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We assume the space-time foam picture in which the vacuum is filled with a gas of virtual wormholes. It is shown that virtual
wormholes form a finite (of the Planckian order) value of the energy density of zero-point fluctuations. However such a huge
value is compensated by the contribution of virtual wormholes to the mean curvature and the observed value of the cosmological
constant is close to zero. A nonvanishing value appears due to the polarization of vacuum in external classical fields. In the early
Universe some virtual wormholes may form actual ones. We show that in the case of actual wormholes vacuum polarization effects
are negligible while their contribution to the mean curvature is apt to form the observed dark energy phenomenon. Using the
contribution of wormholes to dark matter and dark energy we find estimates for characteristic parameters of the gas of wormholes.

1. Introduction

As is well known modern astrophysics (and, even more
generally, theoretical physics) faces two key problems. Those
are the nature of dark matter and dark energy. Recall that
more than 90% of matter of the Universe has a nonbaryonic
dark (to say, mysterious) form, while lab experiments still
show no evidence for the existence of such matter. Both
dark components are intrinsically incorporated in the most
successful ΛCDM (Lambda cold dark matter) model which
reproduces correctly properties of the Universe at very large
scales (e.g., see [1] and references therein). We point out that
ΛCDM predicts also the presence of cusps (𝜌DM ∼ 1/𝑟)

in centers of galaxies [2] and a too large number of galaxy
satellites. Therefore other models are proposed, for example,
like axions [3], which may avoid these. To be successful
such models should involve a periodic self-interaction and
therefore require a fine tuning, while in general the presence
of standard nonbaryonic particles cannot solve the problem
of cusps. Indeed, if we admit the existence of a self-interaction
in the dark matter component, or some coupling to baryonic
matter (which should be sufficiently strong to remove cusps),
then we completely change properties of the dark matter
component at the moment of recombination and destroy all
successful predictions at very large scales. Recall that both

warm and self-interacting darkmatter candidates are rejected
by the observing Δ𝑇/𝑇 spectrum [1]. In other words, the two
key observational phenomena (cores of darkmatter in centers
of galaxies [4–6] andΔ𝑇/𝑇 spectrum) give a very narrow gap
for dark matter particles which seems to require attracting
some exotic objects in addition to standard nonbaryonic
particles.

As it was demonstrated recently [7] the problem of cusps
can be cured, if some part of nonbaryon particles is replaced
by wormholes. Wormholes represent extremely heavy (in
comparison to particles) objects which at very large scales
behave exactly like nonbaryon cold particles, while at smaller
scales (in galaxies) they strongly interact with baryons and
form the observed [4–6] cored (𝜌DM ∼ const) distribution.
We note that stable wormholes violate necessarily the aver-
aged null energy conditions which gives the basic argument
against the existence of such objects. Without exotic matter
stable wormholes may however exist in modified theories,
for example, see [8] and references therein. In the case
when the energy conditions hold a wormhole collapses into
a couple of conjugated (of equal masses) blackholes which
almost impossible to distinguish from standard primordial
blackholes. However, the topological nontriviality of such
objects retains and gravitational effects of a gas of wormholes
considered in [9] and some results of [7] still remain valid
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which means that nontraversable wormholes can be used to
smooth cusps in centers of galaxies. Thus, it worth expecting
thatwormholesmay play an important role in the explanation
of the dark matter phenomenon.

Saving the dark matter component ΛCDM requires
the presence (∼70%) of dark energy (of the cosmological
constant). Moreover, there is evidence for the start of an
acceleration phase in the evolution of the Universe [10–14].
In the present paper we use virtual wormholes to estimate
the contribution of zero-point fluctuations in the value of the
cosmological constant. The idea to relate virtual wormholes
(or baby universes) and the cosmological constant is not new,
in somewhat different context it was used by Coleman in [15]
and developed in [16]. Our basic aim is to demonstrate that
virtual wormholes form a finite value of the energy density of
zero-point fluctuations.

It is necessary to point here out to the principle differ-
ence between actual and virtual wormholes. The principle
difference is that a virtual wormhole exists only for a very
small period of time and at very small scales and does
not necessarily obey to the Einstein equations. It represents
tunnelling event and therefore, the averaged null energy
condition (ANEC) cannot forbid the origin of such an object.
For the future we also note that a set of virtual wormholes
may work as an actual wormhole opening thus the way for
an artificial construction of wormhole-type objects in lab
experiments.

In the present paper we describe a virtual wormhole
as follows. From the very beginning we use the Euclidean
approach (e.g., see [17] and the standard textbooks [18]).Then
the simplest virtual wormhole is described by themetric (𝛼 =

1, 2, 3, 4)

𝑑𝑠
2
= ℎ

2
(𝑟) 𝛿

𝛼𝛽
𝑑𝑥

𝛼
𝑑𝑥

𝛽
, (1)

where

ℎ (𝑟) = 1 + 𝜃 (𝑎 − 𝑟) (
𝑎
2

𝑟2
− 1) (2)

and 𝜃(𝑥) is the step function. Such a wormhole has vanishing
throat length, while the step function at the junction may
cause a problem in Einstein’s equation or when a topological
Euler term is involved. A more careful analysis needs to con-
sider distributional curvature and so forth, see [19]. To avoid
these difficulties we may consider from the very beginning
a wormhole of a finite throat length ∼1/𝛽 where the step
function is replaced with a smooth function (e.g., 𝜃(𝑥, 𝛽) =

(exp (𝛽𝑥)+1)−1).Thenwhere it is necessary onemay consider
the limit 𝛽 → ∞ only in final expressions. This insures
that the Bianchi identity holds and that the above metric
remains inside of the domain of usual gravity. (Unexpectedly
our approach (the use of step function) seems to irritate an
essential part of physicists working with wormholes (e.g.,
PRD reviewers, moreover there is a claim that we study
some other exotic objects which are not wormholes [20]).
Therefore, it is necessary to clarify our position here. We are
quite aware that at present state the physics of wormholes is
certainly on the most speculative side. Therefore, we do not

see the difference between specific forms of a smooth metric
that one may use. For example, the simplest choice ℎ = (1 +

𝑎
2
/𝑟

2
) gives the well-known metric which in 3-dimensions

is called as the Bronnikov-Ellis metric, or the metric ℎ =

(1 + (𝑏/𝑟) + (𝑎
2
/𝑟

2
)) which includes an additional parameter

(an arbitrary length of the handle) which is not called by any
name but is not less trivial. In the case of actual wormholes
the exact and correct form of metric may be established
only upon understanding the nature and properties of exotic
matter which may support such a metric as a stable solution
to the Einstein equations. For this time has not come yet. In
the case of virtual wormholes even this is not important; for in
the complete theory one has to sum over all possible metrics
which formally may be included in 𝜑 in (5). Our basic aim
is to present sufficiently clear and simple model (let it be far
from realistic) which retains basic qualitative features related
to a nontrivial topology.)

In the region 𝑟 > 𝑎, ℎ = 1 and the metric (2) is flat,
while the region 𝑟 < 𝑎, with the obvious transformation
𝑦
𝛼
= (𝑎

2
/𝑟

2
)𝑥

𝛼, is also flat for 𝑦 > 𝑎. Therefore, the regions
𝑟 > 𝑎 and 𝑟 < 𝑎 represent two Euclidean spaces glued at the
surface of a sphere 𝑆3 with the centre at the origin 𝑟 = 0 and
radius 𝑟 = 𝑎. Such a space can be described with the ordinary
double-valued flat metric in the region 𝑟

±
> 𝑎 by

𝑑𝑠
2
= 𝛿

𝛼𝛽
𝑑𝑥

𝛼

±
𝑑𝑥

𝛽

±
, (3)

where the coordinates 𝑥
𝛼

±
describe two different sheets of

space. Now, identifying the inner and outer regions of the
sphere 𝑆3 allows the construction of a wormhole which con-
nects regions in the same space (instead of two independent
spaces). This is achieved by gluing the two spaces in (3) by
motions of the Euclidean space (the Poincare motions). If 𝑅

±

is the position of the sphere in coordinates 𝑥𝜇

±
, then the gluing

is the rule

𝑥
𝜇

+
= 𝑅

𝜇

+
+ Λ

𝜇

] (𝑥
]
−
− 𝑅

]
−
) , (4)

where Λ
𝜇

] ∈ 𝑂 (4), which represents the composition of a
translation and a rotation of the Euclidean space (Lorentz
transformation). In terms of common coordinates such a
wormhole represents the standard flat space in which the two
spheres 𝑆3

±
(with centers at positions 𝑅

±
) are glued by the rule

(4).We point out that the physical region is the outer region of
the two spheres. Thus, in general, the wormhole is described
by a set of parameters: the throat radius 𝑎, positions of throats
𝑅
±
, and rotation matrix Λ𝜇

] ∈ 𝑂 (4).
In the present paper we assume the space-time foam

picture in which the vacuum is filled with a gas of virtual
wormholes. We show that virtual wormholes form a finite (of
the Planckian order) value of the energy density of zero-point
fluctuations. However such a huge value is compensated by
the contribution of virtual wormholes to the mean curvature
and the observed value of the cosmological constant should
be close to zero.

To achieve our aimwe, in Section 2, present the construc-
tion of the generating functional in quantum field theory.
The main idea is that the partition function includes the
sum over field configurations and the sum over topologies.
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Where the sum over topologies is the sum over virtual
wormholes described above. Such an approach gives a rather
good leading approximation for calculation of the partition
function and corresponds to the standard methods (e.g.,
Ritza method, etc.). In Section 3 we investigate properties of
the two-point Green function. We show that the presence
of the gas of virtual wormholes can be described by the
topological bias exactly as it happens in the presence of actual
wormholes [7, 9]. For limiting topologies when the density
of virtual wormholes becomes infinite the Green function
shows a good ultraviolet behavior which means that there
exists a class of such systems when quantum field theories
are free of divergencies. We demonstrate how the sum over
topologies defines themean value for the bias which takes the
sense of a cutoff function in the space of modes. In Section 4
we explicitly demonstrate that for a particular set of virtual
wormholes the bias defines not more than the projection
operator on the subspace of functions obeying to the proper
boundary conditions at wormhole throats. The projective
nature of the bias means that wormholes merely cut some
portion of degrees of freedom (modes). Phenomenologically
it means that wormholes can be described by the presence of
ghost fields which compensate the extra (cut by wormholes)
modes. In Section 5 we show how the cutoff expresses via
some dynamic parameters of wormholes.The exact definition
of such parameters we leave it for the future investigation.
In Section 6 we consider the origin of the cosmological
constant. We demonstrate that the cosmological constant
is determined by the contribution of the energy density of
zero-point fluctuations and by the contribution of virtual
wormholes to the mean curvature. We estimate contribution
of virtual wormholes to the mean curvature and show also
that wormholes lead to a finite (of the planckian order)
value of ⟨𝑇

𝜇]⟩ which requires considering the contribution
from the smaller and smaller wormholes with divergent
density 𝑛 → ∞. We also present arguments of why in
the absence of external classical fields the total value of
the cosmological constant is exactly zero, while it acquires
a nonvanishing value due to vacuum polarization effects
(i.e., due to an additional distribution of virtual wormholes)
in external fields. We also speculate the possibility of the
formation of actual wormholes and in Section 7 we estimate
their contribution to the dark energy. Finally in Section 8 we
repeat basic results an discuss some perspectives.

