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Making use of the linear operator I’ defined by (Frasin 2012), we introduce the class M (A, 4, @) of meromorphically p-valent
functions in the punctured unit disk %" . Furthermore, we obtain some sufficient conditions for starlikeness and close-to-convexity

for functions belonging to this class. Several corollaries and consequences of the main results are also considered.

1. Introduction and Definitions

Let ZP, i denote the class of functions of the form:

{1,2,3,...}),
(D

f@)=—+ Zaw 12" (pjeN:=
n=j

which are p-valent in the punctured unit disk " = % \ {0} =
{z : z € G;lz] < 1}. A function f(z) in X, ; is said to be
meromorphically p-valent starlike of order « if and only if

Re {—ZJ{(S)} >a, (z€U"), (2)

for some & (0 < a < p). We denote by Z;’j(tx) the class of
all meromorphically p-valent starlike of order §. Further, a
function f(z) in X, ; is said to be meromorphically p-valent

convex of order « if and only if

Re{—l—zf, (z)} >a, (ze€U), 3)

for some « (0 < « < p). We denote by Z;)j(oc) the class of
all meromorphically p-valent convex of order 8. A function

f(z) belonging to X, ; is said to be meromorphically p-valent
close-to-convex of order « if it satisfies

< chﬁ)m, (ze), )

for some & (0 < « < p). We denote by Z; () the subclass
of ¥, ; consisting of functions which are meromorphlcally p-

valent close-to-convex of order o in %".

Many interesting families of analytic and multivalent
functions were considered by earlier authors in Geometric
Functions Theory (cf. e.g., [1-4]). Some subclasses of ;=
Y when p = j = 1 were considered by (e.g.) Miller [5],
Pommerenke [6], Clunle [7], Owa et al. [8], and Royster [9].
Furthermore, several subclasses of £, ; = ¥, when j = 1 were
studied by (amongst others) Mogra et al [10], Uralegaddi and
Ganigi [11], Choetal. [12], Aouf[13, 14], and Uralegaddi and
Somanatha [15].

For a function f in X j» Frasin [16] introduced and
studied the following differential operator:

I’f(2) = f(2),

I,l\f(z)=(1—A)f(z)+Azf’(z)+M,

zP

)
Lf (@) =0-VLf (2 + (L f (2) +—(i:l)’
(5)

A>0,



andform=1,2,3,...

f+)\(p+1)
zP

INf(@)=0-MIY"f(2)+ Az(I77 £ (2))

1 & -
= Z—P+Z[1+A(p+n—2)]man+P,lzn+P g

n=j

(6)

Note that for A = p = j = 1, we have the operator
I" f(z) introduced and studied by Frasin and Darus [17].
It easily verified from (6) that

, A
A(IVf(2) =17 f(2) - (1 -M I} f (2) - %’
" ! ! A
M1 @) = (107 @) - (5 @) + 22
(7)

Making use of the above operator I}, we now introduce a new
class of meromorphically and p-valent functions defined as
follows.

Definition 1. A function f(z) € X, ; is said to be a member
of the class My, (A p, @) if and only if

YIS (2)

-, 8
(P17 f (2))"" Shoe ®

+p

forsomea (0<a<p); p>20, 20, pe N, me N, =
N U{0}and forallz € %".

Note that condition (8) implies that

ptl gm '
Re<_M> > o (9)

(P17 f (2))"

Clearly, we have lMg)j(l, 2,q) = Z;,j(oc) and Mg,j(l,
l,a) = Z;,j((x).

In this paper, we obtain some sufficient conditions for
functions belonging to the class M} ;(A, 4, ). Several corol-
laries and consequences of the main results are also consid-
ered.

In order to derive our main results, we have to recall the
following lemmas.

Lemma 2 (see [18]). Let w(z) be analytic in % and such that
w(0) = 0. Then if lw(z)| attains its maximum value on circle
|z| = r < 1 at a point z, € %, we have

zw (z,) = kw(z,), (10)
where k > 1 is a real number.

