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A computational study of a colloidal dispersion stabilized with grafted polymer layers is presented here as a model for white, water-
based paints.The interactionmodel includes repulsive, three-body interactions and attractive van derWaals forces.The electrostatic
interactions are also studied. Stability criteria can be established for the dispersion, such as the thickness of the adsorbed polymer
layers, and the quality of the solvent. Using implicit solventmolecular dynamics calculations, the spatial distribution of the pigments
is obtained through the calculation of the radial distribution functions.The results show that the solvent quality and the thickness of
the grafted polymer layer are key variables in the stability of the dispersion. Additionally, a structural phase transition is predicted,
which is driven by the pigment concentration in the dispersion. It is argued that the predictions of this work are useful guidelines
in the design of paints and coatings of current industrial interest.

1. Introduction

Colloidal dispersions are complex fluids composed of one
or more dispersed phases immersed in a continuous phase
(solvent). A full statistical mechanical description of such
a system is a nontrivial challenge because of the disparity
of scales between the colloidal particles and the solvent
molecules [1]. These dispersions play a very important role
in contemporary societies, as they are present in fields
ranging from biological systems to industrial applications.
A typical example of a colloidal dispersion is a water-based,
architectural paint, which is the system one should have in
mind for this work.

The existence of fluctuating electric dipoles among the
atoms that make up the colloidal particles leads to the
appearance of an attractive interaction between them, known
as the van der Waals (vdW) interaction, which is however,
short ranged. If no repulsive forces were present, the vdW
attraction would drive particles to come close together,
leading to the instability of the dispersion [2]. Alternatively,
a stable colloidal dispersion is that in which colloids are
homogeneously dispersed in the solvent. There are 2 popular
mechanisms that help prevent irreversible colloidal instabil-
ity. One is through steric effects; the other is by means of

electrostatic charges present on the colloids surfaces [1]. The
present work deals primarily with the former and considers
that all particles are covered with a layer formed by adsorbed
polymers. When the particles come close to each other, the
polymers that constitute the layers start to overlap, which in
turn reduces the number of available spatial configurations
for them and therefore their entropy.This process gives rise to
an effective repulsion between colloidal particles, which can
be enough to stabilize the dispersion.

The purpose of this research is, on the one hand, to study
the physicochemical processes involved in the dispersion
stability through grafted polymer layers, using an analytical
mean-field theory, complemented with molecular dynamics
computer simulations. On the other hand, one would like
to predict the behavior of colloidal dispersions by means of
calculations of the thermodynamic and structural properties
that characterize the type of complex fluids of present interest,
and in doing so, assess the advantages of developing models
for paints and coatings [3]. Two original contributions are
presented in this work: on the one hand, the incorporation
of a mean-field model of steric stability to a molecular
simulation code that predicts colloidal stability through the
evolution of the radial distribution function. Charge stabi-
lized colloids are prevalent in aqueous systems and are dealt



2 ISRNMaterials Science

Polymer

Solvent

Pigment

Figure 1: Model colloidal dispersion used in the present work. The
particles represent the pigments, which are coated with a layer of
polymer-grafted chains, immersed in a solvent.

with also in this work. On the other hand, a structural phase
transition is found for thismean-fieldmodel for the first time,
which can drive a stable colloidal dispersion to an unstable
state through relatively small changes in the pressure.

This paper is organized as follows. In the next section,
the interaction model is introduced in detail followed, in
Section 3, by the presentation of the colloidal stability cri-
terion. Section 4 is devoted to the details pertaining to the
molecular dynamics simulations and the calculation and
analysis of the radial distribution functions of the colloidal
particles, which are central for this work. The electrostatic
interactions, which are of paramount importance for real-life
paints and coatings design, are incorporated in Section 5. A
structural phase transition driven by the pigment concentra-
tion is predicted to occur, as shown in Section 6, and finally
the conclusions of this work are laid out in Section 7.

