http://www.sequenom
.com/). Sequenom measurements of 1440 CpG sites in each
of 41 human umbilical cord tissue samples were performed in
duplicate, and the difference between the measurements was
recorded.This difference represents the deviation in themea-
surement of CpGmethylation due to sample nanodispensing
and MALDI-TOF mass spectrometry detection. Figure 4
is a histogram of the deviations of these 1440 repeated
measurements. Although not obvious from the histogram,
about 1.04% of values are greater than 0.2 in absolute value.
The histogram has heavy tails. The data was shown not to
conform to a normal distribution using the test proposed by
[13] (𝑃 value <0.00001).

6.2. Simulated Data Example Using Methylation Proportion
Deviations. In order to illustrate the application of the theory
developed, a sample of 40 deviations was chosen at random
from the total pool of 1440 available CpG methylation
proportion deviations. A constant value of 0.48 was added
to 20 of these samples and designated treatment H, while a
constant value of 0.45 was added to the other 20 samples and
designated treatment L. A uniform random variable sampled
between −0.01 and 0.01 was added to each value to simulate
the additional differences expected to occur between individ-
uals.

We analysed the data using our amended Laplace distri-
bution (13), with 𝑔 = 𝑔

2
, 𝑝 = 53.41, 𝑞 = 0.0314 (machine

characteristics), and 𝐵 = 1. The parameter MLEs 𝑝 = 53.41 ±
3.45 and 𝑞 = 0.0314 ± 0.0097 (estimates plus or minus
standard errors) were given by Buckland’s algorithm [14, 15],
with the 𝑞 being highly significantly different from zero, (with
a log-likelihood ratio statistic of 135.6 distributed as 𝜒2(1)).
Assuming 𝑞 = 0.0 (LAE regression with truncation) yields
𝑝 = 36.22 ± 1.167. Buckland’s algorithm does not take into
account the truncation, but since 𝑝 is large and (1 − 𝑒−𝑝𝐵)
is so close to 1 in this example, the effect of truncation on
the standard errors and 𝐷gen (for 𝑃 values) is negligible. If

the machine characteristic 𝑝 was smaller, say 1 ≤ 𝑝 ≤ 3,
assuming 𝐵 = 1, this effect would become more significant.

We coded a low value treatment (L) by setting 𝑥
𝑖2
= −1,

𝑖 = 1, 2, . . . , 20 and a high value treatment (H) by setting
𝑥
𝑖2
= 1, 𝑖 = 21, 22, . . . , 40. Estimates for 𝛽

1
and 𝛽

2
were

calculated by maximum likelihood estimation, using the
simplex method. The standard errors of the coefficient esti-
mates were calculated using our generalized V. Hence, the
estimated treatment means (𝛽

1
± 𝛽
2
), and their standard

errors were calculated. A 𝑃 value was obtained using 𝐷gen,
which is assumed distributed 𝜒2(1). This simulation was
performed twice, and the results are given in Table 1. Note
for each simulation, the 𝑃 value is less than 0.01, indicating
a significant difference between the means.

For both simulations ](𝑝, 𝑔
2
, 𝑞; 1) = 2862.70 and 𝜁(𝑝, 𝑔

2
,

𝑞; 1) = −2862.71 (see Section 4.10). Also,

X𝑇X = (40 0

0 40

) , (139)

rounding to five significant figures,

𝐸 (H) = (
−114510 0

0 −114510

) ,

J = (
114510 0

0 114510

) ,

V = (

8.7330𝑒 − 06 0

0 8.7330𝑒 − 06

) .

(140)

Here,

𝐸 (H) = −1.0000J,

V
−1
= 1.0000J,

𝐷gen = 2.0000 log (𝜆) .

(141)

These expressions correspond to the classical expressions for
smooth functions, up to our numerical tolerance.

For comparison, the results of a standard analysis of
variance, assuming the deviations have a normal distribution,
are also given inTable 1, for each of the two simulations.Using
the𝑃 values obtained, 4𝑒−01 and 2𝑒−01, we would not reject
the null hypothesis (that the means are equal) at any usual
level of significance, using a least squares approach. However,
our algorithm based on the amended Laplace distribution
correctly identified the structure of the simulated data set,
separating two means which were fairly close. The standard
least squares algorithm failed to do this. The two data sets
analysed are given in Tables 3 and 4 in Appendix B.

