
Hindawi Publishing Corporation
ISRNMathematical Physics
Volume 2013, Article ID 507145, 9 pages
http://dx.doi.org/10.1155/2013/507145

Research Article
Numerical Solution of Singular Lane-Emden Equation

Hossein Aminikhah and Sakineh Moradian

Department of Applied Mathematics, School of Mathematical Sciences, University of Guilan, P.O. Box 1914, Rasht 41938, Iran

Correspondence should be addressed to Hossein Aminikhah; hossein.aminikhah@gmail.com

Received 24 June 2013; Accepted 13 July 2013

Academic Editors: N. E. Grandi and R. Schiappa

Copyright © 2013 H. Aminikhah and S. Moradian. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A new approach for solving the nonlinear Lane-Emden type equations has been proposed. The method is based on Legendre
wavelets approximations. Illustrative examples have been discussed to demonstrate the validity and applicability of the technique,
and the results have been compared with the exact solution.

1. Introduction

The Lane-Emden type equations are nonlinear ordinary
differential equations on semi-infinite domain. They are cat-
egorized as singular initial value problems. These equations
describe the temperature variation of a spherical gas cloud
under themutual attraction of itsmolecules and subject to the
laws of classical thermodynamics. The polytrophic theory of
stars essentially follows out of thermodynamic considerations
that deal with the issue of energy transport, through the
transfer of material between different levels of the star. These
equations are one of the basic equations in the theory of
stellar structure and have been the focus of many studies.The
general form of the Lane-Emden equations is the following
form:

𝑦


(𝑥) +
𝑚

𝑥
𝑦


(𝑥) + 𝑓 (𝑥, 𝑦) = 𝑔 (𝑥) , 0 < 𝑥 ≤ 1, 𝑚 ≥ 0,

(1)

with the following initial conditions:

𝑦 (0) = 𝐴, 𝑦


(0) = 𝐵, (2)

where 𝑓(𝑥, 𝑦) is a continuous real-value function and 𝑔(𝑥)
is an analytical function. Equation (1) was used to model
several phenomena inmathematical physics and astrophysics
such as the theory of stellar structure, the thermal behavior of
a spherical cloud of gas, isothermal gas sphere, and theory
of thermionic currents [1, 2]. The solution of the Lane-
Emden equation, as well as those of a variety of nonlinear

problems in quantummechanics and astrophysics such as the
scattering length calculations in the variable phase approach,
is numerically challenging because of the singular point at
the origin. Bender et al. [3] proposed a new perturbation
technique based on an artificial parameter 𝛿; the method
is often called 𝛿-method. El-Gebeily and O’Regan [4] used
the quasilinearization approach to solve the standard Lane-
Emden equation. This method approximates the solution of
a nonlinear differential equation by treating the nonlinear
terms as a perturbation about the linear ones, and unlike
perturbation theories, it is not based on the existence of
some small parameters. Approximate solutions to the above
problemswere presented by Shawagfeh [5] andWazwaz [6, 7]
by applying the Adomian method which provides a conver-
gent series solution. Nouh [8] accelerated the convergence
of a power series solution of the Lane-Emden equation by
using an Euler-Abel transformation and Padé approximation.
Mandelzweig and Tabakin [9] applied Bellman and Kalaba’s
quasilinearization method, and Ramos [10] used a piecewise
linearization technique based on the piecewise linearization
of the Lane-Emden equation. Bozkhov and Gilli Martins [11]
and later Momoniat and Harley [12] applied the Lie Group
method successfully to generalized Lane-Emden equations
of the first kind. Exact solutions of generalized Lane-Emden
solutions of the first kind are investigated by Goenner and
Havas [13]. Liao [14] solved Lane-Emden type equations by
applying a homotopy analysis method. He [15] obtained an
approximate analytical solution of the Lane-Emden equation
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by applying a variational approach which uses a semi-
inverse method. Ramos [16] presented a series approach to
the Lane-Emden equation and gave the comparison with
homotopy perturbation method. Özis and Yildirim [17, 18]
gave the solutions of a class of singular second-order IVPs
of Lane-Emden type by using homotopy perturbation and
variational iteration method. Parand et al. [19–22] presented
three numerical techniques to solve higher ordinary differ-
ential equations such as Lane-Emden. Their approach was
based on the rational Chebyshev, rational Legendre Tau, and
Hermite functions collocation methods. In this paper, the
new approximate analytical method will be introduced for
exact solution of Lane-Emden equation.