2. Model

The starting point is the mean-field theory proposed by
Zhulina et al. [4]. Let us begin by considering a dispersion
in which each colloidal particle surface is covered with a
certain number of linear, electrically neutral polymers; see
Figure 1. In principle, one should start by taking into account
all partial interactions, such as polymer-polymer, colloid-
colloid, and polymer-colloid, and in each case, between 2, 3,
and more particles. Notice that there is also the interaction of
each of these constituents with the solvent and of the solvent
with itself. Determining all these interactions exactly is, of
course, impossiblewith the tools available today.Nonetheless,
one can take advantage of appropriate approximate methods,
such as mean-field theories [5]. In the present context, this
means that we shall consider the interaction of a colloidal
particle with the rest of other colloids as a whole and,
equivalently, the interaction between polymer chains and

colloids with polymer [4]. Therefore, the total interaction is
written as follows:

𝑈
𝑇
= 𝑈
𝐴
+ 𝑈
𝑃
+ 𝑈
𝐿𝐽𝑅
, (1)

where 𝑈
𝐴
corresponds to the attractive vdW colloid-colloid

interaction, which decays as 1/𝑟
2 as a function of the

relative distance between the centers of mass of a given
pair of particles, 𝑟, for distances smaller than the colloidal
particles radius.𝑈

𝑃
is a repulsive contribution that arises from

polymer-polymer steric interactions. Since this term has an
opposite sign to that of the first, it should be possible to
prevent colloid instability through the competition between
those 2 terms. Zhulina and coworkers [4] have developed an
effective mean-field theory for this scenario, assuming the
area that a polymer chain occupies on a particle surface (𝜎) is
larger than the square of a monomer’s size (𝑎), performing
then a virial expansion of the thermodynamic potential in
terms of themonomer concentration. Colloids collision times
are sufficiently long so that polymer configurations can adjust
and reach equilibrium after the collision so that equilibrium
statistical mechanics can be applied. An additional assump-
tion is that the distance separating the colloids surfaces is
smaller than their size, so that the surfaces can be considered
planar. The last term in (1) has been added in this work to
introduce the excluded volume effect, and it is a Lennard-
Jones type of repulsion given by 𝑈

𝐿𝐽𝑅
(𝑟) = 1/𝑟

50. I chose
the exponent arbitrarily equal to 50 (rather than the usual 12)
simply to ensure that the interaction was strongly repulsive
when surfaces came into contact with one another, since such
term was absent in the original mean-field formulation [4].
Lastly, it is shown that electrostatic interactions can be impor-
tant to improve the stability of the colloidal dispersion [1, 6].

Thepolymer interaction𝑈
𝑃
in (1) ismade up of two terms,

an elastic term of entropic origin [7] and a volume interac-
tion. The former is obtained from the Gaussian approxima-
tion for a linear polymer chain composed of𝑁monomers of
size 𝑎 each [7].The total contribution of the polymer interac-
tions,𝑈

𝑃
, to the full interaction of (1) can be expressed [4] as

𝑈
𝑃
= Δ𝐹
𝜃

0
Ψ(𝛽, 𝑟), where Δ𝐹𝜃

0
is the free energy of a free poly-

mer layer at the 𝜃-temperature. The function Ψ(𝛽, 𝑟), which
depends on the quality of the solvent, 𝛽, and the relative
position between the surfaces of colloids, 𝑟, are given by [4]:

Ψ (𝛽, 𝑟)

= −2(𝛽
2
+ 𝛼
2
+
4𝛽𝛼
3

3𝜋
) + 2𝑢

2
𝑟
2

−
8

3𝜋
[2𝛽
3
𝑟 − 2𝛽(

3𝑢
2

2
− 1) 𝑟

3
+ (𝑢
2
− 1)
3/2

𝑟
4
] ,

(2)

where𝛼 is the temperature-dependent, polymer layer dilation
coefficient, and𝑢 is a variable that obeys the following identity
(for full details see [4]):