For comparison we also included LAE regression, esti-
mating the model coefficients assuming the response func-
tion is the Laplace probability density function truncated to
[−1, 1], using 𝑝 = 36.22, given by Buckland’s algorithm.
We see that including the perturbing Hermite polynomial
improves (decreases) the 𝑃 values, meaning we can be even
more confident, than when using LAE regression, that the
means are different.
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Table 1: Two simulation results, adding high (H) or low (L) treatments (T) to DNA methylation proportions.

T
Amended Laplace distribution Laplace distribution Normal distribution

𝑝 = 53.41, 𝑞 = 0.0314 𝑝 = 36.22, 𝑞 = 0.0 MATLAB glmfit
Mean Std. err. 𝑃 value Mean Std. err. 𝑃 value Mean Std. err. 𝑃 value

H 0.4817 0.0042
2𝑒 − 05

0.4812 0.0062
4𝑒 − 04

0.4658 0.0094
4𝑒 − 01

L 0.4532 0.0042 0.4519 0.0062 0.4540 0.0094
H 0.4803 0.0042

2𝑒 − 04

0.4809 0.0062
2𝑒 − 03

0.4887 0.0119
2𝑒 − 01

L 0.4592 0.0042 0.4586 0.0062 0.4673 0.0119

Table 2: Primiparous (p) versus multiparous (m) effects on DNA methylation proportion at the promoter of the H19 gene.

Site Parity
Amended Laplace distribution
𝑝 = 75.53, 𝑞 = 0.4999 Normal distribution Mann-Whitney

Mean Std. err. 𝑃 value Mean Std. err. 𝑃 value 𝑃 value
CpG9 p 0.180 0.0029

<1.0𝑒 − 09
0.300 0.059

1𝑒 − 01 5𝑒 − 02

CpG9 m 0.450 0.0029 0.441 0.059
CpG13 p 0.230 0.0029

<1.0𝑒 − 09
0.326 0.061

4𝑒 − 02 4𝑒 − 02

CpG13 m 0.560 0.0029 0.523 0.061

Table 3: First simulation data, treatments either H (𝑥
𝑖
= 1) or

L (𝑥
𝑖
= −1) plus randomly sampled methylation deviances and

randomly sampled uniformly distributed individual variation.

T 𝑦
𝑖

T 𝑦
𝑖

T 𝑦
𝑖

T 𝑦
𝑖

L 0.4579 L 0.4467 H 0.4841 H 0.4873
L 0.4243 L 0.4610 H 0.4735 H 0.4761
L 0.4993 L 0.4609 H 0.4878 H 0.2391
L 0.4131 L 0.4851 H 0.4823 H 0.4805
L 0.4463 L 0.4340 H 0.4462 H 0.4877
L 0.4317 L 0.4573 H 0.4664 H 0.4779
L 0.4473 L 0.4360 H 0.4845 H 0.4929
L 0.4347 L 0.4584 H 0.4817 H 0.4863
L 0.4760 L 0.4420 H 0.4861 H 0.4751
L 0.4776 L 0.4914 H 0.4668 H 0.4543

Table 4: Second simulation data, treatments either H (𝑥
𝑖
= 1) or

L (𝑥
𝑖
= −1) plus randomly sampled methylation deviances and

randomly sampled uniformly distributed individual variation.

T 𝑦
𝑖

T 𝑦
𝑖

T 𝑦
𝑖

T 𝑦
𝑖

L 0.5287 L 0.4416 H 0.4881 H 0.4829
L 0.5224 L 0.4547 H 0.4803 H 0.4246
L 0.5162 L 0.4496 H 0.4789 H 0.4609
L 0.4564 L 0.4568 H 0.4790 H 0.4233
L 0.4628 L 0.4574 H 0.4739 H 0.5412
L 0.5230 L 0.4599 H 0.4974 H 0.5193
L 0.3731 L 0.5124 H 0.7010 H 0.4921
L 0.4389 L 0.4592 H 0.4725 H 0.4702
L 0.4519 L 0.4458 H 0.4871 H 0.5520
L 0.4675 L 0.4685 H 0.4885 H 0.3600

6.3. Primiparous versus Multiparous Effects on DNAMethyla-
tion Proportion at the Promoter of the H19 Gene. The CpG
methylation at two CpG sites in the promoter of the H19

Table 5: CpG methylation measurements at sites 9 and 13 on the
promoter of the H19 gene versus primiparous (p) or multiparous
(m).