This paper is arranged as follows.
In Section 2, the properties of Legendre wavelets and

the way to construct the wavelet technique for this type of
equation are described. In Section 3, the proposed method is
applied to some types of Lane-Emden equations, and a com-
parison is made with the existing analytic or exact solutions
that were reported in other published works in the literature.
Finally, we give a brief conclusion in the last section.

2. Legendre Wavelets Applied to Singular IVPs
of Lane-Emden Type Equation

2.1. Wavelets and Legendre Wavelets. Wavelets constitute a
family of functions constructed from dilation and translation
of single function called the mother wavelet. When the
dilation parameter 𝑎 and the translation parameter 𝑏 vary
continuously, we have the following family of continuous
wavelets:

𝜓
𝑎,𝑏
(𝑥) = |𝑎|

−1/2
𝜓(

𝑥 − 𝑏

𝑎
) , 𝑎, 𝑏 ∈ R, 𝑎 ̸= 0. (3)

If we restrict the parameter 𝑎 and 𝑏 to discrete values
as 𝑎 = 𝑎

−𝑘

0
, 𝑏 = 𝑛𝑏

0
𝑎
−𝑘

0
, 𝑎
0
> 1, 𝑏

0
> 0, and 𝑛, 𝑘 positive

integers, we have the following family of discrete wavelets:

𝜓
𝑘,𝑛
(𝑥) =

𝑎0

𝑘/2

𝜓 (𝑎
𝑘

0
𝑥 − 𝑛𝑏

0
) , (4)

where 𝜓
𝑘,𝑛
(𝑥) forms a wavelet basis for 𝐿2(R). In particular,

when 𝑎
0
= 2 and 𝑏

0
= 1 then 𝜓

𝑘,𝑛
(𝑥) forms an orthonormal

basis.
Legendre wavelets 𝜓

𝑛,𝑚
(𝑥) = 𝜓(𝑘, 𝑛,𝑚, 𝑥) have four ar-

guments, 𝑛 = 1, 2, 3, . . . , 2
𝑘−1

: 𝑘 can assume any positive
integer, 𝑚 is the order for Legendre polynomials, and they
are defined on the interval [0, 1) as follows:

𝜓
𝑛𝑚
(𝑥) =

{{

{{

{

√𝑚 +
1

2
2
𝑘/2
𝑃
𝑚
(2
𝑘
𝑥 − 2𝑛 + 1) ,

𝑛 − 1

2𝑘−1
≤ 𝑥 <

𝑛

2𝑘−1
,

0, otherwise,
(5)

where 𝑚 = 0, 1, . . . ,𝑀 − 1, 𝑛 = 1, 2, 3, . . . , 2
𝑘−1. The

coefficient√𝑚 + (1/2) is for orthonormality. Here, 𝑃
𝑚
(𝑥) are

the well-known Legendre polynomials of order 𝑚 which are
defined on the interval [−1, 1] and can be determined with
the aid of the following recurrence formulae:

𝑃
0
(𝑥) = 1, 𝑃

1
(𝑥) = 𝑥,

𝑃
𝑚+1

(𝑥) = (
2𝑚 + 1

𝑚 + 1
)𝑥𝑃
𝑚
(𝑥)

− (
𝑚

𝑚 + 1
)𝑃
𝑚−1

(𝑥) , 𝑚 = 1, 2, . . .

(6)

2.2. Function Approximation. A function𝑓(𝑥) defined on the
interval [0, 1)may be expanded by Legendre wavelet as

𝑓 (𝑥) =

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑥) , (7)

where
𝑐
𝑛𝑚

= (𝑓 (𝑥) , 𝜓
𝑛𝑚
(𝑥)) . (8)

In (8), (⋅, ⋅) denotes the inner product.
If the infinite series in (7) is truncated, then (7) can be

written as

𝑓 (𝑥) ≈

2
𝑘−1

∑

𝑛=1

𝑀−1

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑥) = 𝐶

𝑇
𝜓 (𝑥) , (9)

where 𝐶 and 𝜓(𝑥) are 2𝑘−1𝑀× 1matrices given by

𝐶 = [𝑐
10
, 𝑐
11
, . . . 𝑐
1𝑀−1

, 𝑐
20
, 𝑐
21
, . . . 𝑐
2𝑀−1

, . . . , 𝑐
2
𝑘−1
0
, . . . ,

𝑐
2
𝑘−1
𝑀−1

]
𝑇

,
(10)