Lemma 3 (see [19]). Let Q be a set in the complex plane C and

suppose that ©(z) is a mapping from C*x% to C which satisfies
D(ix, y;2) ¢ Q forz € U, and for all real x, y such that

Geometry

y < —n(1+x3)/2. Ifthe function q(z) = 1+q,2" +q,,,, 2" +---

is analytic in U such that ®(q(z), zq’(z); z) € Q forallz € %,
then Re{q(z)} > 0.

Lemma 4 (see [20]). Let q(z) be analytic in % with q(0) = 1.
If there exists a point z, € U such that

Re{q(2)} >0,
Re {q(z)} = 0,

(Il < |zol)

q(z) #0,

11)

then

. zq (zy) .k 1
q(z) = ia, 1) 2 (a + ;>, (12)

wherea € R\ {0} and k > 1.

2. Sufficient Conditions for Meromorphically
p-Valent Starlikeness and Close-to-Convexity

Making use of Lemma 2, we first prove

Theorem 5. If f(z) € £, ; satisfies

p+1+l{(17+1f(z),)’_ Ap(p+1) }
A 1rfe) 2P (I f (2))
1 (17 f(2) A(p+1)
) [pW( @ ‘“‘“‘zplx"ﬂz))]
(@)
! < @rrf @y P>{
R I R R R

2p-—«
(13)

forsomea (0<a<p); ,y=0; A>0, peN, and me N,
then f(z) € M;fj(/\, o ).

Proof. Define the function w(z) by

p+l Im !
%:_PW“—PW(@. (14)
A
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Then w(z) is analytic in % and w(0) = 0. It follows from (14)
and the identities (7) that

p+1+ 1 [ (ITHf(Z),)
(I f (2))

!

Ap(p+1) ]
I ,

2 (17 f (2)

1 If{”lf(z) A(p+1)
(=) [P *X( I R <z>)]

LIS @)
(e
(p-«a) 2w (2)
pt+(p-a)w(z)

=yp(p-a)w(z)+

(15)
Suppose that there exists z, € % such that
= = 1)
max fuw (2)] |w(z)| (16)

then from Lemma 2, we have (10). Therefore, letting zow, (z,)
= ke (0 <0 < 2m), with k > 1, we obtain that

pll[MIM]

Mo () IS (20))

L1 (=) A(p+1)
~e-1) [p 7( 17 (20) _(1_”}5%(%))]

2N f (=0) )
o 2=
! ( (4177 (=)'
(p- o) zw (z))
p+(p-a)w(z)
(p-a)k }
p+(p-a)w(z)

(p-a)(y(2p-a) +1)
2p-« '

=‘V(p—0¢)w(zo)+

2Re{y(p—o¢)+

- p-a _
>y(pa)+ o =0

17)

which contradicts our assumption (13). Therefore we have
|w(z)| < 1in %. Finally, we have

NI (2)
(217 f ()

+P{=(P—“)Iw(Z)I<p—fx, (ze),
(18)

that is, f(z) € Mg‘ j()t, ¢, «). This completes the proof of the
theorem. O

Next we prove the following.

Theorem 6. If f(2) € X, ; satisfies

Re ( 1 f () >2 @)
I f @) ) (I @)
Ap(p+1) ]

m+1 !
><<1+l|:—(1A f(Z),) -1+ ;
AMo(rf @) (17 f (2))
1w [13"“f<z>_ o]
YT @ #re)

>6(8+%A(1_M+g)+p(6(y—2)—g>,

(19)

forsomed (0 <6 < p); p=>01>0, pec Nandm ¢
N, then f(z) € M7 (A, 4, ).