2. Generating Function

The basic aim of this section is to construct the generating
functional which can be used to get all possible correlation
functions. Consider the partition functionwhich includes the
sum over topologies and the sum over field configurations

𝑍total = ∑

𝜏

∑

𝜑

𝑒
−𝑆
. (5)

For the sake of simplicity we use from the very beginning the
Euclidean approach. The action has the form

𝑆 = −
1

2
(𝜑𝐴𝜑) + (𝐽𝜑) (6)

and we use the notions (𝐽𝜑) = ∫ 𝐽(𝑥)𝜑(𝑥)𝑑
4
𝑥. If we fix

the topology of space by placing a set of wormholes with
parameters 𝜉

𝑖
, then the sum over field configurations 𝜑 gives

the well-known result

𝑍
∗
(𝐽) = 𝑍

0
(𝐴) 𝑒

−(1/2)(𝐽𝐴
−1

𝐽)
, (7)

where 𝑍
0
(𝐴) = ∫[𝐷𝜑]𝑒

(1/2)(𝜑𝐴𝜑) is the standard expression
and 𝐴

−1
= 𝐴

−1
(𝜉) is the Green function for a fixed topology,

that is, for a fixed set of wormholes 𝜉
1
, . . . , 𝜉

𝑁
.

Consider now the sum over topologies 𝜏. To this end we
restrict the sum over the number of wormholes and integrals
over parameters of wormholes:

∑

𝜏

→ ∑

𝑁

∫

𝑁

∏

𝑖=1

𝑑𝜉
𝑖
= ∫ [𝐷𝐹] , (8)

where

𝐹 (𝜉,𝑁) =
1

𝑁

𝑁

∑

𝑖=1

𝛿 (𝜉 − 𝜉
𝑖
) (9)

and 𝑁𝐹 is the density of wormholes in the configuration
space 𝜉. We also point out that in general the integration over
parameters is not free (e.g., it obeys the obvious restriction
|�⃗�

+

𝑖
− �⃗�

−

𝑖
| ≥ 2𝑎

𝑖
). This defines the generating function as

𝑍total (𝐽) = ∫ [𝐷𝐹]𝑍0
(𝐴) 𝑒

−(1/2)(𝐽𝐴
−1

𝐽)
. (10)

The sum over topologies assumes an additional averaging out
for all mean values with the measure 𝑑𝜇

𝑁
= 𝜌(𝜉,𝑁)𝑑

𝑁
𝜉,

where

𝜌 (𝜉,𝑁) =

𝑍
0
(𝐴 (𝜉,𝑁))

𝑍total (0)
, (11)

which obey the obvious normalization condition∑
𝑁
∫𝑑𝜇

𝑁
=

∑
𝑁
𝜌
𝑁

= 1. The averaging out over topologies assumes the
two stages. First we fix the total number of wormholes 𝑁
and average over the parameters of wormholes 𝜉 (i.e., over
parameters of a static gas of wormholes in 𝑅

4). Then we sum
over the number of wormholes𝑁 (the so-called big canonical
ensemble).

The basic difficulty of the standard field theory is that
the perturbation scheme based on (7) leads to divergent
expressions. This remains true for every particular topology
of space (i.e., for any particular finite set of wormholes), since
there always exists a scale below which the space looks like
the ordinary Euclidean space.What we expect is that the sum
over all possible topologies will remove such a difficulty.

And indeed, the above measure (11) has the structure

𝑍
0
(𝐴 (𝜉,𝑁)) = exp(−∫Λ (𝜉,𝑁) 𝑑

4
𝑥) , (12)

where Λ(𝜉,𝑁) is the cosmological constant related to the
energy density of zero-point fluctuations calculated for a
particular distribution of wormholes. (We recall that the total
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cosmological constant should include also the contribution
from the mean curvature (55).) Any finite distribution of
wormholes leads to the divergent expression Λ(𝜉,𝑁) →

∞ and is suppressed (i.e., 𝜌 (𝜉,𝑁) → 0). However, the
sum over all possible topologies assumes also the limiting
topologies 𝑛 → ∞, where 𝑛 = 𝑁/𝑉 is the density of
wormholes. In this limit wormhole throats degenerate into
points and the minimal scale below which the space looks
like the Euclidean space is merely absent. We point out that
from the rigorous mathematical standpoint such limiting
topologies cannot be described in terms of smoothmanifolds,
since they are not locally Euclidean and does not possess a
finite set of maps. In mathematics similar objects are well
known, for example, fractal sets. However, if a fractal set is
obtained by cutting (by means of a specific rule or iterations)
portions of space, our limiting topologies are obtained by
gluing (identifying) some portions (or in the limit couples
of points) of the Euclidean space. The basic feature of such
topologies is that QFT becomes finite on such a set. Indeed,
as we shall see a particular infinite distribution of wormholes
can always be chosen in such a way that the energy of zero-
point fluctuations becomes a finite 0 ≤ Λ

∞
(𝜉) < ∞ (e.g.,

see the next section or the second term in (67)). In the sum
over topologies only such limiting topologies do survive (i.e.,
𝜌
∞
(𝜉) ̸= 0).

3. The Two-Point Green Function

From (7) we see that the very basic role in QFT plays the two
point Green function. Such a Green function can be found
from the equation

𝐴𝐺(𝑥, 𝑥

) = −𝛿 (𝑥 − 𝑥


) (13)

with proper boundary conditions at wormholes, which gives
𝐺 = 𝐴

−1. Now let us introduce the bias function𝑁(𝑥, 𝑥

) as

𝐺 (𝑥, 𝑦) = ∫𝐺
0
(𝑥, 𝑥


)𝑁 (𝑥


, 𝑦) 𝑑𝑥


, (14)

where 𝐺
0
(𝑥, 𝑥


) is the ballistic (or the standard Euclidean

Green function) and the bias can be presented as

𝑁(𝑥, 𝑥

) = 𝛿 (𝑥 − 𝑥


) +∑

𝑖

𝑏
𝑖
𝛿 (𝑥 − 𝑥

𝑖
) , (15)

where 𝑏
𝑖
are fictitious sources at positions 𝑥

𝑖
which should

be added to obey the proper boundary conditions. We point
out that the bias can be explicitly expressed via parameters
of wormholes; that is, 𝑁(𝑥, 𝑥


) = 𝑁(𝑥, 𝑥


, 𝜉

1
, . . . 𝜉

𝑁
). For the

sake of illustration we consider first a particular example.

3.1. The Bias for a Particular Distribution of Wormholes
(Rarefied Gas Approximation). Consider now the bias for a
particular set of wormholes. For the sake of simplicity we
consider the case when𝑚 = 0. The Green function obeys the
Laplace equation

−Δ𝐺 (𝑥, 𝑥

) = 𝛿 (𝑥 − 𝑥


) (16)

with proper boundary conditions at throats (we require𝐺 and
𝜕𝐺/𝜕𝑛 to be continual at throats).The Green function for the
Euclidean space is merely 𝐺

0
(𝑥, 𝑥


) = 1/4𝜋

2
(𝑥 − 𝑥


)
2 (and

𝐺
0
(𝑘) = 1/𝑘

2 for the Fourier transform). In the presence of
a single wormhole which connects two Euclidean spaces this
equation admits the exact solution. For outer region of the
throat 𝑆3 the source 𝛿(𝑥 − 𝑥


) generates a set of multipoles

placed in the center of sphere which gives the corrections to
the Green function 𝐺

0
in the form (we suppose the center of

the sphere at the origin)

𝛿𝐺 = −
1

4𝜋2𝑥2

∞

∑

𝑛=1

1

𝑛 + 1
(
𝑎

𝑥
)

2𝑛

(
𝑥


𝑥
)

𝑛−1

𝑄
𝑛
, (17)

where 𝑄
𝑛
= (4𝜋

2
/2𝑛)∑

𝑛−1

𝑙=0
∑

𝑙

𝑚=−𝑙
𝑄

∗

𝑛𝑙𝑚
𝑄

𝑛𝑙𝑚
and 𝑄

𝑛𝑙𝑚
(Ω) are

four-dimensional spherical harmonics, for example, see [21].
In the present section we shall consider a dilute gas approx-
imation and, therefore, it is sufficient to retain the lowest
(monopole) term only. A single wormhole which connects
two regions in the same space is a couple of conjugated
spheres 𝑆3

±
of the radius 𝑎with a distance �⃗� = �⃗�

+
−�⃗�

−
between

centers of spheres. So the parameters of the wormhole are
(The additional parameter (rotation matrix Λ) is important
only for multipoles of higher orders.) 𝜉 = (𝑎, 𝑅

+
, 𝑅

−
). The

interior of the spheres is removed and surfaces are glued
together. Then the proper boundary conditions (the actual
topology) can be accounted for by adding the bias of the
source

𝛿 (𝑥 − 𝑥

) → 𝛿 (𝑥 − 𝑥


) + 𝑏 (𝑥, 𝑥


) . (18)

In the approximation 𝑎/𝑋 ≪ 1 (e.g., see for details [9]) the
bias for a single wormhole takes the form

𝑏
1
(𝑥, 𝑥


, 𝜉) =

𝑎
2

2
(

1

(𝑅
−
− 𝑥)

2
−

1

(𝑅
+
− 𝑥)

2
)

× [𝛿 (�⃗� − �⃗�
+
) − 𝛿 (�⃗� − �⃗�

−
)] .

(19)

This form for the bias is convenient when constructing the
true Green function and considering the long-wave limit;
however it is not acceptable in considering the short-wave
behavior and vacuum polarization effects. Indeed, the posi-
tions of additional sources are in the physically nonadmissible
region of space (the interior of spheres 𝑆3

±
). To account for

the finite value of the throat size we should replace in (19)
the point-like source with the surface density (induced on the
throat); that is,

𝛿 (�⃗� − �⃗�
±
) →

1

2𝜋2𝑎3
𝛿 (


�⃗� − �⃗�

±


− 𝑎) . (20)

Such a replacement does not change the value of the true
Green function; however, now all extra sources are in the
physically admissible region of space.

