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1. Introduction and Definitions
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Making use of the linear operator J Z’(/\, 1) defined in (Prajapat, 2012), we introduce the class IB;’(A, I, u, &) of analytic and p-valent
functions in the open unit disk %. Furthermore, we obtain some sufficient conditions for starlikeness and close-to-convexity and
some angular properties for functions belonging to this class. Several corollaries and consequences of the main results are also
considered.

In [1], Prajapat define a generalized multiplier transfor-
mation operator J ;"()L, I) as follows:

Let of p(n) denote the class of functions f(z) of the form

f@=2+ Y o (pneN={123.0), ()

k=p+n

which are analytic and p-valent in the open unit disk % =
{z : z e Cand |z| < 1}. In particular, we set &Yl(l) = d.
A function f(z) € o, (n) is said to be in the class S, (n, (x) of
p-valently starlike ofp rder o in % if and only if it satisfies the
inequality

R(Z]]:(S)>>(x, (zeU; 0<a<p). (2)

Furthermore, a function f(z) € &Ip(n) is said to be in the
class €, (n, &) of p-valently close-to-convex of order v in % if
and only if it satisfies the inequality

Re(f(z)>>oc, (zeU <a<p). (3)

zb-1

In particular, we write §7(1,0) =: &* and €,(1,0) =: €
where & and € are the usual subclasses of &/ consisting
of functions which are starlike and close-to-convex in %,
respectively.

L~ (pHh/A

T D) f(2) =

x L (VAP Oy £ t,

(z€),

T2 f(z) = P_”Zp—<p+z>m
XJ (PRSP L D) £e) d,
0
(zeU),
p D)= PWWL(NW%V®¢
(z e,
]g(/\,l)f(z) = f(z),
X les o (o
]}, D) f(z) = p_+lzl p=(p l)//\(z(p /A pf(z)),

(z €,



2 A (2
Jo, A1) f(z) = —p+lZ

X (2P D) £(2))

(ze),
]m (/\ l) f(Z) _ Lz1+p—(p+l)//\
P p+l
X (z(P”)/)‘_P];f_l W) f(z)) ,
(ze).

(4)
We see that for f(z) € & p(n), we have

L+ Ak - p)\"
(M) az, (5)

Ty WD f(z)=2"+ ) ol

k=p+n
where A > 0,/ > -p,pe Nym e Z = {0,£1,...} and z € %.
It is readily verified from (5) that
Az(Ty A0 f(2) = (1+p) Ty (AL f(2)
~(I+p=-0)J7AD f(2),

(A>0),

"

AP D F @) = (+p) T D f (2)

~(I+A+p A=) TE D f (@),

(A>0).
(6)
We observe that the operator ]g’()t, I) generalize several

previously studied familiar operators, and we will show some
of the interesting particular cases as follows:

(i) ]Z’(A, Df(z) = I;,"(/\, Df(z) (1=0,me N, =NuU{0})
(see [2]);
(ii) ]%(l,l)f(z) = Ip(m,l)f(z) (I = 0,m € Ny) (see [3,
4]);
(i) J7(1,0)£(2) = D" f(2) (m € Ny) (see [5-7));
iv) J7' (LD f(z) = I}" f(z) (1 2 0,m € N,) (see [8,9]);
() J1'(1,0) f(2) = D" f(2) (m € Ny) (see [10]);
(i) J1'(A,0) f(2) = DY f(2) (m € Ny) (see [11]);
(vii) J7(L D) f(2) = D" f(2) (m € Ny) (see [12]);
(viii) I;,”()L, Df(z) = ];(/\, D) f(z) (n € Ny) (see [13]).

(For other generalizations of the operator J Zl()t, D), see [1]).
Making use of the above operator J g'()t, 1), we introduce

the class By'(A,1, ) of analytic and p-valent functions
defined as follows.
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Definition 1. A function f(z) € dp(n) is said to be a member
of the class lB;f(n, ALy, ) if and only if

p p-l /
Km) 2Py ADf@) -pl<p-o
n(h,
(peN),
(7)

forsomea (0<a<p), u20,A>0, [>-p, pe NmeZ
and for all z € %.

Note that condition (7) implies that

P ! ,
Re((W) (7 D f (2) ) >a. (8)
p ]

We note that lBg(n, ALy = IB;(n, 0,L,u,a) = AB(p,
n, 4, «), the class which has been introduced and studied by
the author in [14]. Also, we have IBg(n, MLL2,a) = é}*(n, «),
B)(A,L,1,&) = %,(n,a). The class BY(1,1,1,3,0) = B(a) is
the class which has been introduced and studied by Frasin
and Darus [15] (see also [16, 17]).