𝜓 (𝑥) = [𝜓
10
(𝑥) , 𝜓

11
(𝑥) , . . . 𝜓

1𝑀−1
(𝑥) , 𝜓

20
(𝑥) , 𝜓

21
(𝑥) ,

. . . 𝜓
2𝑀−1

(𝑥) , . . . , 𝜓
2
𝑘−1
0
(𝑥) , . . . , 𝜓

2
𝑘−1
𝑀−1

(𝑥)]
𝑇

.

(11)

The integration of the product of two Legendre wavelets
vector functions is obtained as

∫

1

0

𝜓 (𝑥) 𝜓
𝑇

(𝑥) 𝑑𝑥 = 𝐼, (12)

where 𝐼 is an identity matrix.

2.3. LegendreWavelets OperationalMatrix of Integration. The
integration of the vector 𝜓(𝑥) defined in (11) can be obtained
as

∫

𝑥

0

𝜓 (𝑡) 𝑑𝑡 = 𝑃𝜓 (𝑥) , (13)

where 𝑃 is the 2𝑘−1𝑀×2
𝑘−1
𝑀 operational matrix of integra-

tion given by [23] as

𝑃 =
1

2𝑘

[
[
[
[
[
[
[

[

𝐿 𝐹 𝐹 ⋅ ⋅ ⋅ 𝐹

𝑂 𝐿 𝐹 d
...

𝑂 𝑂 𝐿 d 𝐹

... d d d 𝐹

𝑂 ⋅ ⋅ ⋅ 𝑂 𝑂 𝐿

]
]
]
]
]
]
]

]

, (14)

where 𝐿, 𝐹, and 𝑂 are𝑀×𝑀matrices given by
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𝐿 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1
√3

3
0 ⋅ ⋅ ⋅ 0 0

−
√3

3
0

√3

3√5
0 ⋅ ⋅ ⋅ 0

0 −
√5

5√3
d d d

...
... 0 d d d 0

... ⋅ ⋅ ⋅ d −
√2𝑀 − 3

(2𝑀 − 3)√2𝑀 − 1
d

√2𝑀 − 3

(2𝑀 − 3)√2𝑀 − 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 −
√2𝑀 − 1

(2𝑀 − 1)√2𝑀 − 3
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐹 =

[
[
[
[

[

2 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 0

]
]
]
]

]

,

𝑂 =

[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 0

]
]
]
]

]

.

(15)

The following property of the product of two Legendre
wavelet vector functions will also be used:

𝜓(𝑡)
𝑇
𝜓 (𝑡) 𝐶 ≈ 𝐶𝜓 (𝑡) , (16)

where 𝐶 is a vector given in (10) and 𝐶 is a 2𝑘−1𝑀 × 2
𝑘−1
𝑀

matrix, which is called the product operation of Legendre
wavelet vector functions [23]. For 𝑀 = 3 and 𝑘 = 1, the
matrix 𝐶 is obtained:

[
[
[
[
[
[

[

𝑐
10

𝑐
11

𝑐
12

𝑐
11

𝑐
10
+
2𝑐
12

√5

2𝑐
11

√5

𝑐
12

2𝑐
11

√5
𝑐
10
+
2√5𝑐
12

7

]
]
]
]
]
]

]

. (17)

2.4. Solution of Lane-Emden Equations. We multiply both
sides of (1) by 𝑥,

𝑥𝑦


(𝑥) + 𝑚𝑦


(𝑥) + 𝑥𝑓 (𝑥, 𝑦) = 𝑥𝑔 (𝑥) ,

0 < 𝑥 ≤ 1, 𝑚 ≥ 0,

(18)

in order to use Legendre wavelets to approximate 𝑦(𝑥) as

𝑦


(𝑥) ≈ 𝐶
𝑇
𝜓 (𝑥) . (19)

Integrating (19) with respect to 𝑥 twice from 0 to 𝑥, we
obtain

𝑦


(𝑥) ≈ 𝐶
𝑇
𝑃𝜓 (𝑥) + 𝑦



(0)

= 𝐶
𝑇
𝑃𝜓 (𝑥) + 𝑈

𝑇

1
𝜓 (𝑥) ,

(20)