In the rarefied gas approximation the total bias is additive;
that is,

𝑏total (𝑥, 𝑥

) = ∑𝑏

1
(𝑥, 𝑥


, 𝜉

𝑖
) = 𝑁∫𝑏

1
(𝑥, 𝑥


, 𝜉) 𝐹 (𝜉) 𝑑𝜉,

(21)
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where 𝑁𝐹 is given by (9). For a homogeneous and isotropic
distribution 𝐹(𝜉) = 𝐹(𝑎,𝑋), and then for the bias we find

𝑏total (𝑥 − 𝑥

)

= ∫
1

2𝜋2𝑎
(

1

𝑅2

−

−
1

𝑅2

+

)𝛿 (

�⃗� − �⃗�


− �⃗�

+


− 𝑎)𝑁𝐹 (𝜉) 𝑑𝜉.

(22)

Consider the Fourier transform 𝐹(𝑎,𝑋) = ∫𝐹(𝑎, 𝑘)𝑒
−𝑖𝑘𝑋

⋅

(𝑑
4
𝑘/(2𝜋)

4
) and using the integral 1/𝑥2

= ∫(4𝜋
2
/𝑘

2
)𝑒

−𝑖𝑘𝑥
⋅

(𝑑
4
𝑘/(2𝜋)

4
) we find for 𝑏(𝑘) = ∫ 𝑏(𝑥)𝑒

𝑖𝑘𝑥
𝑑
4
𝑥 the expression

𝑏total (𝑘) = 𝑁∫𝑎
2 4𝜋

2

𝑘2
(𝐹 (𝑎, 𝑘) − 𝐹 (𝑎, 0))

𝐽
1
(𝑘𝑎)

𝑘𝑎/2
𝑑𝑎. (23)

(1) Example of a Finite Density of Wormholes. Consider now
a particular (of a finite density) distribution of wormholes
𝐹(𝑎,𝑋), for example,

𝑁𝐹 (𝑎,𝑋) =
𝑛

2𝜋2𝑟
3

0

𝛿 (𝑎 − 𝑎
0
) 𝛿 (𝑋 − 𝑟

0
) , (24)

where 𝑛 = 𝑁/𝑉 is the density of wormholes. In the case
𝑁 = 1 this function corresponds to a single wormhole with
the throat size 𝑎

0
and the distance between throats 𝑟

0
=

|𝑅
+
−𝑅

−
|.We recall that the action (6) remains invariant under

translations and rotations which straightforwardly leads to
the above function. Then 𝑁𝐹(𝑎, 𝑘) = ∫𝑁𝐹(𝑎,𝑋)𝑒

𝑖𝑘𝑥
𝑑
4
𝑥 re-

duces to 𝑁𝐹(𝑎, 𝑘) = 𝑛(𝐽
1
(𝑘𝑟

0
)/(𝑘𝑟

0
/2))𝛿(𝑎 − 𝑎

0
). Thus from

(23) we find

𝑏 (𝑘) = −𝑛𝑎
2 4𝜋

2

𝑘2
(1 −

𝐽
1
(𝑘𝑟

0
)

𝑘𝑟
0
/2

)
𝐽
1
(𝑘𝑎

0
)

𝑘𝑎
0
/2

. (25)

And for the true Green function we get

𝐺true = 𝐺
0
(𝑘)𝑁 (𝑘) = 𝐺

0
(𝑘) (1 + 𝑏 (𝑘)) . (26)

In the short-wave limit (𝑘𝑎, 𝑘𝑟
0
≫ 1) 𝑏(𝑘) → 0 and

therefore 𝑁(𝑘) → 1. This means that at very small scales
the space filled with a finite density of wormholes looks like
the ordinary Euclidean space. In the long-wave limit 𝑘 → 0

we get 𝐽
1
(𝑘𝑟

0
)/(𝑘𝑟

0
/2) ≈ 1 − (1/2) (𝑘𝑟

0
/2)

2
+ ⋅ ⋅ ⋅ which gives

𝑏(𝑘) ≈ −𝜋
2
𝑛𝑎

2
𝑟
2

0
/2, while in a more general case we find

𝑏(𝑘) ≈ − ∫(𝜋
2
/2)𝑎

2
𝑟
2

0
𝑛(𝑎, 𝑟

0
)𝑑𝑎 𝑑𝑟

0
, where 𝑛(𝑎, 𝑟

0
) is the den-

sity of wormholes with a particular values of 𝑎 and 𝑟
0
, and for

the bias function (15) we get

𝑁(𝑘) → 1 −
𝜋
2

2
∫ 𝑎

4
𝑛 (𝑎, 𝑟

0
)
𝑟
2

0

𝑎2
𝑑𝑎 𝑑𝑟

0
≤ 1. (27)

In other words, in the long-wave limit (𝑘𝑎, 𝑘𝑟
0
≪ 1) the

presence of a particular set of virtual wormholes diminishes
merely the value of the charge values.

(2) Limiting Topologies or Infinite Densities of Wormholes.
Consider now the limiting distribution when the density of

wormholes 𝑛 → ∞. Since every throat cuts the finite portion
of the volume (𝜋

2
/2)𝑎

4, this case requires considering the
limit 𝑎 → 0. We assume that in this limit 𝑎2𝑁𝐹(𝑎,𝑋) →

𝛿(𝑎)](𝑋), where ](𝑋) is a finite specific distribution. Then
(23) reduces to 𝑏total(𝑘) = (4𝜋

2
/𝑘

2
) (]̃(𝑘) − ]̃(0)) where ]̃(𝑘) =

∫ ](𝑋)𝑒
𝑖𝑘𝑋

𝑑
4
𝑋 and the bias (15), (18)𝑁(𝑘) becomes

𝑁(𝑘) = 1 −
4𝜋

2

𝑘2
(]̃ (0) − ]̃ (𝑘)) . (28)

It is important that this limit still agrees with the rarefied
gas approximation, for the basic gas parameter (i.e., the
portion of volume cut by wormholes) tends to 𝜉 =

∫(𝜋
2
/2)𝑎

4
𝐹(𝑎,𝑋)𝑑

4
𝑋𝑑𝑎 → 0. The above expression is ob-

tained in the linear approximation only. Taking into account
next orders (e.g., see [22] where the case of a dense gas is also
considered) we find 𝑁(𝑘) = 1 + 𝑏total(𝑘) + 𝑏

2

total(𝑘) + ⋅ ⋅ ⋅ and
the true Green function in a gas of wormholes becomes

𝐺true = 𝐺
0
(𝑘)𝑁 (𝑘) =

1

𝑘2 + 4𝜋2
(]̃ (0) − ]̃ (𝑘))

. (29)

In the long-wave limit 𝑘 → 0 the function ]̃(𝑘) can be
expanded as ]̃(𝑘) ≈ ]̃(0) + (1/2)]̃(0)𝑘2 which also defines
a renormalization of charge values𝑁(𝑘) → 1/(1−2𝜋

2]̃(0))
which coincides with (27). However in this limiting case we
have some freedom in the choice of ]̃(𝑘), which we can use
to assign 𝑁(𝑘) an arbitrary function of 𝑘. In other words
we may get here a class of limiting topologies where Green
functions𝐺true = 𝐺

0
(𝑘)𝑁(𝑘) have a good ultraviolet behavior

and quantumfield theories in such spaces turn out to be finite.
In particular, this will certainly be the case when

𝐺true (𝑥 − 𝑥

= 0) = ∫

1

𝑘2 + 4𝜋2
(]̃ (0) − ]̃ (𝑘))

𝑑
4
𝑘

(2𝜋)
4
< ∞.

(30)

This possibility however requires the further and more deep
investigation.

3.2. Green Function, General Consideration. The action (6)
remains invariant under translations �⃗�


= �⃗� + ⃗𝑐 with an

arbitrary ⃗𝑐 which means that the measure (11) does not
actually depend on the position of the center of mass of the
gas of wormholes and, therefore, we may restrict ourself with
homogeneous distributions 𝐹(𝜉) of wormholes in space only.
Indeed, we may define 𝑑𝑁

𝜉 = 𝑑
𝑁
𝜉

𝑑
4
𝑐, while the integration

over 𝑑4
𝑐 gives the volume of𝑅4; that is, ∫𝑑4

𝑐 = 𝐿
4
= 𝑉which

disappears from (11) due to the denominator. (Technically, we
may first restrict a portion of𝑅4 in (6) to a finite volume𝑉 and
then in final expressions consider the limit 𝑉 → ∞ (which
represents the standard tool in thermodynamics and QFT).)
In what follows we shall omit the prime from 𝜉

.
Let us consider the Fourier representation𝑁(𝑥, 𝑥


, 𝜉) →

𝑁(𝑘, 𝑘

, 𝜉) which in the case of a homogeneous distribution

of wormholes gives𝑁(𝑘, 𝑘

) = 𝑁(𝑘, 𝜉) 𝛿(𝑘 − 𝑘


); then we find

𝐺 (𝑘) = 𝐺
0
(𝑘)𝑁 (𝑘, 𝜉) (31)
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and the Green function can be taken as

𝐺 =
𝑁 (𝑘, 𝜉)

𝑘2 + 𝑚2
. (32)

Then for the total partition function we find

𝑍total (𝐽)

= ∫ [𝐷𝑁 (𝑘)] 𝑒
−𝐼(𝑁)

𝑒
−(1/2)(𝐿

4

/(2𝜋)
4

) ∫((𝑁(𝑘)/(𝑘
2

+𝑚
2

))|𝐽
𝑘

|
2

)𝑑𝑘
,

(33)

where [𝐷𝑁] = ∏
𝑘
𝑑𝑁

𝑘
and 𝜎(𝑁) comes from the integration

measure (i.e., from the Jacobian of transformation from 𝐹(𝜉)

to𝑁(𝑘))

𝑒
−𝐼(𝑁)

= ∫ [𝐷𝐹]𝑍0
(𝑁 (𝑘, 𝜉)) 𝛿 (𝑁 (𝑘) − 𝑁 (𝑘, 𝜉)) . (34)

We point out that 𝐼(𝑁) can be changed by means of adding
to the action (6) of an arbitrary “nondynamical” constant
term which depends only on topology 𝑆 → 𝑆 + Δ𝑆 (𝑁(𝑘))

(e.g., a topological Euler term). The multiplier 𝑍
0
(𝑁) defines

the simplest measure for topologies. Now by means of using
the expression (32) and (33) we find the two-point Green
function in the form

𝐺 (𝑘) =
𝑁 (𝑘)

𝑘2 + 𝑚2
, (35)

where 𝑁(𝑘) is the cutoff function (the mean bias) which
is given by (We recall that in this integral contribute only
limiting topologies in which density of wormholes diverges
(𝑛 → ∞))

𝑁(𝑘) =
1

𝑍total (0)
∫ [𝐷𝑁] 𝑒

−𝐼(𝑁)
𝑁(𝑘) . (36)