1

𝑟2
+
4𝛽

𝜋𝑟
=
2

𝜋
[(𝑢
2
− 1)
1/2

+ 𝑢
2sin−1 (1

𝑢
)] , (3)
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which for 𝑢 larger than 1 can be linearized. Under this
approximation, and neglecting terms of order 𝑟3 and larger, I
obtain the following expression for the full interaction in (1):

𝑈
𝑇
= Δ𝐹
𝜃

0
[(2𝛽

2
− 2𝛼
2
−
8𝛽𝛼
3

3𝜋
) +

𝜋𝛽

𝑟
+

𝜋
2

12𝑟2
(1 − 𝛾)]

+ 𝑈
𝐿𝐽𝑅
.

(4)

The first term in parentheses is a position-independent con-
stant which does not change once the temperature is fixed.
An additional constant, 𝛾, has been introduced [4]:

𝛾 =
𝐴

96𝜋𝑘
𝐵
𝑇𝑤

(
𝜎

𝑁𝑎2
)

3

, (5)

where 𝑤 is the third virial coefficient, 𝐴 is Hamaker’s
constant for the polymer-solvent system, and𝑁 is the degree
of polymerization of the grafted polymers. The origin of the
term proportional to 𝛾 in (4) is the attractive vdW interaction
between colloidal particles, 𝑈

𝐴
, which for planar surfaces (of

equal radius 𝑅) and for relative distances smaller than the
colloids size is given by [2]

𝑈
𝐴
= −

𝐴

12

𝑅

(2𝐻)
2
, (6)

where 2𝐻 is the distance separating two neighboring
colloidal surfaces. Equation (4) is the central potential on
which this work is based. Figure 2 shows its position depen-
dence for various values of 𝛽 or, equivalently, for different
temperatures, and for two values of the constant 𝛾 in (5).

By inspection of (4), it is clear that the constant 𝛾 deter-
mines whether the full potential has an attractive contribu-
tion (when 𝛾 > 1) or if it is totally repulsive (if 𝛾 < 1). There-
fore, it is important to determine the effect that each parame-
ter in (5) has on the stability conditions of ourmodel colloidal
dispersion. First, I investigate the effect that the degree of
polymerization,𝑁, has on the force that can be derived from
the potential in (4), given by the following expression:

𝐹 = −
𝑑𝑈

𝑑𝑟
=
𝜋𝛽

𝑟2
+
𝜋
2

6𝑟3
(1 − 𝛾) . (7)

In deriving (7), the contribution from the Lennard-Jones
repulsive term, 𝑈

𝐿𝐽𝑅
(𝑟), has been neglected since its contri-

bution is important only when colloids are very close to each
other, which occurs for small values of𝑁. One recognizes in
(7) that the force between pigments becomes more repulsive
as the solvent quality 𝛽 is increased, as expected. The influ-
ence of the grafting polymer density or of the type of solvent
can be studied from the influence of constant 𝛾 (see (5)) on
the force, (7). Figure 3 was obtained from (7) for increasing
degrees of polymerization and shows that a limiting value for
the repulsive force at large𝑁 is obtained.This trend has been
fully corroborated by experiments that measure the force
between polymer-coated particles; see for example, [8].

3. Colloidal Dispersion Stability Criterion

The curves in Figure 2 show a maximum for the case when
𝛾 > 1,𝑈max(𝑟

1

max), localized at certain position 𝑟
1

max, and given
by

𝑈max (𝑟
1

max) =
3𝛽
2

𝛾 − 1
Δ𝐹
𝜃

0
, (8)

which is proportional to the quality of the solvent and to the
free energy of the unperturbed polymer layer at the theta
temperature.Thismaximum in the potential creates a barrier,
which can be seen in Figure 2 for 𝛾 > 1; as long as this barrier
is much larger than the thermal energy, 𝑘

𝐵
𝑇, the colloidal

dispersion will be kinetically stable [9]. Using typical values
for the parameters entering into Δ𝐹𝜃