𝑦 (𝑥) ≈ 𝐶
𝑇
𝑃
2
𝜓 (𝑥) + 𝑥𝑦



(0) + 𝑦 (0)

= 𝐶
𝑇
𝑃
2
𝜓 (𝑥) + 𝑈

𝑇

0
𝜓 (𝑥) ,

(21)

where coefficients 𝑈
0
and 𝑈

1
are known and can be obtained

from the initial conditions, 𝐶 and 𝜓(𝑥) are defined similarly
to (10) and (11), and 𝑃 is 2𝑘−1𝑀 × 2

𝑘−1
𝑀 operational matrix

for integration, defined in (14).
Also consider the following approximations:

𝑥𝑦


(𝑥) ≈ 𝑌
𝑇

1
𝜓 (𝑥) ,

𝑥𝑓 (𝑥, 𝑦) ≈ 𝑥

𝑛

∑

𝑗=0

1

𝑗!
((𝑥 − 𝑥

0
)
𝜕

𝜕𝑥
+ (𝑦 − 𝑦

0
)
𝜕

𝜕𝑦
)

𝑗

𝑓 (𝑥
0
, 𝑦
0
)

= 𝑌
𝑇

2
𝜓 (𝑥) ,

𝑥𝑔 (𝑥) ≈ 𝑥

𝑛

∑

𝑗=0

𝑔
(𝑛)
(𝑥
0
)

𝑛!
(𝑥 − 𝑥

0
)
𝑛

= 𝐺
𝑇
𝜓 (𝑥) ,

(22)

where 𝑌
1
and 𝑌

2
are column vectors with the entries of the

vectors 𝐶 and coefficients of 𝐺 known.
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Substitution of approximations (20) and (22) into (18) will
be resulted to

𝑌
𝑇

1
𝜓 (𝑥) + 𝑚 (𝐶

𝑇
𝑃 + 𝑈

𝑇

1
) 𝜓 (𝑥) + 𝑌

𝑇

2
𝜓 (𝑥) = 𝐺

𝑇
𝜓 (𝑥) .

(23)

Simplifying 𝜓(𝑥) in (23), a nonlinear system in terms
of 𝐶 will be obtained:

𝑌
𝑇

1
+ 𝑚(𝐶

𝑇
𝑃 + 𝑈

𝑇

1
) + 𝑌
𝑇

2
= 𝐺
𝑇
. (24)

The element of vector functions 𝐶 can be computed by
solving these systems.

3. Numerical Examples

In this section, some examples of Lane-Emden equation are
considered and will be solved by introduced method.

Example 1. Consider the following nonlinear Lane-Emden
equation:

𝑦


(𝑥) +
6

𝑥
𝑦


(𝑥) + 14𝑦 (𝑥)

= −4𝑦 (𝑥) ln (𝑦 (𝑥)) , 0 < 𝑥 ≤ 1,

(25)

subject to the initial conditions

𝑦 (0) = 1, 𝑦


(0) = 0, (26)

which has the following analytical solution:

𝑦 (𝑥) = 𝑒
−𝑥
2

. (27)

We solve (25) by the method discussed in this paper
with 𝑘 = 1 and 𝑀 = 7.

We multiply both sides of (25) by 𝑥,

𝑥𝑦


(𝑥) + 6𝑦


(𝑥) + 14𝑥𝑦 (𝑥)

= −4𝑥𝑦 (𝑥) ln (𝑦 (𝑥)) , 0 < 𝑥 ≤ 1.

(28)

Let us consider the following approximations:

𝑦


(𝑥) ≈ 𝐶
𝑇
𝜓 (𝑥)

𝑦


(𝑥) ≈ 𝐶
𝑇
𝑃𝜓 (𝑥) + 𝑈

𝑇

1
𝜓 (𝑥)

𝑦 (𝑥) ≈ 𝐶
𝑇
𝑃
2
𝜓 (𝑥) + 𝑈

𝑇

0
𝜓 (𝑥)

𝑥𝑦


(𝑥) ≈ 𝑌
𝑇

1
𝜓 (𝑥)

𝑥𝑦 (𝑥) ≈ 𝑌
𝑇

2
𝜓 (𝑥)

𝑥𝑦 (𝑥) ln (𝑦 (𝑥)) ≈ 𝑌𝑇
3
𝜓 (𝑥) .