In this paper, we obtain some sufficient conditions and
some angular properties for functions belonging to the class
]Bg'(n, AL u, «). Several corollaries and consequences of the
main results are also considered.

In order to derive our main results, we have to recall the
following lemmas.

Lemma 2 (see [18]). Let w(z) be analytic in % and such that
w(0) = 0. Then if lw(z)| attains its maximum value on circle
|z| =r < 1 atapoint z, € U, one has

zw (z,) = kw(z,), ©)

where k > 1 is a real number.

Lemma 3 (see [19]). Let Q be a set in the complex plane C and

suppose that ©(z) is a mapping from C*x% to C which satisfies
D(ix, y;z) ¢ Q for z € U, and for all real x, y such that y <

n+1

—n(1 + x%)/2. If the function q(z) = 1 + q,2" + G2+

is analytic in U such that ®(g(z), zq,(z); z)eQforallz € U,
then Req(z) > 0.

Lemma 4 (see [20]). Let q(z) be analytic in % with q(0) = 1
and q(z) #0 for all z € . If there exist two points z,, z, € U
such that

o

o
_Tl =arg q(z;) < arg q(z) < arg q(z,) = TZ (10)

fora, >0, ay >0, and for |z| < |z,| = |z,|, then we have

Zlq’(zl) :_i<0‘1+“2>ﬁ, qu’(zz) :i<“1+“2)/3,

q(z) 2 q(2,) 2
(11)
where
1—|al . n(cxz—ocl>
> , =jitan— | =—1).
P 1+ |al “ 1an4 o+, (12)
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2. Sufficient Conditions for
Starlikeness and Close-to-Convexity

Unless otherwise mentioned, we shall assume in the remain-

der of this paper that

wy=20 A>0; I>-p; pneN, meZ. (13)

Making use of Lemma 2, we first prove the following.

Theorem 5. If f(z) € o P(n) satisfies

L+ p (T LD f (2)
+P<P ~(u-1)

A\ s @)

I hf@
Irahf@

2P p-1 - ’
+y<(ﬁﬁiﬁﬁ5) : <hxxnﬂ@>_pﬂ

(-0 Cp-w)+1)
2p-«

, (ze?),
(14)

forsome o (0 <« < p), then f(z) € ]B?(n, AL, ).

Proof. Define the function w(z) by

p-1 ,
) ZI_P(]?(A,Z)JC(Z)) =p+(p-a)w(z).
(15)

zP
(muwﬂw

Then w(z) is analytic in % and w(0) = 0. It follows from (15)
and the identities (6) and (1.6) that

m+1 2l !
l+P<]p ( )f(Z)—(‘u—l)

Tyt D f(2) >
A\ f@)

-2
Iy fe)

zP u-1 oyl ,
+y<(m) ‘ (]p(/\>l)f(z))—p>

(p-a)zw (2)

:y(p—oc)w(z)+—P+(p_“)w(z).

(16)
Suppose that there exists z, € % such that

max |w (z)] = [w(z,)] = 1. (17)

zl<z,

Then from Lemma 2, we have (9). Therefore, letting w(z,) =

0
+#_§

» u-1
Z—O 1-p(m ! B
' y((]g‘(l,l)f(zo)) z (]P (A’l)f(zo)) p)

(p-a)zw (z))
p+(p-a)w(z)

", we obtain that

Iyt (L) f ()
77D f ()

_1)

l+p<]g'+1 D) f (20) ~
A\ T £ (z0)

=h@—@w&o+

> Re -a)+ (p=a)k
‘R{Y@ ) p+@—aﬁu@d}
ST L

(-0 Cr-a)+1)
2p-«a '

(18)

Which contradicts our assumption (14). Therefore we have
|w(z)| < 1in %. Finally, we have

2\
‘(ﬁZ) ZIV(@'PF%p—aﬂwun<p_a
(ze),

(19)

that is, f(z) € ]Bg'(n, A, L u, «). This completes the proof of
the theorem. O

Puttingm =1=0and A = 1 in Theorem 5, we obtain the
following.

Corollary 6. If f(z) € %(n) satisfies

zf (2)
f (@

zf (2) N
(oL ((55) s @-r)

(-9 (p-a)+1)
2p-«

1+

—pt(p-1)

, (ze),
(20)
for some « (0 < & < p), then f(z) € B(p,n, y, x).