0
(polymerization degree

𝑁 = 55; total number of grafted chains per colloid 𝑚 = 500;
average area of polymer chain on the colloid surface 𝜎 =

7000 Å2; monomer size 𝑎 = 5 Å; average thickness of polymer
layer at theta temperature 𝐻𝜃

0
= 500 Å) for a good quality

solvent (𝛽 = 1), at room temperature, I obtain a value for
the ratio of the potential in (8) over 𝑘

𝐵
𝑇 of about 104 (see

[4]), which means that the colloidal dispersion is stable [2].
This analysis leads us to a stability criterion, expressed by the
following condition:

𝑈max (𝑟
1

max)

Δ𝐹
𝜃

0

=
3𝛽
2

𝛾 − 1
> 1. (9)

This is a testable prediction. In what follows, I carry out a
molecular dynamics computer simulation study of a model
colloidal dispersion, where the motion of the colloidal parti-
cles is obtained from the solution of Newton’s second law for
the force derived from the full potential in (4).

4. Molecular Dynamics Simulations of
Colloidal Dispersions

Thepurpose ofmolecular dynamics simulations is the predic-
tion of values of thermodynamic and structural properties,
among others, obtained from averages over the trajectories
of the particles in the system, in phase space [10]. It has
been shown before how, for example, molecular dynamics
simulations are very helpful in understanding and predicting
the behavior of polymers of industrial interest in different
solvents [11]. Also, molecular simulation can be a powerful
tool in the design of new molecules with certain tailored
functionality [12]. The primordial interest here is the calcu-
lation of structural properties of a system like that depicted
in Figure 1. I start by solving the equation of motion using
the velocity Verlet integration algorithm [10] for the potential
in (4), using a cubic simulation box (or varying volume to
fix the desired particle concentration) with 896 particles with
periodic boundary conditions applied on each face of the
box. Reduced units are used throughout, at room temperature
unless stated otherwise. The solvent is included implicitly
through the choice of the Hamaker constant.The simulations
are performed at constant particle number, volume, and
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Figure 2: Full interaction potential (4) for pigments coated with a polymer layer, as a function of the solvent quality (𝛽) and the 𝛾 constant
(see (5)). The axes are shown in adimensional units. Full lines represent the potential, while dotted lines are the corresponding forces.
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Figure 3: Force between colloidal particles with grafted polymer
chains of various degrees of polymerization,𝑁. The axes have been
normalized appropriately so that they are dimensionless.The curves
were obtained from (7), for 𝛽 = 1.0. The curves for 𝑁 = 500 and
𝑁 = 5000 are indistinguishable.

temperature, that is, using the canonical ensemble. At least 2×
105 integration cycles were performed during the production
phase of the molecular dynamics simulations, with 3 × 104
cycles for the equilibrium phase.The time step was chosen as
𝑡 = 0.007𝑡

𝐿𝐽
, where 𝑡

𝐿𝐽
is the time step in the Lennard-Jones

units [10].

One of the key quantities used to characterize the stability
of our model dispersion is through the calculation of the
radial distribution function (rdf), usually represented as 𝑔(𝑟).
The information provided by the rdf helps one determine
the relative spatial organization of the molecules in a fluid
with three-dimensional symmetry [10]. It is directly evaluated
from the dynamics that at each integration time, the number
of particles in a shell with radii between 𝑟 and 𝑟 + Δ𝑟, that is,
Δ𝑁(𝑟, 𝑟 + Δ𝑟), is calculated and normalized by the density of
particles, 𝜌, and the volume of the shell to give

𝑔 (𝑟) =
Δ𝑁 (𝑟, 𝑟 + Δ𝑟)

(4𝜋/3) 𝜌 [(𝑟 + Δ𝑟)
3
− 𝑟3]

. (10)