Proof. Define the function g(z) by

YIS (2)
— T = 5+ (- . 20
T R 0

Then, we see that g(z) = 1+ q,2" + q,,,2""" + - is ana-
Iytic in %. Differentiating both sides of (20) with respect z
logarithmically, we get

"

1+ z(I7' f (Z)), F(1-p) Z(II}:J{((;))
(IAf(Z)) A (1)
 (p-9)2q (2)
"o+ (p-0)at P
Using the identities (7) in (21), we find that
141 {(17“]((2))’ . Ap(ptl) ]
Moapre) S @)
LLow [If{”lf(z) _Ap+1) ]
A INfz)  2PIYf(2)
_ (p-98)zq (2) (1-u)(1-21)
o (poo)q P P
(22)



From (20) and (22), we immediately get
S E)
(1 @)

x <1 1 [(ITﬂf(z))

+ = 7
Moyt @)

NI (2)
(P17 f ()

!

Ap(p+1) }
2PV f ()

+Pw[wﬂﬂ@_A@+U]>

AL IVfe 21 f(2)

=(p-0)zq @)+ (p-8)q* () +(p-0)q(2)

x(p(y—2)+—(1_‘u)/\(1_M +28)

+(p(u—2)+—(1_”);1_”)“52
=<D(q(Z),zq/(Z);z),
(23)

where

O (r,s55t) = (p—08)s+(p—0)r

+(p-8)r<pg4-z)+ﬁllﬁ¥lijﬂ+za>

+(p(y—2)+—(1_#)}L(1_/\)>6+82.

(24)
For all real x, y satisfying y < —n(1 + x3)/2, we have
Re® (ix, y;2) = (p~8) y ~ (p—8)’x’

+<p(;4—2)+(I_M)}LLA))8+82

<2 (p-0)-(p-0) |5 +p-8|¥

+<p(,4—2)+(1_”)A¢)5+52

(1-p) (1-1)

<(pu-2+ R 00022 (-0

:8<6+W+g)+p <8 (y—2)—§>.

(25)

LetQ={w: Rew >80+ (1 -pu)(1-A)/A+n/2)+ p(&(u—
2) — n/2)}. Then ®(q(z), zq’(z);z) € Q, and O(ix, y;2) ¢ Q,
for all real x and y < —n(1 + x3)/2, z € %. By using Lemma
3, we have Re g(z) > 0, that is, f(z) € ]Mgfj(/\, w, 6). O

Geometry
Finally, we prove the next theorem.
Theorem 7. If f(2) € X, ; satisfies
L f)  Alp+1) )
R -1 -
e{w )(mvw) I @)
_ < (ITﬂf(Z)), LM (p+1) >} (26)
@) @S @)
A(p-9)

<A=-pA(p-2)-(1-p) Q-1+ %

for some 8 (p/2 < 6 < p); u =0, A >0, pe N,and
m € N, then f(z) € ]M;'f)j()t, w, 0).

Proof. Define the function g(z) by

NI @)

(P13 f (2)" Na- e
A

:8+(p_

Then, we see that g(z) is analytic in % with g(0) = 1. From
(22) it follows that and

W_UCTVw_A@+U>

IVf(z) =PIV f(2)
_<Eﬁi@l_+_ﬂﬁzﬁ_>
G )

A(p-0)zq (2)

:A_PA(V_Z)_(I_V)(I—A)—W-

(28)
If there exists a point z, € % such that
Re{q(2)} >0, (lz] <|zo|)>
(29)
Re{q(z9)} =0, q(z) #0.
Then applying Lemma 4, we have
az) —ia, L) Slavi), 00
q(z) 2 a
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where a € R\ {0} and k > 1. Thus, from (28) and (30) we get

(”_1)(1%(%)_ Ap+1) )

I f(z0) 2517 f (2)
(I f (20)) 25" (17 f (20))

A(p-8)zq (20)
5+ (p=9)q(z)
kA(p-0)(1+a’)

20+i(p-0)a)
(31)

=A-pA(u-2)-(1-p)(1-2)-

A= pA(u-2) - (1- ) (1= 1) +

Therefore, we have

Re { - (B

Alp+1) )