At the present stage we still cannot evaluate the exact
form for the cutoff function 𝑁(𝑘) in virtue of the ambiguity
of Δ𝑆(𝑁(𝑘)) pointed out. Such a term may include two
parts. First part Δ

1
𝑆 describes the proper dynamics of

wormholes and should be considered separately. Indeed,
in general wormholes are dynamical self-gravitating objects
which require considering the gravitational contribution to
the action. Some part of such a contribution (mean curvature
induced by wormholes) is discussed in Section 6. However,
since a wormhole represents an extended nonlocal object,
it possesses a rather complex dynamics and this problem
requires the further investigation. The second part Δ

2
𝑆 may

describe “external conditions” (e.g., an external classical
field in (33)) for the mean topology. Actually the last term
can be used to prescribe an arbitrary particular value for
the cutoff function 𝑁(𝑘) = 𝑓(𝑘). Indeed, the “external
conditions” can be accounted for by adding the term Δ

2
𝑆 =

(𝜆,𝑁) = ∫ 𝜆(𝑘)𝑁(𝑘)𝑑
4
𝑘, where 𝜆(𝑘) plays the role of a

specific chemical potential which implicitly depends on 𝑓(𝑘)

through the equation

𝑓 (𝑘) =
1

𝑍total (𝜆, 0)
∫ [𝐷𝑁] 𝑒

(𝜆,𝑁)−𝐼(𝑁)
𝑁(𝑘) . (37)

From (33) we see that the role of such a chemical potential
may play the external current 𝜆(𝑘) = −(1/2)(𝐿

4
/(2𝜋)

4
)⋅

𝐺
0
(𝑘)|𝐽

ext
𝑘
|
2 or equivalently an external classical field 𝜑

ext
=

𝐺
0
(𝑘)𝐽

ext
𝑘
. In quantum field theory such a term leads merely

to a renormalization of the cosmological constant. By other
words the mean topology (i.e., the cutoff function or mean
distribution of wormholes) is driven by the cosmological
constant Λ and vice versa.

4. Topological Bias as a Projection Operator

By the construction the topological bias 𝑁(𝑥, 𝑥

) plays the

role of a projection operator onto the space of functions (a
subspace of functions on 𝑅

4) which obey the proper bound-
ary conditions at throats of wormholes. This means that
for any particular topology (for a set of wormholes) there
exists the basis {𝑓

𝑖
(𝑥)} in which it takes the diagonal form

𝑁(𝑥, 𝑥

) = ∑𝑁

𝑖
𝑓
𝑖
(𝑥)𝑓

∗

𝑖
(𝑥


) with eigenvalues 𝑁

𝑖
= 0, 1

(since 𝑁2

𝑖
= 𝑁

𝑖
). In this section we illustrate this simple fact

(which is probably not obvious for readers) by the explicit
construction of the reference system for a single wormhole
when physical functions become (due to the boundary
conditions) periodic functions of one of coordinates.

Indeed, consider a single wormhole with parameters 𝜉
(i.e., 𝜉 = (𝑎, 𝑅

+
, 𝑅

−
), where 𝑎 is the throat radius and 𝑅

±

are positions of throats in space. (In general, there exists
an additional parameter Λ𝛼

𝛽
which defines a rotation of one

of throats before gluing. However, it does not change the
subsequent construction.There always exists a diffeomorphic
map of coordinates 𝑥

= ℎ(𝑥) which sets such a matrix to
unity).) Consider now a particular solution𝜙

0
to the equation

Δ𝜙
0
= 0 (harmonic function) for 𝑅4 in the presence of the

wormhole, which corresponds to the situation when throats
possess a unit charge/mass but those have the opposite signs.
Now define the family of lines of force 𝑥(𝑠, 𝑥

0
) which obey

the equation 𝑑𝑥/𝑑𝑠 = −∇𝜙
0
(𝑥) with initial conditions 𝑥(0) =

𝑥
0
. Physically, such lines correspond to lines of force for a

two charged particles in positions 𝑅± with charges ±1. We
note that all points which lay on the trajectory 𝑥(𝑠, 𝑥

0
) may

be taken as initial conditions and they define the same line
of force with the obvious redefinition 𝑠 → 𝑠 − 𝑠

0
. By

other words we may take as a new coordinates the parameter
𝑠 and portion of the coordinates orthogonal to the family
of lines 𝑥

⊥

0
. Coordinates 𝑥

⊥

0
can be taken as laying in the

hyperplane 𝑅3 which is orthogonal to the vector ⃗𝑑 = �⃗�
−
− �⃗�

+

and goes through the point �⃗�
0

= (�⃗�
−
+ �⃗�

+
)/2. (Instead

of the construction used here one may use also another
method. Indeed, consider two point charges, and then the
function 𝜙

0
= 1/(𝑥 − 𝑥

+
)
2
− 1/(𝑥 − 𝑥

−
)
2 can be taken as a

new coordinate. Wormhole appears when we identify (glue)
surfaces 𝜙

0
= ±𝜔. We point out that such surfaces are not

spheres, though they reduce to spheres in the limit |𝑥
+
−

𝑥
−
| → ∞ or 𝜔 → ∞.)
Let 𝑠±(𝑥⊥

0
) be the values of the parameter 𝑠 at which

the line intersects the throats 𝑅±. Then instead of 𝑠 we may
consider a new parameter 𝜃 as 𝑠(𝜃) = 𝑠

−
+ (𝑠

+
− 𝑠

−
)𝜃/2𝜋,

so that when 𝜃 = 0, 2𝜋 the parameter 𝑠 takes the values
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𝑠 = 𝑠
−, 𝑠+ respectively.The gluing procedure at throatsmeans

merely that we identify points at 𝜃 = 0 and 𝜃 = 2𝜋 and all
physical functions in the space 𝑅

4 with a single wormhole
𝜉 become periodic functions of 𝜃. Thus, the coordinate
transformation 𝑥 = 𝑥(𝜃, 𝑥

⊥

0
) gives the map of the above space

onto the cylinder with a specific metric 𝑑𝑙2 = (𝑑�⃗�(𝜃, 𝑥
⊥

0
))

2

=

𝑔
𝛼𝛽
𝑑𝑦

𝛼
𝑑𝑦

𝛽 (where 𝑦 = (𝜃, 𝑥
⊥

0
)) whose components are also

periodic in terms of 𝜃. Now we can continue the coordinates
to thewhole space𝑅4 (to construct a cover of the fundamental
region 𝜃 ∈ [0, 2𝜋]) simply admitting all values−∞ < 𝜃 < +∞

this, however, requires to introduce the bias

1

√𝑔
𝛿 (𝜃 − 𝜃


) → 𝑁(𝜃 − 𝜃


) =

+∞

∑

𝑛=−∞

1

√𝑔
𝛿 (𝜃 − 𝜃


+ 2𝜋𝑛) ,

(38)

since every point and every source in the fundamental region
acquires a countable set of images in the nonphysical region
(inside of wormhole throats). Considering now the Fourier
transforms for 𝜃 we find

𝑁(𝑘, 𝑘

) =

+∞

∑

𝑛=−∞

𝛿 (𝑘 − 𝑛) 𝛿 (𝑘 − 𝑘

) . (39)

We point out that the above bias gives the unit operator in the
space of periodic functions of 𝜃. From the standpoint of all
possible functions on 𝑅4 it represents the projection operator
�̂�

2
= �̂�(𝜉) (taking an arbitrary function 𝑓 we find that upon

the projection 𝑓
𝑁
= �̂�𝑓 𝑓

𝑁
becomes a periodic function of

𝜃; that is, only periodic functions survive).
The above construction can be easily generalized to the

presence of a set of wormholes. In the approximation of a
dilute gas of wormholes we may neglect the influence of
wormholes on each other (at least there always exists a suf-
ficiently smooth map which transforms the family of lines
of force for “independent” wormholes onto the actual lines).
Then the total bias (projection) may be considered as the
product

𝑁total (𝑥, 𝑥

) = ∫(∏

𝑖

√𝑔
𝑖
𝑑
4
𝑦
𝑖
)𝑁(𝜉

1
, 𝑥, 𝑦

1
)

× 𝑁 (𝜉
2
, 𝑦

1
, 𝑦

2
) ⋅ ⋅ ⋅ 𝑁 (𝜉

𝑁
, 𝑦

𝑁−1
, 𝑥


) ,

(40)

where 𝑁(𝜉
𝑖
, 𝑥, 𝑥


) is the bias for a single wormhole with

parameters 𝜉
𝑖
. Every such a particular bias𝑁(𝜉

𝑖
, 𝑥, 𝑥


) realizes

projection on a subspace of functions which are periodic with
respect to a particular coordinate 𝜃

𝑖
(𝑥), while the total bias

gives the projection onto the intersection of such particular
subspaces (functions which are periodic with respect to every
parameter 𝜃

𝑖
).

5. Cutoff

The projective nature of the bias operator 𝑁(𝑥, 𝑥

) allows us

to express the cutoff function 𝑁(𝑘) via dynamic parameters
of wormholes. Indeed, consider a box 𝐿4 in 𝑅

4 and periodic

boundary conditions which gives 𝑘 = 2𝜋𝑛/𝐿 (in final expres-
sions we consider the limit 𝐿 → ∞, which gives ∑

𝑘
→

(𝐿
4
/(2𝜋)

4
) ∫ 𝑑

4
𝑘). And let us consider the decomposition for

the integration measure in (33) as

𝐼 = 𝐼
0
+∑𝜆

1
(𝑘)𝑁 (𝑘) +

1

2
∑𝜆

2
(𝑘, 𝑘


)𝑁 (𝑘)𝑁 (𝑘


) + ⋅ ⋅ ⋅ ,

(41)

where 𝜆
1
(𝑘) includes also the contribution from 𝑍

0
(𝑘). We

point out that this measure plays the role of the action for the
bias𝑁(𝑘). Indeed, the variation of the above expression gives
the equation of motions for the bias in the form

∑

𝑘


𝜆
2
(𝑘, 𝑘


)𝑁 (𝑘


) = −𝜆

1
(𝑘) , (42)

which can be found by considering the proper dynamics of
wormholes. We however do not consider the problem of the
dynamic description of wormholes here and leave this for
the future research. Moreover, we may expect that in the first
approximation one may retain the linear term only. Indeed,
this takes place when𝑁(𝑘) is not a dynamic variable, or if we
take into account that 𝑁(𝑘) is a collective variable. Then the
projective nature of the bias 𝑁(𝑘) = 0, 1 means that it can
be phenomenologically expressed via some Fermionic ghost
field Ψ(𝑘) (e.g., 𝑁(𝑘, 𝑘


) = Ψ(𝑘)Ψ

+
(𝑘


)) where the negative

and positive frequency parts of the operator Ψ(𝑘) obey the
anticommutation relationsΨ+

(𝑘)Ψ(𝑘

)+Ψ(𝑘


) Ψ

+
(𝑘) = 𝛿(𝑘−

𝑘

). In the absence of ghost particles Ψ(𝑘)|0⟩ = 0 we get

𝑁(𝑘, 𝑘

) = 𝛿(𝑘 − 𝑘


); that is, 𝑁(𝑘) = 1 and wormholes

are absent. In the term of the ghost field the action becomes
𝐼(𝑁) = 𝐼

0
+ (Ψ, �̂�

1
Ψ) + ⋅ ⋅ ⋅ . Therefore in the leading approx-

imation equations of motion take the linear form �̂�
1
Ψ = 0.