Knowledge of the rdf allows one to determine the influence
that the various parameters entering the potential in (4) have
on the spatial distribution of the colloidal particles, or in other
words, on the stability of the dispersion. One of the variables
that play a key role in the present model is the parameter 𝛽,
which is negative for poor solvents, zero for a theta solvent,
and positive for solvents of good quality [4]. In Figure 4,
we see the 𝑔(𝑟) for a model colloidal dispersion at three
different values of increasing solvent quality. They represent
a dispersion of polystyrene in water at room temperature, for
which the Hamaker constant is 𝐴 = 10

−20 J [13].
Thefirstmaximum that appears in Figure 4 is displaced to

larger values of the relative distance from the centers of mass
of the polystyrene particles as the solvent quality is increased,
which is in agreement with the expected result. This means
that the relative separating distance between colloids has been
increased; that is, the dispersion has become more stable as
the solvent quality has been increased.One can then conclude
that since the solvent quality depends on temperature and on
the thermodynamic stiffness of the polymer chains (Kuhn’s



ISRNMaterials Science 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

r∗ = r/𝜎

𝛽 = 0.0

𝛽 = 0.4

𝛽 = 1.0

g
(r

∗
)

Figure 4: Radial distribution functions obtained from molecular
dynamics simulations at three different values of the solvent quality,
𝛽.The symbol 𝜎 represents the size of the colloidal particles. See text
for details.

parameter [4]), then increasing these variables would lead to
an improvement in the stability of the dispersion. There are,
however, additional factors one can control to increase the
stability of the dispersion. One of them is the thickness of
the polymer layer grafted to the surface of the particles, 𝐻,
since the thicker this layer is, the more difficult it becomes
for the surfaces of the colloids to come into contact with
one another thus preventing the attractive vdW interaction to
dominate and flocculate the dispersion. This hypothesis was
tested with the calculation of the rdf for various thicknesses
of the polymer layer, and the results are shown in Figure 5.

Different sets of simulations were carried out for thick-
nesses of the polymer layer coating the surface of the colloids,
ranging from 100 Å up to 800 Å. The resulting rdf for
each case are shown in Figure 5, where one notices how
the largest maximum in each curve is displaced to larger
values of the relative distance between polystyrene particles
centers, which indicates that as the polymer layer thickness
is increased, the polystyrene dispersion becomes more sta-
ble. There are other factors that are expected to enhance
colloidal stability, such as temperature, the polymer grafting
density, and polymerization degree. However, these factors
are already included in the definition of the constant 𝛾 (see
(5)). Recalling that the potential in (4) acquires an attractive
term whenever 𝛾 > 1, then one must seek ways to keep 𝛾 < 1
which means, for example, lowering the Hamaker constant
(which is tantamount to choosing a different solvent or an
alternative coating for the colloidal surface) and increasing
the temperature, the polymerization degree, or the polymer
grafting density. Notice also that 𝛾 is inversely proportional to
𝑤, the third virial coefficient; that is, three-body interactions
contribute directly to the stability of the dispersion.
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Figure 5: Radial distribution function for the model colloidal
dispersion, obtained from molecular dynamics simulations using
the same set of parameters used for Figure 4, except for the value
of the polymer layer thickness, at the theta temperature. The first
maximum value is displaced to larger values of the dimensionless 𝑟∗
as the thickness is increased from left to right: 100 Å (black), 300 Å
(blue), 500 Å (green), and 800 Å (red).

The effect of the TiO
2
pigment coating can be investigated

also by means of the Hamaker constant [14]. Doing so is
important for the particular application of the dispersion one
has in mind, for example, in paints, to graft certain kinds
of dispersants on the pigment surfaces so that the paints are
more stable [12], or to ensure thewhiteness of the paint [15], to
name just some examples. This can be accomplished through
an appropriate combination of the Hamaker constants for the
pigment-solvent (𝐴