(29)

Substitution into (28) and simplifying will be resulted to:

𝑌
𝑇

1
+ 6𝐶
𝑇
𝑃 + 14𝑌

𝑇

2
= −4𝑌

𝑇

3
. (30)

Table 1: Numerical results of Example 1.

𝑥 Exact solution Legendre wavelets Absolute error
0.0 1 1.000020858 0.000020858
0.1 0.9900498337 0.9900449375 0.0000048962
0.2 0.9607894392 0.9607962885 0.0000068493
0.3 0.9139311853 0.9139303816 8.037 × 10

−7

0.4 0.8521437890 0.8521354021 0.0000083869
0.5 0.7788007831 0.7787879122 0.0000128709
0.6 0.6976763261 0.6976230812 0.0000532449
0.7 0.6126263942 0.6124194854 0.0002069088
0.8 0.5272924240 0.5266984761 0.0005939479
0.9 0.4448580662 0.4434381168 0.0014199494
1 0.3678794412 0.3648016892 0.0030777520

By solving the system (30), we have

𝑐
1,0
= −0.75742553415, 𝑐

1,1
= 0.8884200666,

𝑐
1,2
= 0.02494929272, 𝑐

1,3
= −0.09212822515,

𝑐
1,4
= 0.002866418366, 𝑐

1,5
= 0.003597228202,

𝑐
1,6
= −0.00002910926654.

(31)

Therefore, the approximate solution of (25) will be
obtained as follows:

𝑦 (𝑥) ≈ (𝐶
𝑇
𝑃
2
+ 𝑈
𝑇

0
) 𝜓 (𝑥)

= 0.2023447118𝑥
6
− 0.3173001850𝑥

5

+ 0.7344456412𝑥
4
− 0.08725168885𝑥

3

− 0.984175344𝑥
2
− 0.001172073003𝑥

+ 1.000020858.

(32)

Table 1 shows some values of the solutions and absolute
errors at some 𝑥, and plots of the exact and approximate
solutions are shown in Figure 1.

Example 2. Consider the following nonlinear Lane-Emden
equation:

𝑦


(𝑥) +
2

𝑥
𝑦


(𝑥) + 𝑦
𝑛

(𝑥) = 0, 0 < 𝑥 ≤ 1, (33)

subject to the initial conditions

𝑦 (0) = 1, 𝑦


(0) = 0, (34)

where 𝑛 ≥ 0 is constant. Substituting 𝑛 = 0, 1, and 5 into
(33) leads to the exact solution

𝑦 (𝑥) = 1 −
1

3!
𝑥
2
,

𝑦 (𝑥) =
sin (𝑥)
𝑥

,

𝑦 (𝑥) = (1 +
𝑥
2

3
)

−1/2

,

(35)

respectively.
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Figure 1: The exact and LWM solution of Example 1.

For 𝑛 = 0, we solve (33) by the Legendre wavelet method
with 𝑘 = 1 and𝑀 = 3. For this equation, we find

𝑐
10
= −

1

6
, 𝑐

11
= 0, 𝑐

13
= 0. (36)

Therefore, we have

𝑦 (𝑥) ≈ (𝐶
𝑇
𝑃
2
+ 𝑈
𝑇

0
) 𝜓 (𝑥) = −

𝑥
2

6
+ 1, (37)

which is the exact solution.
For 𝑛 = 1, we solve (33) by the method discussed in this

paper with 𝑘 = 1 and 𝑀 = 10. We have

𝑐
10
= −0.3011686789, 𝑐

11
= 0.02752116388,

𝑐
12
= 0.006713250014, 𝑐

13
= −0.0002154247382,

𝑐
14
= −0.00002541095207, 𝑐

15
= 5.308742329 × 10

−7
,

𝑐
16
= 4.155816200 × 10

−5
, 𝑐

17
= −8.1255913 × 10

−10
,

𝑐
18
= 9.51835270 × 10

−11
,

𝑐
19
= −8.086072988 × 10

−11
.

(38)

Table 2: Numerical results of Example 2 for 𝑛 = 1.