Thus taken into account that 𝑁(𝑘) = 0, 1 (𝑁2
= 𝑁) we

find

𝑁(𝑘) =
1

𝑍total (𝑘)
∑

𝑁=0,1

𝑒
−𝜆
1

(𝑘)𝑁(𝑘)
𝑁(𝑘) =

𝑒
−𝜆
1

(𝑘)

1 + 𝑒−𝜆1(𝑘)
. (43)

The simplest choice gives merely 𝜆
1
(𝑘) = −∑ ln𝑍

0
(𝑘),

where the sum is taken over the number of fields and 𝑍
0
(𝑘)

is given by 𝑍
0
(𝑘) = √𝜋/(𝑘2 + 𝑚2). In the case of a set

of massless fields we find 𝑁(𝑘) = 𝑍(𝑘)/(1 + 𝑍(𝑘)) where
𝑍(𝑘) = (√𝜋/𝑘)

𝛼 and 𝛼 is the effective number of degrees
of freedom (the number of boson minus fermion fields). To
ensure the absence of divergencies one has to consider the
number of fields 𝛼 > 4 [23]. However, such a choice gives
the simplest estimate which, in general, cannot be correct.
Indeed, while its behavior at very small scales (i.e., when
exceeding the Planckian scales 𝑍(𝑘) ≲ 1 and 𝑁(𝑘) = 𝑍(𝑘))
may be physically accepted, since it produces some kind of a
cutoff, on the mass-shell 𝑘2 + 𝑚

2
→ 0 it gives the behavior

𝑁(𝑘) → 1 which is merely incorrect (e.g., from (27) we see
that the true behavior should be𝑁(𝑘) → const < 1).

One may expect that the true cutoff function has a much
more complex behavior. Indeed, some theoretical models in
particle physics (e.g., string theory) have the property to
be lower-dimensional at very small scales. The mean cutoff
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𝑁(𝑘) gives the natural tool to describe a scale-dependant
dimensional reduction [24, 25]. In fact, this function defines
the spectral number of modes in the interval between 𝑘 and
𝑘 + 𝑑𝑘 as

∫𝑁 (𝑘)
𝑑
4
𝑘

(2𝜋)
4
= ∫

𝑁 (𝑘) 𝑘
4

(2𝜋)
2

𝑑𝑘

𝑘
. (44)

Hence we can define the effective spectral dimension 𝐷 of
space as follows:

𝑘
4
𝑁(𝑘) ∼ 𝑘

𝐷
. (45)

From the empirical standpoint the dimension 𝐷 = 4 is
verified at laboratory scales only, while the rigorous tool to
define the spectral density of states (or the mean cutoff) can
give the lattice quantum gravity, for example, see [26, 27]
and references therein. And indeed, the spectral dimension
for nonperturbative quantum gravity defined via Euclidean
dynamical triangulations was calculated recently in [28]. It
turns out that it runs from a value of𝐷 = 3/2 at short distance
to 𝐷 = 4 at large distance scales. We also point out that all
observed dark matter phenomena can be explained by the
fractal dimension𝐷 ≈ 2 starting from scales 𝐿 ≳ (1 ÷ 5)Kpc,
for example, [29–33].

6. Cosmological Constant

Let us consider the total Euclidean action [17]

𝐼
𝐸
= −

1

16𝜋𝐺
∫ (𝑅 − 2Λ

0
)√𝑔𝑑

4
𝑥 − ∫𝐿

𝑚√𝑔𝑑
4
𝑥. (46)

The variation of the above action leads to the Einstein equa-
tions

𝑅
𝑎𝑏
−
1

2
𝑔
𝑎𝑏
𝑅 + 𝑔

𝑎𝑏
Λ

0
= 8𝜋𝐺𝑇

𝑎𝑏
, (47)

where 𝑇𝑎𝑏
= (1/2)(𝑔)

−1/2
(𝛿𝐿

𝑚
/𝛿𝑔

𝑎𝑏
) is the stress energy ten-

sor and Λ
0
is a naked cosmological constant. In cosmology

such equations are considered from the classical standpoint,
which means that they involve characteristic scales ℓ ≫ ℓpl.
However, the presence of virtual wormholes at Planckian
scales defines some additional contribution in both parts of
these equations which can be adsorbed into the cosmological
constant. Therefore the total cosmological constant can be
defined as

Λ tot = Λ
0
+ Λ

𝑚
+ Λ

𝑅
= Λ

0
+ 2𝜋𝐺 ⟨𝑇⟩ +

1

4
⟨𝑅⟩𝑤, (48)

where ⟨𝑇⟩ is the energy of zero-point fluctuations. (It includes
also the contribution of zero-point fluctuations of gravitons.)
That is, themean vacuum value (we recall that in the standard
QFTΛ

𝑚
is infinite, while wormholes form a finite value) and

⟨𝑅⟩
𝑤

= Λ
𝑅
is a contribution of wormholes into the mean

curvature due to gluing (1).

6.1. Contribution of Virtual Wormholes into Mean Curvature.
Consider a single wormhole whose metric is given by (1)

𝑑𝑠
2
= ℎ

2
(𝑟)𝛿

𝛼𝛽
𝑑𝑥

𝛼
𝑑𝑥

𝛽; then the components of the Ricci
tensor are (We are much obliged to the Referee who pointed
out to the subtleties when working with a step function in the
metric.)

𝑅
𝛼𝛽

= 7 − (
ℎ


ℎ
)



(𝛿
𝛼𝛽

+ (𝑁 − 2) 𝑛
𝛼
𝑛
𝛽
)

−
1

𝑟

ℎ


ℎ
((𝑁 − 2) Δ

𝛼𝛽
+ 𝛿

𝛼𝛽
(𝑁 − 1))

− (
ℎ


ℎ
)

2

(𝑁 − 2) Δ
𝛼𝛽
,

(49)

where 𝑛
]
= 𝑥

]
/𝑎 is the unite normal vector to the throat

surface, Δ
𝛼𝛽

= 𝛿
𝛼𝛽

− 𝑛
𝛼
𝑛
𝛽
, ℎ = 𝜕ℎ/𝜕𝑟, and𝑁 is the number

of dimensions. The curvature scalar is

𝑅 = −
(𝑁 − 1)

ℎ2
[2

ℎ


ℎ
+ 2

1

𝑟

ℎ


ℎ
(𝑁 − 1) + (

ℎ


ℎ
)

2

(𝑁 − 4)] .

(50)

Then substituting ℎ = 1 + (𝑎
2
/𝑟

2
− 1)𝜃 in the above equation

we find

−
ℎ
4

𝑁 − 1
𝑅 = 4ℎ

𝑎
2

𝑟3
𝛿 +

2ℎ

𝑟𝑁−1
(𝑟

𝑁−1
𝜆)



+ (𝑁 − 4)(𝜆
2
− 4𝜃

𝑎
2

𝑟3
𝜆)

+ 4 (𝑁 − 4)
𝑎
2

𝑟4
𝜃 (𝜃 − 1) ,

(51)

where 𝜃 is a smooth function which only in a limit becomes
a step function, 𝜆 = (1 − 𝑎

2
/𝑟

2
)𝛿, and 𝛿 = −𝜃

. In the limit
𝜃 → 𝜃(𝑎 − 𝑟) we find 𝛿 → 𝛿(𝑟 − 𝑎) and the last two terms in
(51) are negligible as compared to the first two terms, while in
four dimensions the last two terms vanish.Then the curvature
is concentrated on the throat of the wormhole where 𝜃 differs
from the step function. In the limit of a vanishing throat size
we have ℎ → 1 at the throat and we get

−𝑅 =
4 (𝑁 − 1)

𝑎
𝛿 (𝑟 − 𝑎) +

2 (𝑁 − 1)

𝑟𝑁−1
(𝑟

𝑁−3
(𝑟

2
− 𝑎

2
) 𝛿)



.

(52)

In general all the terms together in (51) and analogous terms
in the Ricci tensor provide that the Bianchi identity holds
and the energy is conserved [19]. Therefore none of them
can be dropped out. However it is easy to see the leading
contribution to the integral over space comes from the first
term only and in the limit of a vanishing throat size we find
for a single wormhole

1

4
∫𝑅√𝑔𝑑

4
𝑥 = −6𝜋

2
𝑎
2
. (53)
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In the case of a set of wormholes (24) we find

1

4
∫𝑅√𝑔𝑑

4
𝑥 = −6𝜋

2
∑

𝑗

𝑎
2

𝑗

= −12𝜋
2
∫𝑛 (𝑎) 𝑎

2
𝑑𝑎 𝑑

4
𝑥 = ∫Λ

𝑅
𝑑
4
𝑥,

(54)

where 2𝑛(𝑎) = ∫ 𝑛(𝑎, 𝑟
0
)𝑑𝑟

0
is the density of wormhole

throats with a fixed value of the throat size 𝑎. This defines
the contribution to the cosmological constant from the mean
curvature as

Λ
𝑅
= −12𝜋

2
∫𝑛 (𝑎) 𝑎

2
𝑑𝑎 < 0. (55)

We see that this quantity is always negative.

6.2. Stress Energy Tensor. In this section we consider the
contribution from matter fields. In the case of a scalar field
the stress energy tensor has the form

−𝑇
𝛼𝛽

(𝑥) = 𝜕
𝛼
𝜑𝜕

𝛽
𝜑 −

1

2
𝑔
𝛼𝛽

(𝜕
𝜇
𝜑𝜕

𝜇
𝜑 + 𝑚

2
𝜑
2
) . (56)

Then the mean vacuum value of the stress energy tensor can
be obtained directly from the two-point green function (32),
(35) as

− ⟨𝑇
𝛼𝛽

(𝑥)⟩

= lim
𝑥


→𝑥

(𝜕
𝛼
𝜕


𝛽
−
1

2
𝑔
𝛼𝛽

(𝜕
𝜇
𝜕


𝜇
+ 𝑚

2
)) ⟨𝐺 (𝑥, 𝑥


, 𝜉)⟩ .