12
), with the coating substances, also for

the particular solvent chosen (𝐴
13
,𝐴
14
, etc.), that is, amixing

rule such as 𝐴
123

= (𝐴
12
𝐴
13
)
1/2 [2]. The rdf of a dispersion

of TiO
2
pigments with and without a SiO

2
+ polystyrene (PS)

coating in water is shown in Figure 6.
We see in Figure 6 that the dispersion of uncoated titania

is unstable at the theta temperature (red line) since a large
maximum appears in the rdf when the relative distance
between the centers of mass of the pigment particles is equal
to their diameter; that is, the particles are touching. However,
when the pigments are coated, the maximum is displaced
to larger relative distances (blue line) and the dispersion
becomes stable. Therefore, the potential in (4) has enough
flexibility to allow one to test various scenarios of practical
importance. In the blue line in Figure 6, the calculations
were performed for titania particles coated with SiO

2
because

many commercial grade TiO
2
pigments used for architectural

paints are coated precisely with SiO
2
[15]. Most commercial

architectural paints include of course latex particles, which
would require the present model to account for colloidal
particles of at least two different types, pigment, and latex
particles. However, as shown in Figure 6, this can easily
be done with a single particle type simply by introducing



6 ISRNMaterials Science

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

r∗ = r/𝜎

g
(r

∗
)

TiO2

TiO2 + SiO2 + PS

Figure 6: Radial distribution functions for a model water based
paintwith bare TiO

2
pigments (red line) andwith the samepigments

coated with a layer of silica and polystyrene (TiO
2
+ SiO
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+ PS, blue

line).

an appropriate mixing rule for the type of coating one wants
to design, having in hand the requiredHamaker constant. For
the particular case shown in Figure 6, polystyrenewas chosen
as a generic latex particle.The case of water soluble, adsorbed
polymers such as PEG has been discussed in [12]. As a final
word on the rdf shown in Figures 4–6, one notices that the
second peak is always weak. This is due to the fact that the
dispersion has only very short range order, as seen by the
interactions displayed in (4).

5. Influence of the Electrostatic Interaction

Two of the most popular methods for colloidal stabilization
are the steric method, exemplified in the previous sections,
and the electrostatic one [1]. It is known also [15] that when
TiO
2
is used as a pigment in paints and coatings, it is

usually coated with oxides such as alumina and silica which,
when immersed in a polar solvent such as water, acquire
electric charges on the surface [15]. These charges in turn
induce polarization of the charges on the grafted polymer
chains, and they are immersed in an aqueousmedium. Under
these conditions, the electrostatic interaction is screened,
with a range typically given by the Debye length [2, 16].
It is not the purpose of this work to study the conditions
of stability that arise when the competing interactions are
the attractive vdW and repulsive electrostatic interactions,
since the DLVO model is well suited for that [17]. The
objective here is merely to illustrate how the present model
can be adapted to include factors such as the electrostatic
environment to yield useful predictions for the stability of
paints and coatings. Let us start by considering the screened

1.00 1.05 1.10 1.15 1.20 1.25 1.30
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Figure 7: Modification of the interaction potential when a repul-
sive electrostatic term is added. The top (purple) line represents
the purely electrostatic repulsion, while the lowest (orange) line
corresponds to the nonelectrostatic potential, which is attractive
when 𝛽 = 0. The black line is the potential that contains both
contributions.

electrostatic Yukawa potential [2], given by the following
expression:

𝑈elec (𝑟) =
(𝑍effec𝑒)

2 exp [−𝜅
𝐷
𝑟]

(4𝜋𝜀
0
𝜀
𝑟
) 𝑟

; 𝑟 > 𝜎colloid, (11)

where 𝑍effec is the effective charge on the surface of the
pigments, in terms of the fundamental electron charge, 𝑒. For
the present purposes, I shall consider 𝑍effec = 100 [18]. The
constant 𝜅

𝐷
is the inverse of the Debye length, which shall

be considered to be equal to 20 nm, as in typical aqueous
paints [15]. Finally, 𝜀

0
𝜀
𝑟
is themediumpermittivity, and I shall

use the values appropriate for water at room temperature.
Equation (11) is added to the interaction potential (4) and new
set of molecular dynamics simulations are then carried out.
For simplicity and to test the influence of the electrostatics,
only the case of a theta solvent is considered, that is, 𝛽 =

0.
Figure 7 shows how the interaction potential is modified

by the influence of the screened electrostatic interaction,
which as seen in the figure, leads to the appearance of a
potential barrier that arises from the competition of the vdW
attraction and the electrostatic repulsion. The bare Coulomb
repulsion and the steric potential, which is purely attractive
for this choice of parameters (with 𝛽 = 0), are included also
in the figure for comparison.