𝑥 Exact solution Legendre wavelets Absolute error
0.0 1 1 0
0.1 0.9983341665 0.9983341665 0
0.2 0.9933466540 0.9933466540 0
0.3 0.9850673556 0.9850673556 0
0.4 0.9735458558 0.9735458558 0
0.5 0.9588510772 0.9588510772 0
0.6 0.9410707892 0.9410707890 2 × 10

−10

0.7 0.0920310982 0.0920310989 2 × 10
−10

0.8 0.8966951136 0.8966951137 1 × 10
−10

0.9 0.8703632328 0.8703632329 1 × 10
−10

1 0.8414709848 0.8414709848 0

Therefore, the following solution will result:

𝑦 (𝑥) ≈ (𝐶
𝑇
𝑃
2
+ 𝑈
𝑇

0
) 𝜓 (𝑥)

= −1.367445662 × 10
−7
𝑥
9
+ 0.000003078850787𝑥

8

− 4.245445355 × 10
−7
𝑥
7

− 0.0001980757263𝑥
6
− 1.650008216 × 10

−7
𝑥
5

+ 0.008333382135𝑥
4

− 8.134931025 × 10
−9
𝑥
3
− 0.1666666660𝑥

2

+ 4.268843531 × 10
−11
𝑥 + 1.

(39)

Table 2 shows that the Legendre wavelet solution is very
near to the exact solution. Figure 2(a) shows that Legendre
wavelet solution coincides with the exact solution.

For solving (33) by Legendre wavelets with 𝑘 = 1, 𝑀 =

12, and 𝑛 = 5, we find

𝑐
10
= − 0.2165063510, 𝑐

11
= 0.08910161508,

𝑐
12
= 0.009961765824, 𝑐

13
= −0.005784759597,

𝑐
14
= 0.0001927423729, 𝑐

15
= 0.0001784630080,

𝑐
16
= −0.00002233585057,

𝑐
17
= −0.000003109896876,

𝑐
18
= 8.759973237 × 10

−7
, 𝑐

19
= 5.92941957 × 10

−9
,

𝑐
110

= −2.264665721 × 10
−8
,

𝑐
111

= 1.961578560 × 10
−9
.

(40)
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Figure 2: (a) The exact and LWM solution of Example 2 for 𝑛 = 1. (b) The exact and LWM solution of Example 2 for 𝑛 = 5.

The approximate solution of 𝑦(𝑥) is as follows:

𝑦 (𝑥) ≈ (𝐶
𝑇
𝑃
2
+ 𝑈
𝑇

0
) 𝜓 (𝑥)

= 0.000007988889774𝑥
11
+ 0.0004944909178𝑥

10

− 0.003163180797𝑥
9
+ 0.006776529202𝑥

8

− 0.002268670185𝑥
7

− 0.01058534314𝑥
6
− 0.00028270820𝑥

5

+ 0.04171831604𝑥
4

− 0.000005679982758𝑥
3
− 0.1666663304𝑥

2

− 8.584262110 × 10
−9
𝑥 + 1.

(41)

Table 3 shows that the Legendre wavelet solution is very
near to the exact solution. Figure 2(b) shows that Legendre
wavelet solution coincides with the exact solution.

Example 3. Consider the following nonlinear Lane-Emden
equation:

𝑦


(𝑥) +
2

𝑥
𝑦


(𝑥) − 2 (2𝑥
2
+ 3) 𝑦 = 0, 0 < 𝑥 ≤ 1, (42)

subject to the initial conditions

𝑦 (0) = 1, 𝑦


(0) = 0, (43)

which has the following analytical solution:

𝑦 (𝑥) = 𝑒
𝑥
2

. (44)

Table 3: Numerical results of Example 2 for 𝑛 = 5.

𝑥 Exact solution Legendre wavelets Absolute error
0.0 1 1 0
0.1 0.9983374884 0.9983374884 0
0.2 0.9933992679 0.9933992677 2 × 10

−10

0.3 0.9853292781 0.9853292781 0
0.4 0.9743547036 0.9743547036 0
0.5 0.9607689228 0.9607689228 0
0.6 0.9449111826 0.9449111825 1 × 10

−10

0.7 0.9271455411 0.9271455408 3 × 10
−10

0.8 0.9078412992 0.9078412989 3 × 10
−10

0.9 0.8873565093 0.8873565094 1 × 10
−10

1 0.8660254038 0.8660254038 0

Solving (42) by Legendre wavelets method with 𝑘 =

1 and 𝑀 = 12, we have

𝑐
10
= 5.436563650, 𝑐

11
= 3.464101614,

𝑐
12
= 1.517605100, 𝑐

13
= 0.4100561906,

𝑐
14
= 0.1035241990, 𝑐

15
= 0.02034845798,

𝑐
16
= 0.003837769593, 𝑐

17
= 0.0006174959039,

𝑐
18
= 0.0000958708425, 𝑐

19
= 0.00001333846701,

𝑐
1,10

= 0.000001773800247,

𝑐
1,11

= 2.395987744 × 10
−7
.