(57)

By means of using the Fourier transform 𝐺(𝑥, 𝑥

, 𝜉) =

∫ 𝑒
−𝑖𝑘(𝑥−𝑥



)
𝐺(𝑘, 𝜉) (𝑑

4
𝑘/(2𝜋)

4
) and the expressions (32), (35)

we arrive at

⟨𝑇
𝛼𝛽

(𝑥)⟩ =
1

4
𝑔
𝛼𝛽

∫(1 +
𝑚

2

𝑘2 + 𝑚2
)𝑁 (𝑘)

𝑑
4
𝑘

(2𝜋)
4
, (58)

where the property ∫ 𝑘
𝛼
𝑘
𝛽
𝑓(𝑘

2
)𝑑

4
𝑘 = (1/4)𝑔

𝛼𝛽
∫ 𝑘

2
𝑓(𝑘

2
)𝑑

4
𝑘

has been used and 𝑁(𝑘) = ⟨𝑁(𝑘, 𝜉)⟩ is the cutoff function
(36).

For the sake of simplicity we consider the massless case.
Then by the use of the cutoff 𝑁(𝑘) = 𝜋

𝛼/2
/(𝜋

𝛼/2
+ 𝑘

𝛼
) from

the previous section we get the finite estimate (𝛼 > 4 is the
effective number of the field helicity states)

Λ
𝑚
=2𝜋𝐺∑∫

𝜋
𝛼/2

𝜋𝛼/2+𝑘𝛼

𝑑
4
𝑘

(2𝜋)
4
=
𝜋𝐺

4
Γ (

𝛼 − 4

𝛼
) Γ (

4

𝛼
) ∼ 1,

(59)

where the sum is taken over the number of fields. Since the
leading contribution comes here from very small scales, we
may hope that this value will not essentially change if the
true cutoff function changes the behavior on the mass-shell
as 𝑘 → 0 (e.g., if we take 𝜆

1
(𝑘) = −∑ ln𝑍

0
(𝑘) + 𝛿𝜆(𝑘) with

𝛿𝜆(𝑘) ≪ ln𝑍
0
(𝑘) as 𝑘 ≫ 1).

To understand how wormholes remove divergencies, it
will be convenient to split the bias function into two parts
𝑁(𝑘, 𝜉) = 1 + 𝑏(𝑘, 𝜉), where 1 corresponds to the standard
Euclidean contribution, while 𝑏(𝑘, 𝜉) is the contribution of
wormholes. The first part gives the well-known divergent
contribution of vacuumfield fluctuations 8𝜋𝐺⟨𝑇0

𝛼𝛽
⟩ = Λ

∗
𝑔
𝛼𝛽

with Λ
∗

→ +∞ , while the second part remains finite for
any finite number of wormholes and, due to the projective
nature of the bias described in the previous section, it
partially compensates (reduces) the value of the cosmological
constant; that is, 8𝜋𝐺⟨Δ𝑇

𝛼𝛽
⟩ = 𝛿Λ𝑔

𝛼𝛽
, where 𝛿Λ =

∑
𝑁
𝜌
𝑁
𝛿Λ(𝑁) and 𝛿Λ(𝑁) is a negative finite contribution of

a finite set of wormholes.
Consider now the particular distribution of virtual

wormholes (24) and evaluate their contribution to
the cosmological constant which is given by 𝛿Λ(𝑁) =

2𝜋𝐺∫ 𝑏(𝑘) (𝑑
4
𝑘/(2𝜋)

4
) = 2𝜋𝐺𝑏total(0). Then from the ex-

pressions (22) and (24) we get

𝑏total (0) = −
𝑛

4𝜋4𝑎3𝑟
3

0

∫(1 −
𝑎
2

𝑅2

−

)𝛿 (𝑅
+
− 𝑎)

× 𝛿 (
𝑅+

− 𝑅
−

 − 𝑟
0
) 𝑑

4
𝑅
−
𝑑
4
𝑅
+
,

(60)

which gives

𝑏total (0) = −𝑛(1 − 𝑓(
𝑎

𝑟
0

)) , (61)

where

𝑓(
𝑎

𝑟
0

) =
2

𝜋
∫

𝜋

0

𝑎
2sin2

𝜃𝑑𝜃

𝑎2 + 2𝑎𝑟
0
cos 𝜃 + 𝑟

2

0

. (62)

For 𝑎/𝑟
0
≪ 1 (we recall that by the construction 𝑎/𝑟

0
≤ 1/2)

this function has the value 𝑓(𝑎/𝑟
0
) ≈ 𝑎

2
/𝑟

2

0
. Thus, for the

contribution of wormholes we find

𝛿Λ
𝑚
= −2𝜋𝐺∫𝑛 (𝑎, 𝑟

0
) (1 − 𝑓(

𝑎

𝑟
0

))𝑑𝑎 𝑑𝑟
0

= −2𝜋𝐺𝑛 (1 − ⟨𝑓⟩) .

(63)

6.3. Vacuum Value of the Cosmological Constant. From the
above expression we see that to get the finite value of the
cosmological constant Λ

𝑚
= Λ

∗
+ 𝛿Λ

𝑚
< ∞ one should

consider the limit 𝑛 → ∞ (infinite density of virtual
wormholes) which requires considering the smaller and
smaller wormholes. From the other handwe have the obvious
restriction ∫ 2𝑛(𝑎, 𝑟

0
)(𝜋

2
/2)𝑎

4
𝑑𝑎 𝑑𝑟

0
< 1, where (𝜋

2
/2)𝑎

4

is the volume of one throat (wormholes cannot cut more
than the total volume of space). (We also point out that in
removing divergencies the leading role plays the zero-point
energy. Indeed 𝛿Λ

𝑚
∼ −2𝜋𝐺𝑛, while the mean curvature has

the order Λ
𝑅
∼ −𝑎

2
𝑛 and for 𝑎 ≪ ℓpl we have 𝛿Λ𝑚

≫ Λ
𝑅
.

Moreover in the limit 𝑛 → ∞, one gets 𝑎 → 0 and therefore
Λ

𝑅
/𝛿Λ

𝑚
→ 0.)Therefore, in the leading order it seems to be

sufficient to retain point-like wormholes only (i.e., consider
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the limit 𝑎 → 0). Then instead of (24) we may assume the
vacuum distribution of virtual wormholes in the form

𝑁𝐹 (𝑎,𝑋) =
1

𝑎2
𝛿 (𝑎) ] (𝑋) , (64)

where ](𝑋) = ∫ 𝑎
2
𝑁𝐹(𝑎,𝑋)𝑑𝑎 and ∫(1/𝑎

2
)](𝑋)𝑑

4
𝑋 =

𝑛 → ∞ has the meaning of the infinite density of point-
like wormholes, while ] ∼ 𝑎

2
𝑛 remains a finite. In this case

the volume cut by wormholes vanishes ∫ 2𝑛(𝜋2
/2)𝑎

4
𝑑𝑎 𝑑𝑟

0
=

𝑎
2
∫ ](𝑋)𝑑

4
𝑋 → 0 and the rarefied gas approximationworks

well.This defines the bias and themean cutoff (here we define
the Fourier transform ]̃(𝑘) = ∫ ](𝑋)𝑒

𝑖𝑘𝑋
𝑑
4
𝑋) as

𝑁(𝑘) = 1 −
4𝜋

2

𝑘2
(]̃ (0) − ]̃ (𝑘)) . (65)

The contribution to themean curvature (55) can be expressed
via the same function ](𝑘) as

Λ
𝑅
= −12𝜋

2
∫𝑛 (𝑎, 𝑟

0
) 𝑎

2
𝑑𝑎 𝑑𝑟

0

= −12𝜋
2
∫ ] (𝑋) 𝑑

4
𝑋 = −12𝜋

2]̃ (0) .

(66)

Thus, for the total cosmological constant we get the expres-
sion

Λ tot = Λ
0

+ 2𝜋𝐺∫(1−
4𝜋

2

𝑘2
(]̃ (0)−]̃ (𝑘)))

𝑑
4
𝑘

(2𝜋)
4
−12𝜋

2]̃ (0) .

(67)

We stress that all these terms should be finite. Indeed all dis-
tributions of virtual wormholes ]̃(𝑘) which lead to an infinite
value of Λ tot are suppressed in (5) by the factor ∼𝑒−∫Λ tot𝑑

4

𝑥,
while the minimal value is reached when wormholes cut all
of the volume of space and the action is merely 𝑆 = 0.
(Frankly speaking this statement is not rigorous. At first look
the two last terms in (67) are independent and one may try
to take ]̃(0) an arbitrary big. If this were the case then the
action would not possess the minimum at all. However ]̃(0)
cannot be arbitrary big, since it will violate the rarefied gas
approximation and the linear expression (67) brakes down.
Moreover, fermions give here a contribution of the opposite
sign. The rigorous investigation of this problem requires the
further studying and we present it elsewhere.) We also point
out that here we considered the real scalar field as the matter
source, while in the general case the stress energy tensor
should include all existing Bose and Fermi fields (Fermi fields
give a negative contribution to Λ

𝑚
).

The value of Λ
0
looks like a free parameter, which in

quantum gravity runs with scales [27]. However at large
scales its asymptotic value may be uniquely fixed by the
simple arguments as follows. Indeed in quantum field theory
properties of the ground state (vacuum) change when we
imply an external classical fields. The same is true for the
distribution of virtualwormholes ]̃(𝑘, 𝐽), for example, see (33)
and (37) and, therefore, Λ tot = Λ tot(𝐽) which we describe

in the next subsection. We recall that in gravity the role of
the external current plays the stress energy tensor of matter
fields 𝐽 = 𝑇

𝑎𝑏
. However one believes that in the absence

of all classical fields the vacuum state should represent the
most symmetric (Lorentz invariant) state which in our case
corresponds to the Euclidean space. In order to be consistent
with the Einstein equations this requires Λ tot(𝐽 = 0) = 0

which uniquely fixes the value of Λ
0
in (67). We point out

that from somewhat different considerations such a choice
was advocated earlier in [15, 34, 35].

6.4. Vacuum Polarization in an External Field. Consider now
topology fluctuations in the presence of an external current.
In the presence of an external current 𝐽ext the distribution of
virtual wormholes changes ]̃(𝑘, 𝐽) = ]̃(𝑘) + 𝛿]̃(𝑘, 𝐽). Indeed
in (33) for the case of a weak external field the contribution
of the external current into the action can be expanded as
exp(−𝑉(𝐽)) ≃ 1 − 𝑉, where

𝑉 = −
1

2
∫ 𝐽 (𝑥) 𝐺 (𝑥, 𝑦) 𝐽 (𝑦) 𝑑

4
𝑥 𝑑

4
𝑦

= −
1

2

𝐿
4

(2𝜋)
4
∫𝐺

0
(𝑘)𝑁 (𝑘)

𝐽𝑘


2

𝑑
4
𝑘.