CpG9 p/m CpG9 p/m CpG13 p/m CpG13 p/m
1.00 p 0.16 p 0.30 p 0.16 p
0.08 p 0.19 p 0.00 p 0.36 p
0.04 p 0.15 p 0.03 p 0.02 p
0.17 p 0.35 p 0.25 p 0.60 p
0.46 p 0.04 p 0.80 p 0.01 p
1.00 p 0.27 p 0.71 p 0.70 p
0.18 p 0.32 p 0.17 p 0.56 p
0.33 m 0.37 p 0.56 m 0.70 p
0.28 m 0.05 p 0.40 m 0.00 p
0.82 m 0.39 p 0.57 m 0.61 p
0.20 p 0.07 p 0.18 p 0.02 p
0.08 p 0.17 p 0.03 p 0.23 p
0.15 p 0.14 m 0.09 p 0.99 m
1.00 p 0.61 m 0.96 p 0.60 m
0.10 m 0.53 m 0.79 m 0.35 m
0.89 m 0.45 m 0.83 m 0.63 m
0.07 m 0.09 m 0.02 m 0.07 m
0.62 m 0.57 m 0.38 m 0.53 m
0.48 m 0.73 m 0.68 m 0.72 m
0.31 m 0.30 m 0.27 m 0.22 m
0.62 m 0.80 m

gene was measured by Sequenom in umbilical cord tissues
collected as part of an ongoing prospective birth cohort study.
Phenotype variables in this population include birth order
or parity, defined as first born child (primiparous) or later
born (multiparous). We analysed the relationship between
H19 gene methylation status and birth order in this study,
using our amended Laplace distribution (13), with 𝑔 = 𝑔

2
and
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𝐵 = 1, and for comparison, the usual least squares algorithm.
Here an amended Laplace distribution (13) has been used
to model the measurement errors as opposed to the differ-
ences of errors in repeated measurements (the deviations in
Section 6.2). In practice this works well, despite the observa-
tion that if the measurement errors have a distribution of the
form (13), then the deviations would not be expected to have
exactly this form of distribution. Modelling the deviations as
the difference between two randomvariables both distributed
Laplace also works well. We used the estimate of 𝑝

𝑑
= 36.22

for the deviations to estimate 𝑝
𝑒
= 51.22 ∼ 36.22∗

√
2 for the

errors. The factor √2 is chosen to halve the variance in the
underlying Laplace distribution. For the error distribution,
we estimated 𝑞

𝑒
to be as close to 0.5 as we allow, say 𝑞

𝑒
=

0.4999.Thiswas done by assuming the errorswere distributed
as an amended Laplace distribution (13) with parameters
𝑝
𝑒
and 𝑞

𝑒
, deriving a corresponding distribution for the

deviations and using MLE with the deviation data to obtain
parameter estimates. We also tried 𝑝

𝑒
= 75.53 ∼ 53.41 ∗

√
2

with 𝑞e = 0.4999. The latter (Sequenom) parameter estimates
gave smaller standard errors and𝑃 values andwere consistent
with Infinium parameter estimates.

The problem was coded by substituting 𝑥
𝑖2
= 1 for prim-

iparous and 𝑥
𝑖2
= −1 for multiparous. Estimates for 𝛽

1
and

𝛽
2
and their standard errors were calculated.The data used is

given in Table 5 inAppendix B.The estimatedmeans (𝛽
1
±𝛽
2
)

and their standard errors are given in Table 2. The small 𝑃
values associated with the amended Laplace distribution (13),
calculated using𝐷gen, identify a difference between the mean
methylation proportions (primiparous versusmultiparous) at
a given CpG site. This demonstrates the power of accounting
properly for the distributional properties of the methylation
errors and hence enables clearer inference of the epigenetic
mechanisms underlying these biological phenomena.

In this example, setting 𝑞 = 0.0 (LAE regression with
truncation) yields similar means and variances to our MLE
algorithm (the same to two decimal places) and also gives
small 𝑃 values. For the CpG13 example with 𝑝 = 75.53 and
𝑞 = 0.4999, 𝐷gen = 201.479. For this example with 𝑝 = 75.53
and 𝑞 = 0.0, 𝐷gen = 197.889. These values are very close as
𝑝𝐵 is large and so 𝑒−𝑝𝐵 is small. For smaller values of 𝑝𝐵, the
value of taking into account the truncation and perturbation
increases. A Mann-Whitney 2-sample 𝑈-test was also done
for comparison.

7. Discussion

7.1. A Comparison with LAE Regression. The original MLE
theory and methods in this paper were developed assuming
the response function is a modified version of the Laplace
probability density function, that is, assuming nontrivial
perturbation and/or truncation to compact support [−𝐵, 𝐵].
Such response functions have been observed inmeasurement
data generated by nearly all the analytical platforms currently
used to assess DNA methylation, including the Sequenom
EpiTyper, Infinium Mass Array and Restricted Representa-
tion Bisulphite Sequencing platforms [16].