With the potential given by the addition of the screened
electrostatic interaction (11) and the steric potential (4), new
molecular dynamics simulations were carried out, for a theta
solvent (𝛽 = 0) at room temperature, using the same values
of the parameters involved in the calculation of the potential



ISRNMaterials Science 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

With electrostatic interaction
 Without electrostatic interaction

r∗ = r/𝜎

g
(r

∗
)

Figure 8: Radial distribution function for a systemwith electrostatic
interaction (red line) and without it (green line). Inclusion of
electrostatics leads to a repulsion between colloids, which displaces
the first maximum to larger relative distances. See text for details.

in Figure 7, which yield 𝛾 = 1.05. Once equilibrium was
reached, the rdf was calculated and compared with the rdf of
the system without electrostatic interactions. Both results are
shown in Figure 8.

The rdf of the system of particles that contains the
electrostatic interaction is seen to have its first maximum at
a larger relative position between the centers of mass of the
colloids than the neutral system. One should keep in mind
that the neutral system corresponds to the case of a theta
solvent, which is why it is not as stable as it would be expected
to be if the quality of the solvent was better.

6. Order-Disorder Phase Transition

In this section, I shall present the evolution of the colloidal
dispersion as a model for paints and coatings, when the
pigment concentration is increased. Similar studies have
shown that a structural phase transition occurs as a function
of particle concentration [19]. It is important to determine
the conditions under which such a transition takes place, if
it does occur.The analysis of the previous sections has shown
that raising the temperature lowers the value of 𝛾, that in
turn, makes the dispersion more stable while increasing the
solvent quality, at the same time. Moreover, we know that
for compressible fluids, increasing the concentration leads to
an increase in the fluid’s pressure; hence, one would like to
know if the fluid undergoes any fundamental transformation
when the pigment concentration and the temperature are
the control variables. I have performed such study through
molecular dynamics simulations and, once equilibrium has
been reached, calculated the fraction of total number of
particles that are closer than a certain distance apart (in this
case, when their relative distance is 𝑟∗ ≤ 0.1 in reduced units).
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Figure 9: Fraction of dissociated colloidal particles (𝑋dissoc) as a
function of the total colloid concentration, 𝜌∗ in adimensional units,
for two values of the solvent quality (𝛽). The parameters used in the
simulation are the same as in the Figure 8 (nonelectrostatic case).
The lines are only guides for the eye. The colored lines indicate the
total energy of the system, normalized by the particle number, in
each case. See text for details.

The fraction of particles that are dissociated, namely, those
that are not closer to each other than a distance equal to, or
smaller than 𝑟∗ = 0.1, 𝑋dissoc, is obtained from the ratio of
the number of particles that do not associate over the total
particle number. In a well-dispersed system,𝑋dissoc ≈ 1 since
most particles are separated from one another, whereas when
𝑋dissoc ≈ 0, most particles have formed aggregates.Therefore,
𝑋dissoc plays the role of an order parameter. In Figure 9, we see
the evolution of this order parameter as a function of pigment
concentration, for two different values of the solvent quality.