(68)

Then using (36) we find𝑁(𝑘, 𝐽) = 𝑁(𝑘, 0) + 𝛿𝑁(𝑘, 𝐽), where

𝛿𝑁 (𝑘, 𝐽) = 𝛿𝑏 (𝐽) ≃ −
1

2

𝐿
4

(2𝜋)
4
∫𝜎

2
(𝑘, 𝑝) 𝐺

0
(𝑝)


𝐽
𝑝



2

𝑑
4
𝑝

(69)

is the bias related to an additional distribution of virtual
wormholes and 𝜎

2
(𝑘, 𝑝) = Δ𝑁∗(𝑘)Δ𝑁(𝑝)

𝜎
2
(𝑘, 𝑝) =

1

𝑍total (0)
∫ [𝐷𝑁] 𝑒

−𝐼(𝑁)
Δ𝑁

∗
(𝑘) Δ𝑁 (𝑝) (70)

defines the dispersion of vacuum topology fluctuations (here
Δ𝑁 = 𝑁 − 𝑁). The exact definition of 𝜎2

(𝑘, 𝑝) requires the
further development of a fundamental theory. In particular, it
can be numerically calculated in lattice quantum gravity [28].
However it can be shown that at scales 𝑘, 𝑝 ≫ 𝑘pl it reduces
to 𝜎2

(𝑘, 𝑝) → 𝜎
2

𝑘
𝛿(𝑘 − 𝑝) and therefore

𝛿𝑏 (𝐽) = −𝜎
2

𝑘

4𝜋
2

2𝑘2


𝐽
ext
𝑘



2

. (71)

Now comparing this function with (23) we relate the addi-
tional distribution of virtual wormholes and the external
classical field as

4𝜋
2

𝑘2
(𝛿]̃ (0, 𝐽) − 𝛿]̃ (𝑘, 𝐽)) =

1

2
𝜎
2

𝑘

4𝜋
2

𝑘2


𝐽
ext
𝑘



2

, (72)

where 𝛿]̃(𝑘, 𝐽) = ∫ 𝑎
2
𝛿𝑁𝐹(𝑎, 𝑘)𝑑𝑎. We point out that the

above expression does not define the value 𝛿]̃(0, 𝐽) which
requires an additional consideration.Moreover, in general the
external field 𝐽 does not possess a symmetry and therefore the
correction ⟨𝛿𝑇

𝛼𝛽
(𝑥)⟩ does not reduce to a single cosmological
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constant. However, such corrections always violate the aver-
aged null energy condition [36, 37] and may be considered as
some kind of dark energy or, by other words, it represents an
exotic matter. Some portion of dark energy still has the form
of the cosmological constant which defines a nonvanishing
present day value (we recall that fermions give a contribution
of the opposite sign)

𝛿Λ tot = −2𝜋𝐺∫
4𝜋

2

𝑘2
⟨𝛿]̃ (0, 𝐽) − 𝛿]̃ (𝑘, 𝐽)⟩

𝑑
4
𝑘

(2𝜋)
4

− 12𝜋
2
𝛿]̃ (0, 𝐽) ,

(73)

where ⟨𝛿]̃(𝑘, 𝐽)⟩ denotes an averaging over rotations.
The only unknown parameter in (72) is the dispersion

𝜎
2

𝑘
which defines the intensity of topology fluctuations in

the vacuum. It has also the sense of the efficiency coefficient
which defines the portion of the energy of the external field
spent on the formation of additional wormholes. Though
the evaluation of 𝜎2

𝑘
requires the further development of a

fundamental theory, one may expect that 𝜎2

𝑘
= 𝑁(𝑘)(1 −

𝑁(𝑘)), where 𝑁(𝑘) is the mean cutoff. It is expected that
𝑁(𝑘) → 0 as 𝑘 ≫ 𝑘pl and𝑁(𝑘) → 𝑁

0
≤ 1. This means that

𝜎 → 0 as 𝑘 ≫ 𝑘pl and 𝜎 → 𝜎
0
≪ 1 as 𝑘 ≪ 𝑘pl, while it takes

the maximum value 𝜎max ∼ 1 at Planckian scales 𝑘 ∼ 𝑘pl. By
otherwords, themost efficient transmission of the energy into
wormholes takes place for wormholes of the Planckian size.
In the case when external classical fields have characteristic
scales 𝜆 = 2𝜋/𝑘 ≫ ℓpl in (72) the efficiency coefficient 𝜎2

𝑘
and

the cutoff 𝑁(𝑘) become constant 𝜎 ≃ 𝜎
0
, 𝑁(𝑘) ≃ 𝑁

0
, while

their ratiomay be estimated as 𝛼𝜎2

0
/𝑁

0
= ΩDE/Ω𝑏

, where 𝛼 is
the effective number of fundamental fields which contribute
to 𝛿Λ tot and ΩDE, Ω𝑏

are dark energy and baryon energy
densities, respectively. According to the modern picture this
ratio gives ΩDE/Ω𝑏

≈ 0.75/0.05 = 15, while 𝜎
2

0
/𝑁

0
∼ 1

(as 𝑁
0
≪ 1) and therefore this defines the estimate for the

effective number of fundamental fields (helicity states) as 𝛼 ∼

15.

6.5. Speculations on the Formation of Actual Wormholes.
As we already pointed out the additional distribution of
virtual wormholes (72) reflects the symmetry of external
classical fields and therefore it forms a homogeneous and
isotropic background and perturbations. We recall that vir-
tual wormholes represent an exotic form of matter. In the
early Universe such perturbations start to develop and may
form actual wormholes. The rigorous description of such
a process represents an extremely complex and interesting
problemwhich requires the further study. Some aspects of the
behavior of the exotic density perturbations were considered
in [7], while the simplest example of the formation of a
wormhole-type object was discussed recently by us in [38].
Therefore we may expect that some portion of such a form of
dark energy is reserved now in actual wormholes which we
consider in the next section.

7. Dark Energy from Actual Wormholes

Consider now the contribution to the dark energy from
the gas of actual wormholes. Unlike the virtual wormholes,
actual wormholes do exist at all times and, therefore, a single
wormhole can be viewed as a couple of conjugated cylinders
𝑇
3

±
= 𝑆

2

±
× 𝑅

1. So that the number of parameters of an actual
wormhole is less 𝜂 = (𝑎, 𝑟

+
, 𝑟

−
), where 𝑎 is the radius of 𝑆2

±

and 𝑟
±
∈ 𝑅

3 is a spatial part of 𝑅
±
.

Actual wormholes also produce two kinds of contribution
to the dark energy. One comes from their contribution to
the mean curvature which corresponds to an exotic stress
energy momentum tensor. Such a stress energy momentum
tensor reflects the dark energy reserved by additional virtual
wormholes discussed in the previous section. Such energy
is necessary to support actual wormholes as a solution to
the Einstein equations. The second part comes from vacuum
polarization effects by actual wormholes. The consideration
in the previous section shows that for macroscopic worm-
holes the second part has the order ⟨Δ𝑇

𝛼𝛽
⟩ ∼ 8𝜋𝐺𝑛 and

is negligible as compared to the curvature 𝑅 ∼ 𝑎
2
𝑛 (since

macroscopic wormholes have throats 𝑎 ≫ ℓpl). However,
for the sake of completeness and for methodological aims we
describe it as well.

For rigorous evaluation of dark energy of the second
type we, first, have to find the bias 𝑏

1
(𝑥, 𝑥


, 𝜂) analogous to

(19) for the topology 𝑅
4
/(𝑇

3

+
∪ 𝑇

3

−
). There are many papers

treating different wormholes in this respect (e.g., see [36, 37]
and references therein). However, in the present paper for an
estimation we shall use a more simple trick.

7.1. Beads of Virtual Wormholes (Quantum Wormhole).
Indeed, instead of the cylinders 𝑇3

±
we consider a couple of

chains (beads of virtual wormholes 𝑇3

±
→ ∪

𝑛
𝑆
3

±,𝑛
). Such an

idea was first suggested in [39] and one may call such an
object as quantum wormhole. Then the bias can be written
straightforwardly

𝑏
1
(𝑥, 𝑥


, 𝜂) =

+∞

∑

𝑛=−∞

1

4𝜋2𝑎
(

1

(𝑅
−,𝑛

− 𝑥)
2
−

1

(𝑅
+,𝑛

− 𝑥)
2
)

× [𝛿 (

�⃗� − �⃗�

+,𝑛


− 𝑎) − 𝛿 (


�⃗� − �⃗�

−,𝑛


− 𝑎)] ,

(74)

where 𝑅
±,𝑛

= (𝑡
𝑛
, 𝑟

±
) with 𝑡

𝑛
= 𝑡

0
+ 2ℓ𝑛 and ℓ ≥ 𝑎 is the

step. We may expect that upon averaging over the position
𝑡
0
∈ [−ℓ, ℓ] the bias for the beads will reproduce the bias for

cylinders𝑇3

±
(at least it looks like a very good approximation).

We point out that the averaging out (1/2ℓ) ∫ℓ

−ℓ
𝑑𝑡

0
and the

sum ∑
+∞

𝑛=−∞
reduces to a single integral (1/2ℓ) ∫∞

−∞
𝑑𝑡 of the

zero term in (74). And moreover, the resulting total bias
corresponds merely to a specific choice of the distribution
function 𝐹(𝜉) in (21). Namely, we may take

𝑁𝐹 (𝜉) =
1

2ℓ
𝛿 (𝑡

+
− 𝑡

−
) 𝑓 (

𝑟+ − 𝑟
−

 , 𝑎) ,
(75)
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where𝑅
±
= (𝑡

±
, 𝑟

±
) and𝑓(𝑠, 𝑎) is the distribution of cylinders,

which can be taken as (𝑛 is 3-dimensional density)

𝑓 (𝜂) =
𝑛 (𝑎)

4𝜋𝑟
2

0

𝛿 (𝑠 − 𝑟
0
) . (76)

Using the normalization condition ∫𝑁𝐹(𝜉)𝑑𝜉 = 𝑁 we find
the relation 𝑁 = (1/2ℓ)𝑛𝑉 = 𝑛𝑉, where 𝑛 is a 4-
dimensional density of wormholes and 1/(2ℓ) is the effective
number of wormholes on the unit length of the cylinder (i.e.,
the frequency with which the virtual wormhole appears at
the positions 𝑟

±
). This frequency is uniquely fixed by the

requirement that the volume which cuts the bead is equal to
that which cuts the cylinder (4/3)𝜋𝑎3 = (𝜋

2
/2)𝑎

4
(1/2ℓ) (i.e.,

2ℓ = (3𝜋/8)𝑎 and 𝑛 = (8/3𝜋𝑎)𝑛). Thus, we can use directly
expression (23) and find (compare to (25))

𝑏 (𝑘) = −∫ 𝑛 (𝑎) 𝑎
2 4𝜋

2

𝑘2
(1 −

sin |k| 𝑟0
|k| 𝑟0

)
𝐽
1
(𝑘𝑎)

𝑘𝑎/2
𝑑𝑎, (77)

where 𝑘 = (𝑘
0
, k). Here the first term merely coincides with

that in (25) and, therefore, it gives the contribution to the
cosmological constant 𝛿Λ/(8𝜋𝐺) = −𝑛/4 = −2𝑛/(3𝜋𝑎),
while the second term describes a correction which does not
reduce to the cosmological constant and requires a separate
consideration.