In the absence of perturbation or truncation of the
response function, the results in this paper correspond to the

theory of LAE (or median) regression as found in [2–4].That
is, if 𝑔(𝑧) = 1 and𝐵 = ∞, then ourMLEmethod corresponds
with LAE regression. In this case, 𝑄 = 2, ] = 𝑝2, 𝜁 = −𝑝2,
𝑓(𝑧) = (𝑝/2)𝑒

−𝑝|𝑧| (in one dimension), and so

]

𝜁

2
=

𝑝

2

𝑝

4
=

1

𝑝

2
=

1

(2𝑓 (0))

2
, (142)

which is the asymptotic variance of the ordinary sample
median for 𝑓 [2].

We present an original and practical method of obtaining
the covariancematrix for themodel coefficients.This involves
evaluating (X𝑇

𝑛,𝑚
X
𝑛,𝑚
)

−1, where although 𝑛might be large,𝑚
generally is not, and using generalized functions to numeri-
cally evaluate two one-dimensional integrals (to find ] and 𝜁).
The calculation of ] and 𝜁 takes into account the characteris-
tics of the response function (truncation and perturbation)
which would be ignored if we used median regression. This
is possible when we know the response function parameters,
or have fairly accurate estimates, as in our epigenetic applica-
tion, modelling DNA methylation proportion deviations.

For LAE regression, other methods of determining
approximations to this covariancematrixmay be found in the
literature. In particular, in the method of quantile regression
[5] implemented in the statistical package R, the covariance
matrix for the MLE is calculated by resampling techniques,
by bootstrapping or by using hierarchical spline models [17].

We prove that, even for truncated and perturbed Laplace
response functions, subject to certain restrictions, the max-
imum of the log-likelihood function occurs at a data point.
This result is well-known in the case of LAE regression. A
proof that the LAE estimator passes through at least 𝑟X data
points may be found in references [3, 4].

Three asymptotically equivalent test statistics for LAE
regression may be found in [18], namely, a likelihood ratio
test statistic, a Wald test statistic, and a Lagrange multiplier
test statistic. Our likelihood ratio test statistic is an original
modification of the former, applicable to our general case (not
restricted to LAE regression), calculated using generalized
functions. An 𝐹 test statistic for LAE regression is found in
[4].

When working with a model for which the response
function is assumed to be a truncated Laplace probability
density function, we could ignore the truncation to [−𝐵, 𝐵].
However, taking the truncation into account reduces the
variance in the model coefficient estimates by a factor (1 −
𝑒

−𝑝𝐵
)

2 and increases the log-likelihood ratio statistic by a
factor (1 − 𝑒−𝑝𝐵)−1. This effect is small if 𝑒−𝑝𝐵 is small but
becomes more significant as 𝑝𝐵 decreases, that is, as more
of the density function is truncated. Refer to Section 4.9,
(111) and Section 4.11, (123), and (124) which show that, for
example, when 𝑔 = 𝑔

1
,

𝐷gen =
2

(1 − 𝑒

−𝑝𝐵
)

log (𝜆) . (143)

Hence, by taking into account the truncation, we can be
more confident of our coefficient estimates and the value of
appropriate beta coefficients than the standard formulae for
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LAE regression indicate.This effect will also be seen for small
perturbations of the density function.

7.2. Original Formulae Enable Model Comparison. The orig-
inal formulae derived in Section 4 for the covariance matrix
of the model coefficients and the generalized log-likelihood
ratio statistic enable us to do a generalized analysis of
variance, in our case comparing the means of two different
groups of data. We see that in Section 6.3, the primiparous
and multiparous means could be judged distinct with very
high probability using either the Laplace or an amended
Laplace response function. The 𝑃-values are slightly lower
when using the Hermite modification. In the simulation in
Section 6.2, using the Hermite modification decreases the 𝑃-
value by an order of magnitude. In a situation in which 𝑝 is
low or two means are less distinct, the Hermite modification
may prove very useful.

Preliminary results indicate the use of an amended
Laplace distribution enables a clearer separation of means
than that given by othermore standard procedures, for exam-
ple, beta regression, in cases where independent evidence
suggests that the means are different [16].

7.3. Summary. The Laplace distribution is the basis of many
mathematical models (see [19]). Our focus has been mod-
elling the distributions of errors in the proportions of DNA
methylation measured at genomic CpG sites.