It is evident that a transition occurs between a “disor-
dered” state, at low pigment concentration where all or most
of the particles are dissociated, to a more “ordered” state
where particles form clusters.The term “ordered” is used here
only to imply that particles are associated spatially by their
relative distance; however, it does not imply that a certain
spatial symmetry exists, as it does in crystalline solids. In
that sense, Figure 9 is a phase diagram of the model colloidal
dispersion under study. The rdf between the ordered and
disordered states differ in that the position of the first peak is
displaced to smaller distances for the ordered state, due to the
aggregation of particles. I have also calculated the total energy
of the system as the pigment concentration is increased,
and, as the results present in the color lines in Figure 9
demonstrate, there is no discontinuity in the energy when the
system goes form from fully disordered (stable dispersion)
to completely “ordered” (unstable dispersion). Thus, the
transition we have found belongs to the so-called “second
order” type [13]. There is a small decrease in the normalized
energy as the pigment concentration is increased, but this is
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Figure 10: Phase diagramof themodel colloidal dispersion obtained
frommolecular dynamics simulations.OF andDF represent ordered
(flocculated) and disordered (stable) dispersion, respectively. The
dashed line delineates the border between those twophases.Theper-
pendicular arrows illustrate the behavior of the colloidal dispersion
when it is close to the boundary between phases.

simply the consequence of having less configurational space
available for particles to move, hence their kinetic energy is
somewhat reduced.

The phase transition that the colloid dispersion under-
goes as a function of pigment concentration can be driven,
for example, by an increase in the hydrostatic pressure, but
when that happens, other thermodynamic conditions may
also change, like the temperature. It is important then to
find out how the structural properties of the dispersion are
modified as the temperature changes. Using the molecular
dynamics simulation data to determine when the majority
(more than 50% of the total) of the particles are associated,
I have constructed the phase diagram shown in Figure 10. In
it, the balck squares represent “ordered” states, that is, those
wheremost particles form clusters, while red circles represent
dissociated, stable states. The dotted line indicates where the
transition from an ordered fluid (OF) to a disordered fluid
(DF) occurs, as the temperature and pigment concentration
are increased.

Let us take the point marked with the perpendicular
arrows in Figure 10, as an arbitrary reference. If the chosen
point is close to the boundary between phases, as in the exam-
ple in the figure, a relatively small increment in concentration
(driven, e.g., by the external pressure) can take the dispersion
from a stable (DF) to an unstable (OF) state. However, if
starting at the same point while keeping the concentration
fixed one raises the temperature, the system stays disordered,
or kinetically stable. Sengupta and coworkers [20] have found
similar trends by means of the Monte Carlo simulations
for binary mixtures in two dimensions; however, the results
shown in Figure 10 are, to the best of my knowledge, the
first time a transition of this type has been reported for
fluids composed of a single particle type. As to the origin of

transition, the likely candidate is the increased translational
entropy the particles acquire as the temperature is raised.

7. Conclusions

The work reported here shows that the stability of a colloidal
dispersion, such as a water-based paint or coating, can be
understood as arising from the competition between the
reduction in entropy when the polymer layers that coat
the pigments come close to each other, and the monomer
interactions of the polymer chains when compressed. This
compression gives rise to three-body repulsive interactions,
which in turn make the dispersion more stable. It was shown
also how one can control certain parameters to improve
the stability of the dispersion, such as the thickness of the
polymer layer, the degree of polymerization of the grafted
chains, the solvent quality, and the pigment surface coating.
Molecular dynamics computer simulations proved to be a
useful tool, not only for the prediction of conditions of
colloidal stability but also as a guide to choose and control
variables to yield a desired condition. Additionally, molecular
dynamics simulations are essentially exact [10], which means
that their predictions can go beyond mean-field theory.

Lastly, it was shown that an order-disorder phase tran-
sition occurs in the model fluid under consideration, which
can turn a stable dispersion into an unstable one when
relatively small changes in external conditions such as the
hydrostatic pressure (which changes the pigment concen-
tration) take place. Implementing the model presented here
is straightforward and the molecular simulations required
can be performed on a modern laptop in a relatively small
amount to time, yielding useful guidelines before embarking
on expensive laboratory tests, with minimal information
required beforehand, such as knowledge of the appropriate
Hamaker constants, for example. This work is a stepping-
stone towards the construction of more sophisticated models
for the stability of paints and coatings.
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