7.2. Stress Energy Tensor. From (57) we find that the stress
energy tensor

−⟨Δ𝑇
𝛼𝛽

(𝑥)⟩ = ∫

𝑘
𝛽
𝑘
𝛼
− (1/2) 𝑔

𝛼𝛽
𝑘
2

𝑘2
𝑏 (𝑘, 𝜉)

𝑑
4
𝑘

(2𝜋)
4

(78)

reduces to the two functions

𝑇
00

= 𝜀 = 𝜆
1
−
1

2
𝜇,

𝑇
𝑖𝑗
= 𝑝𝛿

𝑖𝑗
, 𝑝 =

1

3
𝜆
2
−
1

2
𝜇,

(79)

where 𝜀 + 3𝑝 = −𝜇 and 𝜆
1
+ 𝜆

2
= 𝜇 and these functions are

𝜆
1
= −∫

𝑘
2

0

𝑘2
𝑏
𝑑
4
𝑘

(2𝜋)
4
, 𝜆

2
= −∫

|k|2

𝑘2
𝑏
𝑑
4
𝑘

(2𝜋)
4
. (80)

By means of the use of the spherical coordinates 𝑘2
0
/𝑘

2
=

cos2𝜃, |k|2/𝑘2 = sin2
𝜃, and 𝑑

4
𝑘 = 4𝜋sin2

𝜃𝑘
3
𝑑𝑘𝑑𝜃 we get

𝜆
𝑖
=
𝑛 (𝑎, 𝑟

0
)

4𝛽
𝑖

(1 − 2𝛽
𝑖
(
𝑎

𝑟
0

)

2

𝑓
𝑖
(
𝑎

𝑟
0

)) , (81)

where 𝛽
1
= 1, 𝛽

2
= 1/3, and 𝑓

𝑖
is given by

𝑓
(
1

2
)
(𝑦)

=
2

𝜋
∫

1

−1

∫

∞

0

sin (𝑥 sin 𝜃)
𝐽
1
(𝑦𝑥)

𝑦𝑥/2
(
cos2𝜃
sin2

𝜃
) 𝑑𝑥 𝑑cos 𝜃.

(82)

For 𝑎/𝑟
0
≪ 1 we find

𝑓
1,2

(
𝑎

𝑟
0

) ≈ (1 + 𝑜
1,2

(
𝑎

𝑟
0

)) . (83)

Thus, finally we find

𝜀 ≃ −
𝑛

4
= −

2𝑛

3𝜋𝑎
, 𝑝 ≃ 𝜀(1 −

4

3
(
𝑎

𝑟
0

)

2

) , (84)

which upon the continuation to the Minkowsky space gives
the equation of state in the form (An arbitrary gas of
wormholes splits in fractions with a fixed 𝑎 and 𝑟

0
.)

𝑝 = −(1 −
4

3
(
𝑎

𝑟
0

)

2

) 𝜀, (85)

which in the case when 𝑎/𝑟
0
≪ 1 behaves like a cosmological

constant. However when 𝑎 ≫ ℓpl such a constant is extremely
small and can be neglected, while the leading contribution
comes from the mean curvature.

7.3. Mean Curvature. In this subsection we consider the
Minkowsky space.Then the simplest actual wormhole can be
described by the metric analogous to (1), for example, see [7]

𝑑𝑠
2
= 𝑐

2
𝑑𝑡

2
− ℎ

2
(𝑟) 𝛿

𝛼𝛽
𝑑𝑥

𝛼
𝑑𝑥

𝛽
, (86)

where ℎ(𝑟) = 1 + 𝜃(𝑎 − 𝑟)(𝑎
2
/𝑟

2
− 1). To avoid problems

with the Bianchi identity and the conservation of energy the
step function should be also smoothed as in (1). The stress
energy tensor which produces such a wormhole can be found
from the Einstein equation 8𝜋𝐺𝑇

𝛽

𝛼
= 𝑅

𝛽

𝛼
− (1/2)𝛿

𝛽

𝛼
𝑅. Both

regions 𝑟 > 𝑎 and 𝑟 < 𝑎 represent portions of the ordinary
flat Minkowsky space and therefore the curvature is 𝑅𝑘

𝑖
≡ 0.

However on the boundary 𝑟 = 𝑎 it has the singularity. Since
the metric (86) does not depend on time we find

𝑅
0

0
= 𝑅

0

𝛼
= 0, 𝑅

𝛽

𝛼
=
2

𝑎
𝛿 (𝑎 − 𝑟) {𝑛

𝛼
𝑛
𝛽
+ 𝛿

𝛽

𝛼
} + 𝜆

𝛽

𝛼
, (87)

where 𝑛𝛼 = 𝑛
𝛼
= 𝑥

𝛼
/𝑟 is the outer normal to the throat 𝑆2,

and 𝜆
𝛽

𝛼
are additional terms (e.g., see (49) and (51)) which

in the leading order are negligible upon averaging over some
portion of space Δ𝑉 ≳ 𝑎

3. In the case of a set of wormholes
this gives in the leading order

𝑅
0

0
= 𝑅

0

𝛼
= 0, 𝑅

𝛽

𝛼
= ∑

2

𝑎
𝑖

𝛿 (𝑎
𝑖
−
𝑟 − 𝑟

𝑖

) {𝑛𝑖𝛼𝑛
𝛽

𝑖
+ 𝛿

𝛽

𝛼
} ,

(88)

where 𝑎
𝑖
is the radius of a throat and 𝑟

𝑖
is the position of the

center of the throat in space and 𝑛
𝛼

𝑖
= (𝑥

𝛼
− 𝑟

𝛼

𝑖
)/|𝑟 − 𝑟

𝑖
|.

In the case of a homogeneous and isotropic distribution of
such throats we find 𝑅

𝛽

𝛼
= (1/3)𝑅𝛿

𝛽

𝛼
(averaging over spatial

directions gives ⟨𝑛
𝛼
𝑛
𝛽
⟩ = (1/3)𝛿

𝛽

𝛼
) where

𝑅 = −8𝜋𝐺𝑇 = ∑
8

𝑎
𝑖

𝛿 (𝑎
𝑖
−
𝑟 − 𝑅

𝑖

) = 32𝜋∫ 𝑎𝑛 (𝑎) 𝑑𝑎,

(89)
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where 𝑇 stands for the trace of the stress energy momentum
tensor which one has to add to the Einstein equations to
support such awormhole. It is clear that such a source violates
the weak energy condition and, therefore, it reproduces the
formof dark energy (i.e.,𝑇 = 𝜀+3𝑝 < 0). If the density of such
sources (and, resp., the density of wormholes) is sufficiently
high, then this results in the observed [10–14] acceleration
of the scale factor for the Friedmann space as ∼ 𝑡

𝛼 with
𝛼 = 2𝜀/3(𝜀 + 𝑝) = 2𝜀/(2𝜀 + (𝜀 + 3𝑝)) > 1, for example,
see also [40–42]. In terms of the 4-dimensional density of
wormholes 𝑛 = (8/3𝜋𝑎)𝑛 we get 𝑅 ∼ 𝑎

2
𝑛 ≫ 8𝜋𝐺𝑛 as 𝑎 ≫ ℓpl

and, therefore, the leading contribution indeed comes from
the mean curvature.

8. Estimates and Concluding Remarks

Now consider the simplest estimates. Actual wormholes seem
to be responsible for the dark matter [7, 9]. Therefore, to get
the estimate to the number density of wormholes is rather
straightforward. First wormholes appear at scales when dark
matter effects start to display themselves; that is, at scales of
the order 𝐿 ∼ (1 ÷ 5)Kpc, which gives in that range the
number density

𝑛 ∼
1

𝐿3
∼ (3 ÷ 0.024) × 10

−65cm−3
. (90)

The characteristic size of throats can be estimated from (89)
𝜀DE ∼ (𝐺)

−1
𝑛𝑎. Since the density of dark energy is 𝜀DE/𝜀0 =

ΩDE ∼ 0.75, where 𝜀
0
is the critical density, then we find the

estimate

𝑎 ∼
2

3
(1 ÷ 125) × 10

−3
𝑅
⊙
ΩDEℎ

2

75
, (91)

where𝑅
⊙
is the Solar radius, ℎ

75
= 𝐻/(75 km/(secMpc)) and

𝐻 is the Hubble constant. We also recall that the background
density of baryons 𝜀

𝑏
generates a nonvanishingwormhole rest

mass𝑀
𝑤
= (4/3)𝜋𝑎

3
𝑅
3
𝜀
𝑏
(where𝑅(𝑡) is the scale factor of the

Universe and therefore 𝑀
𝑤
remains constant), for example,

see [7]. It produces the dark matter density related to the
wormholes as 𝜀DM ≃ 𝑀

𝑤
𝑛. The typical mass of a wormhole

𝑀
𝑤
is estimated as

𝑀
𝑤
∼ 1, 7 × (1 ÷ 125) × 10

2
𝑀

⊙
ΩDMℎ

2

75
, (92)

where 𝑀
⊙
is the Solar mass. We point out that this mass

has not the direct relation to the parameters of the gas of
wormholes. However it defines the moment when wormhole
throats separated from the cosmological expansion. The
above estimate shows that if wormholes form due to the
development of perturbations in the exotic matter, then this
process should start much earlier than the formation of
galaxies.

Thus, we see that virtual wormholes should indeed lead
to the regularization of all divergencies in QFT which agrees
with recent results [28]. Therefore, they form the local finite
value of the cosmological constant. In the absence of external
classical fields such a value should be exactly zero at macro-
scopic scales. A some nonvanishing value for the cosmolog-
ical constant appears as the result of vacuum polarization

effects in external fields. Indeed, external fields form an
additional distribution of virtual wormholes which possess
an exotic stress energy tensor (some kind of dark energy).
Only some part of it forms the cosmological constant, while
the rest reflects the symmetry of external fields and possesses
inhomogeneities.We assume that during the evolution of our
Universe inhomogeneities in the exotic matter develop and
may form actual wormholes. Although this problem requires
the further and more deep investigation we refer to [38]
where the formation of a simplest wormhole-like object has
been considered. In other words, such polarization energy
is reserved now in a gas of actual wormholes. We estimated
parameters of such a gas and believe that such a gas may
indeed be responsible for both, dark matter and dark energy
phenomena.
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