2017 f (20)

_<(13““f(z()>)'_l+ Ap(p+1) >}
(171 () 2" (17 f (20))

kA (p-8) (1+a*)8

2(8%+(p-0)°a?)

kA(p - 9)
26

Alp-90
A pA(-2) - (- -0+ B0

=A=pA(u=2)-(1-p) 1-1)+

>A-pA(p-2)-(1-pu)(1-1)+

(32)

This contradicts our assumption. Thus, we conclude that
Reg(z) > 0 forall z € %, that s,

ptlym !
Re (—M> 56 (33)

(=PI f ()
OJ

3. Special Cases and Consequences

Among the various interesting and important consequences
of Theorems 5-7, we mention now some of the corollar-
ies relating to the classes X, ;(a), and X, ;(8), which are
deducible from the main results.

Firstly, if we let m = O,y = 2,and A = 1 in
Theorems 5-7, we get the following sufficient conditions for
meromorphically p-valent starlike functions.

Corollary 8. If f(z) € X, ; satisfies

of (@) zf (2)
f (2) f(2

(-9 (p-a)+1)
2p—«a

1+

(1+y) -yp

(34)

>

for somea (0 < < p); p € Nandy > Othen f(z) €
2 (@)

Corollary 9. If f(z) € X, ; satisfies

Re{(zf,(z)><22f,(z) - zf”(z)>}
AANALY f @ (35)

>8<6+ E)—@,
2 2

for some § (0 < 8§ < p); p € Nandy > 0, then f(z) €
2, (0.

Corollary 10. If f(z) € £, ; satisfies

of @ zf (@ p-9
Re{ f(z) - f, (z) } <1+ T, (36)

forsome 8 (p/2 <8< p); peN, then f(z) € Z;,j(S).

Settingm = 0 and 4 = A = 1 in Theorems 5-7, we get the
following sufficient conditions for meromorphically p-valent
close-to-convex functions.

Corollary 11. If f(z) € £, ; satisfies

"

pe1s (z)_y(zpﬂff(z)+p)‘
f(z (37)
(@) (yp-a)+ 1)
2p-« '
for somea (0 < « < p); p € Nandy > 0, then f(z) €
25, i(@).

Corollary 12. If f(z) € £, ; satisfies

Re p+1’()<p+l’()_1_zf, (Z)>}
{(z fz)z f (z o

(38)
n
> (6—p)<6+5),
for some § (0<8 < p); peN,then f(z) € X, ;(9).
Corollary 13. If f(z) € £, ; satisfies
Re{—z, (Z)}<1+p+p—_8, (39)
f (@) 20

for some 8 (p/2 <8 < p); p €N, then f(z) € X, (5).
Setting p = j = 1 in Corollary 10, we have

Corollary 14. If f(z) € Z satisfies

2f (&) zf (@) 1-8
Re<|—f(z) f'(z) }< 1+ 5 (40)




for some 8 (1/2 < 8 < 1), then f(z) € *(8). In particular, if
f(2) € Z satisfies

Re {zf’ @) _zf <z>} 23
@ f() 2

(41)

then f(z) is meromorphically starlike of order 1/2.
Setting p = j = 1 in Corollary 13, we have the following.

Corollary 15. If f(z) € X satisfies

w0}
f (2 26

for some § (1/2 < & < 1), then f(z) € 2°(8). In particular, if
f(2) € Z satisfies
Re <|_zf’ (z)} < E,
f (2 2

then f(z) is meromorphically close-to-convex of order 1/2.

(42)

(43)

Remark 16. (i) If we put y = p = j = 1 in Corollaries 8 and
11, we get Corollaries 5 and 1, respectively, proved by Goyal
and Prajapat [21].

(ii) If weput p = j =n = 1and 6 = 0 in Corollaries 9 and
12, we get Corollaries 8 and 4, respectively, proved by Goyal
and Prajapat [21].
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