Molecular biology deals with complex interactions both
in terms of the physiology of the processes of interest and
in the instrumentation required to measure these effects.
The non-linearity of these processes can result in frequency
distributions that are far from normal, so that application
of “standard” methods of statistical inference based on least
squares may be inadequate. Methods which deal with the
form of the frequency distribution directly such as maximum
likelihood are necessary for adequate inference to be made.

The Laplace or double exponential distribution consid-
ered here has been observed in molecular biology studies,
where a significant proportion of high deviations appears to
occur regularly [16, 20].The extension by Hermite polynomi-
als considered here provides flexibility for describing the tails
of the distribution. However, as noted, the use of the Laplace
distribution as the “key” function introduces problems in
finding maximum likelihood estimators and particularly
their standard errors. This paper presents both a practical
method for dealing with these problems and the underlying
asymptotic theory.

Appendices

A. Useful Convex Analysis Results

We prove Lemma 8 by applying results from convex analysis
(see [8]). The following definitions are taken from [8]. A face
of a convex set 𝐶 ⊂ R𝑛 is a convex subset 𝐶 of 𝐶 such that
every (closed) line segment in 𝐶 with a relative interior point
in 𝐶 has both endpoints in 𝐶. The empty set and 𝐶 itself
are faces of 𝐶. The zero-dimensional faces of 𝐶 are called the
extreme points of 𝐶. The relative interior of a convex set 𝐶 ⊂

R𝑛 is defined as the interior which results when𝐶 is regarded
as a subset of its affine hull. The affine hull of a set 𝑆 ⊂ R𝑛

is the unique smallest affine set containing 𝑆. An alternative
definition of an extreme point of a convex set 𝐶 is a point 𝑧 ∈
𝐶 that cannot be written as 𝑧 = 𝜃𝑢 + (1 − 𝜃)V with 0 < 𝜃 < 1,
𝑢 ∈ 𝐶, V ∈ 𝐶, and 𝑢 ̸= V [21, p686].

TheoremA.1. Let 𝐶 be a compact convex set inR𝑛, and let 𝑓 :
R𝑛 → R be a linear function. The maximum and minimum
of 𝑓 are attained at extreme points of 𝐶.

Theorem A.1 (on the Maximum/Minimum Property (see
[21])) is useful but does not give a complete characterisation
of the set of points in 𝐶 at which 𝑓 has a maximum.

Rockafellar [8] gives amore general definition of a convex
function than we require. It is enough for our purposes to say
that if the domain of real-valued function 𝑓 is a convex set in
R𝑛 and if for any 𝑢 and V in this domain, 𝑓(𝜆𝑢 + (1 − 𝜆)V) ≤
𝜆𝑓(𝑢) + (1 − 𝜆)𝑓(V) for all 𝜆 ∈ [0, 1], then 𝑓 is convex.

Theorem A.2 (see [8, Theorem 32.1]). Let 𝑓 be a convex
function, and let 𝐶 be a convex set contained in the effective
domain of 𝑓. If 𝑓 attains its supremum relative to 𝐶 at some
point of the relative interior of 𝐶, then 𝑓 is actually constant
throughout 𝐶.

For our purposes, the effective domain of𝑓 is the domain
of𝑓 since the functions we consider are finite-valued. (See [8]
for definitions.)

Corollary A.3 (see [8, Corollary 32.1.1]). Let 𝑓 be a convex
function, and let 𝐶 be a convex set contained in the effective
domain of 𝑓. Let 𝑊 be the set of points (if any), where the
supremum of 𝑓 relative to 𝐶 is attained. Then 𝑊 is a union
of faces of 𝐶.

Corollary A.4 (see [8, Corollary 32.3.2]). Let 𝑓 be a convex
function, and let 𝐶 be a non-empty closed bounded convex set
contained in the relative interior of the effective domain of 𝑓.
Then the supremum of𝑓 relative to𝐶 is finite, and it is attained
at some extreme point of 𝐶.

Theorem A.5 (see [8, Theorem 5.4]). Let 𝑓 be a twice
continuously differentiable real-valued function on a open
convex set 𝐶 in R𝑛. Then 𝑓 is convex on 𝐶 if and only if its
Hessian matrix is positive semidefinite for every 𝑧 ∈ 𝐶.

B. Data Sets for Section 5

The simulated high (H) and low (L) treatment data anal-
ysed in Section 6.2 are given in Tables 3 and 4. The CpG
methylation measurements analysed in Section 6.3 are given
in Table 5.
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