Putting 4 = A = 1 and m =1 = 0 in Theorem 5, one
obtains the following.



Corollary 7. If f(z) € o P(n) satisfies
f (2)
f (@

L) o
2p—«

1+

—p+y(fpfiw—pﬂ
(1)

forsome « (0 <« < p), then f(z) € %p(n, ).
Letting y = p = n = 1 in Corollary 7, one has

Corollary 8. If f(z) € o satisfies

of (2)

f (@

for some a (0 < a < 1), then flz) € B(«). In particular, if
f(z) € o satisfies

+f(2)-1

(ze%), (22)

< 1-a)(3-«)
2-«

zf (2)
f (2

then f(z) is close-to-convex in U.

+f@)-1

<§ (zeU), (23)

Putting 4 = 2, A = 1, and 1 = 0 in Theorem 5, one obtains
the following.

Corollary 9. If f(z) € o ,(n) satisfies

zf (2) zf (2) 22\ iy
f@  f® ()0 (Z)‘p))‘

(-9 (p-a)+1)
2p—«

1+

>

(24)
for some « (0 < & < p), then f(z) € 6},* (n, «).

Putting p = y = n = 1 in Corollary 9, one easily obtains
the following result due to Owa [21].

Corollary 10. If f(z) €  satisfies
of (2)
f@

for some a(0 < « < 1), then f(z) € 8™ (). In particular, if
flz) € I satisfies

< (l—oc)(3—oc),

o (ze), (25)

f (2)
f@
then f(z) is starlike in 2.

<§ (zeU), (26)

Remark 11. We note that the results obtained by the author
[14, Theorem 2.1, Corollaries 2.2-2.5] are not corrects. The
correct results are given by Corollaries 6, 7, and 9.
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Next we prove the following.

Theorem 12. If f(z) € &ip(n) satisfies

zP u-1 o ,
Re”<m) z p(]p(/\)l)f(z))]

zF p-1 oyl Clep
((W) (I D f () t—

LD f () LD f (2)
“ranre “Vranre
b f (@) T LD f (2)

>8<@+6+g)+p<w—g>.

then f(z) € IB;‘(n, MLy, ), where 0 < 8 < p.

(27)

Proof . Define the function g(z) by

p=1 ,
) <UD f(R) =8+ (p-8)q().
(28)

ZP
(mmﬁﬂ@

Then, we see that q(z) = 1+ q,2" +q,,,2""" + -~ is analytic
in %. A computation shows that

P p-l Ll m /
[(Jml)f(z)) =IUFD S (z))]

zF p-l Vol m ’
{(Jm l)f(z)) @Up DS @)

Lep (DS @ (wn i ADS @
A\ D £ (2) Iy D) f (2)

=(p-08)zq () +(p-8) ¢’ (@ +(p-8)q(2)

(e 35), 202

= q)(q(Z),zq’ (Z);z),
(29)

where
D (r,s:1)

=@—®5HpﬂWﬂ+@—&%?12¥;ﬂ+ﬂa

D
(30)
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For all real x, y satisfying y < —n(1 + x°)/2, we have

Re @ (ix, y;2) = (p—0) y - (p-8)°x

S(l+p)2-w) o
+f+8

<-2(p-0)-(p-0)[5+p-0]#

S(l+p)2-w) o
+f+8

Sw+52—g(p—8)

So(HE s ) p (200 ),
(31)

LetQ={w : Rew > §U2-pu)/A+8+n/2)+ p(6(2—u)/A-
n/2)}. Then ®(q(2), zq (2);z) € Q and D(ix, y;z) ¢ Q for all

real x and y < —n(1 + x3)/2, z € %. By using Lemma 3, we
have Re q(z) > 0, thatis, f(z) € ]BZ’(n, MLy, ). O

Putting y = A = 1 and m = [ = 0 in Theorem 12, we have
the following.

Corollary 13 (see [14]). If f(z) € %(n) satisfies
Re {(zl_pf/ (z))2 + zl_pf, (z) + Zz_pf” (Z)}

>8<8+g>+p<8—g>

then f(z) € ?fp(n, 0), where 0 < § < p. In particular, if f(z) €
o satisfies

(32)

1

Rel(f @) +f @ref @5 63

then f(z) is close-to-convex in .

Puttingm =1 =0, A = 1, and p = 2 in Theorem 12, one
has the following.