(45)
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Table 4: Numerical results of Example 3.

𝑥 Exact solution Legendre wavelets Absolute error
0.0 1 0.9999999958 4.2 × 10

−9

0.1 1.010050167 1.010050166 1 × 10
−9

0.2 1.040810774 1.040810774 0
0.3 1.094174284 1.094174282 2 × 10

−9

0.4 1.173510871 1.173510871 0
0.5 1.284025417 1.284025415 2 × 10

−9

0.6 1.433329415 1.433329414 1 × 10
−9

0.7 1.632316220 1.632316219 1 × 10
−9

0.8 1.896480879 1.896480878 1 × 10
−9

0.9 2.247907987 2.247907986 1 × 10
−9

1 2.718281828 2.718281824 4 × 10
−9

2.6

1.8

2

2.2

2.4

1.2

1.4

1.6

1
0 0.2 0.4 0.6 0.8 1

LWM
Exact

x

Figure 3: The exact and LWM solution of Example 3.

Therefore, the solution of the Lane-Emden equation will
be obtained as follows:

𝑦 (𝑥) ≈ (𝐶
𝑇
𝑃
2
+ 𝑈
𝑇

0
) 𝜓 (𝑥)

= 0.02527877277𝑥
11
− 0.08422571788𝑥

10

+ 0.1670609573𝑥
9
− 0.1386060456𝑥

8

+ 0.1250499043𝑥
7
+ 0.109479685𝑥

6

+ 0.017184049𝑥
5
+ 0.4967026721𝑥

4

+ 0.000380562𝑥
3
+ 0.9999763578𝑥

2

+ 6.313645775 × 10
−7
𝑥 + 0.9999999958.

(46)

Table 4 shows that the Legendre wavelet solution is very
near to the exact solution. Figure 3 shows that Legendre
wavelet solution coincides with the exact solution.

0 
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LWM
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Figure 4: The exact and LWM solution of Example 4.
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Figure 5: The exact and LWM solution of Example 5.

Example 4. Consider the following nonlinear Lane-Emden
equation:

𝑦


(𝑥) +
2

𝑥
𝑦


(𝑥) + 4 (2𝑒
𝑦
+ 𝑒
𝑦/2
) = 0, 0 < 𝑥 ≤ 1, (47)

subject to the initial conditions

𝑦 (0) = 0, 𝑦


(0) = 0, (48)
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which has the following analytical solution:

𝑦 (𝑥) = −2 ln (1 + 𝑥2) . (49)

We solve (47) by the method discussed in this paper
with 𝑘 = 1 and 𝑀 = 6. We multiply both sides of (47) by 𝑥,

𝑥𝑦


(𝑥) + 2𝑦


(𝑥) + 4𝑥 (2𝑒
𝑦
+ 𝑒
𝑦/2
) = 0, 0 < 𝑥 ≤ 1.

(50)

Let us consider the following approximations:

𝑦


(𝑥) ≈ 𝐶
𝑇
𝜓 (𝑥)

𝑦


(𝑥) ≈ 𝐶
𝑇
𝑃𝜓 (𝑥) + 𝑈

𝑇

1
𝜓 (𝑥)

𝑦 (𝑥) ≈ 𝐶
𝑇
𝑃
2
𝜓 (𝑥) + 𝑈

𝑇

0
𝜓 (𝑥)

𝑥𝑦


(𝑥) ≈ 𝑌
𝑇

1
𝜓 (𝑥)

𝑥 (2𝑒
𝑦
+ 𝑒
𝑦/2
) ≈ 𝑌
𝑇

2
𝜓 (𝑥) .

(51)

Substitution into (50) and simplifying will be resulted to

𝑌
𝑇

1
+ 2𝐶
𝑇
𝑃 + 4𝑌

𝑇

2
= 0. (52)

By solving the system (52), we have

𝑐
10
= −1.789983487, 𝑐

11
= 1.607415602,

𝑐
12
= 0.1463990297, 𝑐

13
= −0.04963748601,

𝑐
14
= 0.04188454297, 𝑐

15
= −0.007221576268.

(53)

The approximate solution of 𝑦(𝑥) is as follows:

𝑦 (𝑥) = 𝐶
𝑇
𝑃
2
𝜓 (𝑥) = −0.1160867335𝑥

5

+ 0.3967806389𝑥
4
+ 0.4849181405𝑥

3

− 2.139040298𝑥
2
+ 0.01441559362𝑥

− 0.000 3173071437.

(54)

Table 5 shows some values of the solutions and absolute
errors at some 𝑥,s, and plots of the exact and approximate
solutions are shown in Figure 4.

Example 5. Consider the following nonlinear Lane-Emden
equation:

𝑦


(𝑥) +
8

𝑥
𝑦


(𝑥) + 𝑥𝑦 (𝑥)

= 𝑥
5
− 𝑥
4
+ 44𝑥

2
− 30𝑥, 0 < 𝑥 ≤ 1,

(55)

subject to the initial conditions

𝑦 (0) = 0, 𝑦


(0) = 0, (56)

which has the following analytical solution:

𝑦 (𝑥) = 𝑥
4
− 𝑥
3
. (57)

Table 5: Numerical results of Example 4.

𝑥 Exact solution Legendre wavelets Absolute error
0.0 0 −0.0003173071437 0.0003173071437

0.1 −0.01990066171 −0.01974271542 0.00015794629

0.2 −0.07844142630 −0.07851875395 0.00007732765

0.3 −0.1723553925 −0.1724816336 0.0001262411

0.4 −0.2968400102 −0.2967939002 0.0000461100

0.5 −0.4462871026 −0.4460837377 0.0002033649

0.6 −0.6149693994 −0.6145842735 0.0003851259

0.7 −0.7975522400 −0.7962728813 0.0012793587

0.8 −0.9893924836 −0.9850104864 0.0043819972

0.9 −1.186653691 −1.174680868 0.011972823

1 −1.386294361 −1.359329965 0.026964396

Table 6: Numerical results of Example 5.

𝑥 Exact solution Legendre wavelets Absolute error
0.0 0 5.809942853 × 10

−12
5.8 × 10

−12

0.1 −0.0009 −0.0009000000166 1.6 × 10
−11

0.2 −0.0064 −0.006400000015 1.5 × 10
−11

0.3 −0.0189 −0.01890000000 0
0.4 −0.0384 −0.03839999999 1 × 10

−11

0.5 −0.0625 −0.06250000004 4 × 10
−11

0.6 −0.0864 −0.08640000001 1 × 10
−11

0.7 −0.1029 −0.1029000001 1 × 10
−10

0.8 −0.1024 −0.1024000002 2 × 10
−10

0.9 −0.0729 −0.07290000033 3.3 × 10
−10

1 0 −3.888737334 × 10
−10

3.9 × 10
−10

We solve (55) by the method discussed in this paper with
𝑘 = 1 and𝑀 = 6. This implies that

𝑐
10
= 0.9999999996, 𝑐

11
= 1.732050807,

𝑐
12
= 0.8944271910, 𝑐

13
= 7.079278793 × 10

−10
,

𝑐
14
= −7.669124566 × 10

−10
,

𝑐
15
= 9.994056888 × 10

−10
.

(58)

The approximate solution of 𝑦(𝑥) is as follows:

𝑦 (𝑥) ≈ 𝐶
𝑇
𝑃
2
𝜓 (𝑥) = −2.36323956 × 10

−10
𝑥
5

+ 1.000000001𝑥
4
− 1.000000003𝑥

3

+ 2 × 10
−9
𝑥
2
− 3.946836763 × 10

−10
𝑥

+ 5.809942853 × 10
−12
.

(59)

Table 6 shows that the Legendre wavelet solution is very
near to the exact solution. Figure 5 shows that Legendre
wavelet solution coincides with the exact solution.
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4. Conclusion

In this research, we have presented the Legendre wavelet
method for solving nonlinear singular Lane-Emden equa-
tion.The Legendre wavelets operational matrix of integration
is used to solve Lane-Emden equation. The present method
reduces Lane-Emden equation into a set of algebraic equa-
tions. Illustrative examples have been discussed to demon-
strate the validity and applicability of the technique, and the
results have been compared with the exact solution.
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