Corollary 14 (see [14]). If f(z) € ,pr(n) satisfies

Zf/ (2)
Re< @

sz” (2) n n
+ B >8(6+E>—5p, (34)

then f(z) € cS’p* (n,68), where 0 < § < p. In particular, if f(z) €
o satisfies

f @ 2

zf (2)
Re ( @ +

2 "
Zf(@>>_1 (35)

then f (z) is starlike in %.

3. Argument Properties
Finally, we prove the following.

Theorem 15. Suppose that
N gy v
P2, 36
(];,,M’l)f(z)) S f(2) #8 (36)
forz € U and 0 <6 < p. If f(z) € ,(n) satisfies
_g“r¢m4<1—mHarﬂhMP-®)

1+ |al 2y

ZP “ 1-p,ym !
<arg{<<m> z (JP(A)l)f(Z)))

. ( I+p (1;’:“ D f (2)
A\ A f ()

m+1 A,l
I (LD f(2) 2)}

WD) TR R T

Yo\ ¥S
+p—6> p—é}

Tyt (Lol (o) (P-0)
2 1+ |al 2y

(37)

foray, o,y > 0, then

T zf u 1-p( m '
—E(Xl< arg <<m> 4 (]P (A,l)f(Z)) -8

<
27
(38)

Proof. Define the function g(z) by

p-l )
) zl‘P(JZ'(A,l)f(Z))—é)
(39)

Then we see that g(z) analytic in %, q(0) = 1, and g(z) # 0 for
all z € %. Tt follows from (39) that

2? ’Hlp )
— P (A
<(Iié’<w)f<z)) 2y (Z))>
NALEY: Jz”la,l)f’(z)_( IR/ U
YA\ manfe 0 RAf@

_ A T
+u 2>]+p—6> P

=(p-0)2zq (2) +yq(2).

(2) = 1 ( zF
1= s\ f@

(40)



Suppose that there exists two points z,,z, € % such that
the condition (10) is satisfied, then by Lemma 4, we obtain
(11) under the constraint (12). Therefore, we have

arg(yq(21) + (p - 9) 2q (21))

=ar z,) +ar +(p - M
=arg q(z;) g(V (p-9) q(zl)>

= —gal +arg (y - iwﬁ)

1 -6
_ _gal _tan" (((Xl + 06;3/(1’ )ﬁ) (41)

oyt (Ll 20 0-0))

<
1+ |qa| 2y

NG

arg (ya (=) + (P~ 9)2q (22)) = Ty
+tan—1(1-la' (a1+a2><p—a>>,

1+ |qa| 2y

which contradict the assumption of the theorem. This com-
pletes the proof. O

Putting y = A = 1 and m =1 = 0 in Theorem 15, one has
the following.

Corollary 16 (see [14]). Suppose thatzl_pf’(z) #0forz e U
and 0 < & < p. If f(2) € o ,(n) satisfies

ot (L 20 00))

1+ |a| 2y

(152 @, v )
<arg<[z f(z)<1+ f,(z) p+p—8> p—5}

. ga2+tan1<l—lal (061+062)(P—5)),

1+ |a| 2)/
(42)
for oy, 0,y > 0, then
b o -
S <arg (77F (2)-9) < 2% (43)
In particular, if f(z) € o satisfies
/ 2
" 1 Z(f (Z))
arg| zf @)+ f (@) (y+1)- W
(44)
7T 10
< —a+tan —,
2 Y
fory >0, then
‘arg f’ (Z)‘ < %"" O<a<l). (45)
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Puttingu = 2, A = 1, and l = 0 in Theorem 15, one has the
following.

Corollary 17 (see [14]). Suppose that zf’(z)/f(z);&S for
z€Uand0 <6< p.If f(z) € A ,(n) satisfies

B gal _tanl(l— lal (o +“2)(P_5))

1+ |qa| 2y

zf (2) o @ zf @ |y
1 —
<arg<[ @ <+ fl(z) %) +p—6>
_V_5}
p-9
< Ea2+tan‘1(1_|a| (o) +“2)(P_5)>’
2 1+ |al 2y
(46)
foray,a,,y > 0, then
_g(xl < arg(zj:(z) - 6) < gocz. (47)

In particular, if f(z) € o satisfies

2@ (f @Y . e
arg( o @) re vy .

T 1
< —a+tan —,
2
fory >0, then
zf, )| =m
ar: <—a, (O<ac<l). (49)
‘ 7@ |2

Remark 18. Taking different choices of m, p,A, and [ in
the above theorems, we obtain some sufficient conditions
for starlikeness and close-to-convexity and some angular
properties for functions belonging to new classes defined by
the previously operators mentioned in Section 1.
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